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ABSTRACT

This paper identifies a strategy, jointly utilizing com-
mon random numbers and antithetic variates, for the
assignment of random number streams in a simula-
tion experiment which utilizes the central composite
design for fitting second-order metamodels. Such de-
signs are often used for the purpose of efficiently esti-
mating a specific second-order metamodel of the re-
lationship between the levels of the input factors and
the mean of the univariate response variable of inter-
est. In the past, correlation-based strategies for meta-
model estimation in simulation experiments have fo-
cused on first-order metamodels. However, in many
simulation experiments it is reasonable to expect that
the relation between the levels of the input factors
and the mean of the response of interest is better
approximated by a second-order metamodel. Thus,
second-order metamodels are, typically, of more in-
terest to the simulation experimenter. The proposed
strategy uses the variance reduction techniques of
common random numbers to induce positive corre-
lations between responses across design points and
antithetic variates to induce negative correlations be-
tween responses across replicates within the simula-
tion experiment. For the class of central composite
designs and with respect to a variety of optimality cri-
teria, this strategy is shown to give better estimates
of the vector of unknown metamodel coefficients than
the method of independent random number streams.
Results of a numerical study on a two-factor exper-
iment are presented to support these claims and to
show that, in practice, the proposed strategy yields
metamodel coefficient estimates that are superior to
those obtained under the strategy of independent ran-
dom number streams.

1 INTRODUCTION

In classical design of experiments, interest is often
focused on fitting a second-order, linear regression
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model of the mean response of interest and the levels
of the design variables. One of the most popular and
usefull designs used for fitting such regression mod-
els is the central composite design (see Chapter 7 of
Myers 1976). This popularity and usefullness should
serve as a strong recommendation of the central com-
posite design to the simulation analyst interested in
performing designed second-order simulation experi-
ments. Unfortunately, the central composite design
has received little attention from the simulation com-
munity. We feel that the development of a strategy
for assigning random number streams to design points
in a simulation experiment which utilizes the central
composite design, will greatly help this design gain
broad acceptance within the simulation community.
The development of such a strategy is the focus of
this paper.

The variance reduction techniques of common ran-
dom numbers and antithelic variales have been used
successfully in simulation experiments that are de-
signed to estimate an hypothesized first-order meta-
model of the mean response of interest and levels
of the design variables set by the simulation ana-
lyst. (Discussions of these two variance reduction
techniques are given in Chapter 2 of Bratley, Fox,
and Schrage 1987 and Chapter 11 of Law and Kel-
ton 1991.) Schruben and Margolin (1978) showed
that the strategy of applying common random num-
bers across all design points in the experiment yields
superior estimates of the unknown metamodel coef-
ficients to the strategy of assigning independent ran-
dom number streams to all design points. Further-
more, they proposed an assignment rule that, for de-
signs that are orthogonally blockable into {wo orthog-
onal blocks, assigns a combination of common and
antithetic random number streams across the design
points in the experiment. This assignment rule is
shown to be superior to both the strategy of com-
mon random numbers alone and to the strategy of in-
dependently assigned random number streams. The
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requisite assumptions, as well as performance evalu-
ations, for this assigninent rule have been fully docu-
mented by Schruben (1979), Schruben and Margolin
(1978), Tew (1986), and Tew and Wilson (1992a, b).

The major contribution of the Schruben-Margolin
Assignment Rule was to show how common random
numbers and antithetic variates could be successfully
combined in one simulation experiment. However,
their results are restricted to metamodels that admit
orthogonal blocking into two blocks (see Section 4.2
of Schruben and Margolin 1978, Chapter 8 of Myers
1976, and Tew and Wilson 1992a). Often, second-
order designs such as central composite designs, as
well as others, require blocking into more than two
orthogonal blocks (see Chapter 15 of Box and Draper
1987 and Chapter 8 of Myecrs 1976). Also, it is of-
ten desirable for a central composite design to have
more than one center pownt (see Chapter 7 of My-
ers 1976). Such designs cannot accommodate the
Schruben-Margolin Assignment Rule.

Our experience has suggested that for many simu-
lation experiments, a sccond-order metamodel offers
a better approximation to the true underlying rela-
tionship between the mean of the response of interest
and the selected levels of the input factors, and that
very often the designs are constructed sequentially in
amanner that does not allow orthogonal blocking into
two blocks. (This is especially true for response sur-
face methodology (RSM) applications to simulation
experiments.) In this paper we suggest a correlation-
induction strategy for simulation experiments which
utilize the central composite design in order to esti-
mate a second-order metamodel without the restric-
tions of orthogonal blocking or a single center point.
In keeping with the spirit of the Schruben-Margolin
Assignment Rule, this strategy combines the use of
common random numbers and antithetic variates in
one experiment. This strategy is shown, under cer-
tain conditions, to be superior to the method of us-
ing independent, randomly selected random number
strearns across all design points for the central com-
posite design.

This paper is organized as follows. Section 2 pro-
vides an introduction to the background results and
notation that are utilize«d throughout the remainder
of the paper. Section 3 gives an overview of the cen-
tral composite design. The development of the pro-
posed correlation-induction strategy is given in Sec-
tion 4. Au exarmnple of a simple job shop environment
is given in Section 5 along with a discussion of how the
correlation-induction strategy developed i this paper
was implemented and the numerical results that were
obtained. Concluding remarks and a summary are
given in Section 6.

Tew

2 NOTATION AND BACKGROUND RE-
SULTS

In this section we provide the statistical framework
necessary to formally define a simulation experiment
and its associated second-order metamodel. We also
identify the second-order metamodel used to evaluate
the correlation-induction strategy presented in Sec-
tion 4.

2.1 Setup for Designed Simulation Experi-
ments

Consider a simulation experiment consisting of m de-
sign points, where each design point is defined by
the d-dimensional vector ¢ of factors that are de-
terministic inputs to the simulation model. Further,
assume that the simulation experiment consists of r
replicates at each design point. For i = 1,2,....m
and j = 1,2,...,7, let ¢, represent the settings of
these d factors at the ith design point; and let y;;
denote the univariate response generated by the sim-
ulation run made at the ith design point and jth
replicate. Moreover, let the design variables {z() :
h =1,2,...,p — 1} represent transformations (cod-
ing functions) of the original factors. Then, assuming
that the relationship between the response y;; and the
coded design variables {z,(yp;) : h =1,2,...,p—1}
1s linear in the unknown parameters and first-order,
we can write

p—1
vi = Bo+ Y Brzale,) + ¢
h=1
for i1 =1,2,...,m and j=1,2,...,7(1)

where Bo,31,...,B,—1 are the unknown parameters
of the simulation metamodel (1); and the error €;
represents the inability of the linear function 8y +
Zﬁ;i Brri(p;) to determine the response y;;.

The overall input-output structure of the simula-
tion experiment is most conveniently expressed in
terms of the following matrix notation. For each
replication j (j = 1,2,...,7), the vector of re-
sponses from all m design points is represented by
Yi = (y15,¥25,-- - Ymj). In the m x p design ma-
trix X = [1,, T], the first column is all ones, and
the (i,h+1) element is zp(;) for i = 1,2,...,m and
h=1,2,...,p~1. Finally, let 8 = (8o, B1,...,Bp-1)
and €; = (€15,€25,...,€6mj) respectively denote the
parameter vector and error vector for the simulation
metamodel given in (1). Thus, for the jth replicate,
the relationship between the response and the coded
design variables across the entire experiment can be
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expressed as

Yi = Xﬁ+€]y
for j=1,2,...,r (2)

Much of the subsequent analysis of alternative strate-
gies for estimating the coefficients of the metamodel
in (2) will depend on the assumption that, for a given
replicate, the simulation-generated outputs have the
following nonsingular multivariate normal distribu-
tion

Nm(XB,X) with det(X) #0,
for j=1,2,...,r 3)

Y; ~

A simulation model is usually driven by randomly
chosen streams of (pseudo)random numbers. For ex-
ample, in a queueing network simulation, different
random number streams could be dedicated to sam-
pling service times at different service centers. Each
stream is a reproducible, deterministic sequence of
real numbers that appears to constitute a random
sample from the uniform distribution on the unit in-
terval [0,1]. We suppose that the simulation model
under discussion is driven by s such random number
streams, and we use the following notation to indicate
the random number input supplied to this model at
different design points and replicates in the overall
simulation experiment: (a) at the ith design point
and jth replicate, the kth, potentially infinite, ran-
dom number stream is

rijc = (rijer, rijez,-..)
for 1=1,2,.
and k=1,2,...,s; (4)

coomy j=1,2,...,7

(b) the complete set of random number streams at
the ith design point and j replicate is

Ri; = (rij1,rij2, -, Lijs)
for 1=1,2,...,m and
i=12,...,7 (5)

and (c) the aggregate random number input for the
basic m-point experimental design at the jth replicate
is
Ry;
R,;
R; = : . (6)

R;
Now at the ith design point and jth replicate, R;;
completely determines the events of the associated

simulation run so that we can rewrite equation (1) as

p—
vii(Rij) = Bo+ Y Baza(es) + ei;(Ryj)

for i=1,2,...,m and
i=12...,r (7)

(On occassion throughout the remainder of the paper,
we will use the notation R. to denote the set of random
number streams that are antithetic to those in R.)

2.2 A Second-Order Metamodel

In this section we identify the general second-order
metamodel which we will estimate via the central
composite design described in the next section. Con-
sider the following second-order, d-factor metamodel:

d d

Yo + E’Yh({’hi + Z ’Yhh‘PI?n'
h=1 h=1

+E Zg(h‘rgh%isohi + €

for g=1,2,...,d; h=12,...,d,
i=1,2,...,m; and j=1,2,...,7; (8)

where @y; 1s the level of the hth factor at the ith
design point, v 1s the unknown constant coefficient,
n (h=1,2,...,d) are the unknown first-order coef-
ficients, yan (h = 1,2,...,d) are the unknown pure
second-order coefficients, ygn (¢ = 1,2,...,d; h =
1,2,...,d; and ¢ < h) are the unknown mixed
second-order coefficients, and y;; and ¢;; are defined
in Section 2.1. Since (8) is a second-order metamodel
we must select at least 3 levels for each factor and
have m > (2d + $d(d — 1) + 1) in order to obtain
estimates of all parameters in the metamodel.
Typically, in estimating

Yi; =

v’yd—l,d))

we select the levels of ¢, (h = 1,2,...,d) so that
they are evenly spaced and restate the model in (8)
in terms of design variables determined by a suitable
coding of ¢,. For example, if we code ¢, to z,
where the r’s (h = 1,2,...,d) take on a 0 value in
the center of the design and values of -1 and +1 at
low and high levels, respectively, and the levels of ¢}’s
(h=1,2,...,d) are evenly spaced, then the model in
(8) is rewritten as:

= (707"'77(1)71%“':7dd1712)"'

vij = Pot Zﬁhrh; + Zﬁhhxhz

+EZ ﬂghzglxhl + €
for g—1,2,...,d, h=1,2,....4d;
1=1,2,...,m; and j=1,2,...,7. (9)



Further, in order to obtained independent esti-
mates of at least some of the second-order coefficients
in (9), we use orthogonal polynomials to rewrite (9)
as:

d d
Yi; = /310+Z,Bh-rhi+Z,th(‘r;!1i_l‘i)
h=1 h=1

+Z Zg(h/jgh:ﬂgizhi + €5
for g=1,2,...,d;, h=12,...,d,
i=1,2,...,m; and j=1,2,...,7(10)

where z2 is the average value of 2, (h =1,2,...,d)
taken over the m design points. (See Chapter 1 of
Anderson and McLean 1974 and Chapter 3 of Myers
1976 for a more complete treatment of orthogonal
polynomials for second-order designs.)

Throughout the remainder of this paper we will
use, for the correlation-induction strategies consid-
ered, the following least squares estimate of f:

B=(X'X)"'X'y, (11)

where the structure of X will be determined in the
next section. This, in conjuction with (3), yields

B~ Ny(B,(X'X)TIX'EX(X'X)™). (12)

In this paper, we can limit our discussion to ordinary
least squares estimation of 3 given in (11) without
loss of generality because the correlation-induction
strategy developed in Section 4 results in a covariance
structure for y that satisfies the equivalency condi-
tions for weighted and ordinary least squares given in
Section 3 of Schruben and Margolin (1978). Thus, all
results given in this paper are valid for both weighted
and ordinary least squares estimation of 3.

3 CENTRAL COMPOSITE DESIGNS

In this section we give a short review of central
composite designs; more complete discussions of cen-
tral composite designs are given by Box and Draper
(1987) and Myers (1976). In particular, we will dis-
cuss the second-order central composite design used
for fitting the second-order metamodel given in equa-
tion (10). Such a design consists of: (a) m; = 2¢
cubic points comprising a two-level factorial compo-
nent replicated r. (> 1) times, (b) m, = 2d azial
points arranged along the axes of the design vari-
ables and symmetrically positioned with respect to

the factorial cube replicated r, (> 1) times, and
m. (> 1) center points positioned at the center,
x' = (0,0,...,0), of the design replicated . times.

Thus, m = m; +m, +m..

Tew

The design matrix for the second-order central
composite design where m. = 1 is given on page 130
of Myers (1976) . The factorial portion of the design
is chosen so as to allow the estimation of all first-
order and two-factor interaction terms. The addition
of the axial points allows for the estimation of the
second-order terms in the model and the m. obser-
vations taken at the center of the design allow for an
estimate of pure error in the model, which, in turn,
can be used to test for lack of fit in the hypothesized
metamodel. From this form of X we get that

om0
my + 2a? 0
mf+‘2az 0
1
, P—q e
XX = I(mxm) : + .
P—q q*
mg 0
L L A

00...0¢% ... g% 0 ... 0)1xm) (13)
where
p=m " my(ma+m.)—4m;a® —4a* 4+ 2mat), (14)
and
g =m™![my(ma +m.) — dmya® — 4] (15)

(see pp. 130-131 of Myers 1976). Although, in this
paper, we only consider a central composite design
with one center point, the choice of the number of
center points to run (m,.) plays an important role
in determining some of the properties of the second-
order central composite design. As an example, the
number of center points determines whether or not
the design has uniform precision (see Chapter 7 of
Myers 1976). Also, the number of center points af-
fects the average mean squared error of the design
and, consequently, must be considered when trying
to determine an optimal design (see Chapter 9 of
Myers 1976). We note here that the correlation in-
duction strategy introduced in the next section easily
accommodates central composite designs with multi-
ple center points and, hence, is broadly applicable to
all central composite designs.

4 CORRELATION INDUCTION STRAT-
EGY

In this section, we develop a correlation induction
strategy specifically designed for the central compos-
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ite design. This strategy is based on the concept of
correlated replicates introduced by Tew (1991 and
1992). First, we quickly review the independent ran-
dom number streams strategy.

The method of independent random number
streams involves randomly selecting a set of random
number streams, R;;, for each design point, replicate
combination in the experiment. That is, the inde-
pendent random number streams strategy does not
involve any variance reduction component in the ex-
periment due to the assignment of the random num-
ber steams used. For this reason, it usually serves
as the baseline strategy to which other variance re-
duction strategies are compared. In this study, in-
clusion of the independent random number streams
strategy provides us the opportunity to obtain esti-
mates of absolute variance reductions achieved by the
other strategy developed later in this section.

In addition to the assumptions made in Section
1, we make two more assumptions regarding the be-
havior of the responses, y;j, obtained from the in-
dependent random number streams strategy. First,
we assume that the variance of the response is ho-
mogeneous across all design points and replicates in
the experiment. Second, we assume that responses
from any two simulation runs driven by different sets
of random number streams (either at different de-
sign points and/or at different replicates) are uncor-
related. These two assumptions are summarized be-
low (i,k =1,2,...,m; j,l=12,...,r; and i #
k and j #1):

var(yi; (Ryj)) = o?
(homogeneity of variances),
cov(yij (Rij), yer(Rir)) = 0

(otherwise).

(16)

Under these assumnptions it can be easily shown that
for the central composite design discussed in the pre-
vious section with r replicates taken at each design
point we get (i,5 =1,2,...,d, and ¢ # j):

[ var(by') = 2, ]
wrlh) = s iz
var(b;;) = Z-, ; (17)
var(bi;) = =<,
| cov(bii,bij) = =L,
where ( (d—2)0)
p+{da—2)q :
e= (18)
(p—q)(p+dq—4q))
and

= q 19
I = o+ d-Da’ 1

(see page 131 of Myers 1976). Next, we introduce the
notation and assumptions needed to formally define
the Correlated Replicates strategy.

The motivation behind the development of the
Correlated Replicates strategy was to address the
two major drawbacks associated with the Schruben-
Margolin correlation-induction strategy (restricted
experimental design application and failure to ac-
comodate further variance reduction via correlated
replicates) and retain the spirit of combining variance
reduction techniques first introduced by Schruben
and Margolin (1978). In this strategy a positive cor-
relation via common random number streams is in-
duced between design points within a given replicate
as well as between pairs of antithetic replicates. Thus,
the Correlated Replicates strategy attempts to uti-
lize this additional measure of experimental control
to further “explain away” variation in the response
variable in a manner that is consistent with the ex-
perimental concept of blocking.

The experimental concept behind common random
number streams is to apply the same random experi-
mental conditions to different simulation runs so as to
more effectively compare their outputs (see Chapter
11 of Law and Kelton 1991, Section 3 of Schruben and
Margolin 1978, and Joshi and Tew 1991). That is, un-
der common random number streams, if in comparing
outputs from two simulation runs, differences are ob-
served, then they must be the result of differences in
the input factors between the two runs and not due to
the differences in the random number streams used to
drive the simulation since both runs utilized the same
set of random number streams. This, of course, 1s why
using common random number streams is viewed as a
form of experimental blocking (see Chapter 5 of An-
derson and McLean 1974, Mihram 1974, Joshi and
Tew 1991, and Crenshaw and Tew 1992).

However, implementation of common random num-
ber streams requires some careful thought if the as-
sumptions on the erperimental error given in Sec-
tion 2 are to be met. Crenshaw and Tew (1992)
and Mihram (1974) both recognized that at least one
of the s random number streams used to drive the
simulation model should be randomly selected in or-
der to insure that an experimental component, ¢;;, is
properly included in the response y;; (for a detailed
treatment of this topic along with some illustrative
examples, see Crenshaw and Tew 1992).

Thus, if we separate R;; (1 =1,2,...,m and j =
1,2,...,r) into two mutually exclusive sets of random
number streams, (Ryj;, Raij), such that Ra;; (i =
1,2,...,m and j=1,2,...,7r) is randomly selected
across all design points and replicates, then we are as-
sured of the presence of ¢;; (1 =1,2,...,m and j =
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1,2,...,7)in (10). Hence, in inducing correlations we
use only Ryj; (1 =1,2,...,m and j=12,...,7).
(Note, in this section and in the remainder of the
paper, we assume that r is an even number.)

In this section, as well as the example, the addi-
tional measure of control brought about by the Cor-
related Replicates strategy is shown to yield superior
variance reduction under certain assumptions.

This stategy involves using common random num-
ber streams across all m design points within a repli-
cate and using antithetic variates between replicates,
which are grouped into pairs and then using the same
set of random number streams (except for the Ray;
components) in order to construct positively corre-
lated pairs of replicates. That 1s, from an experimen-
tal design point of view, we are using R;;; and Ry
to construct {wo blocks of r internal replicates each
(see Chapter 5 of Anderson and McLean 1974 for a
discussion on the concept of experimental blocking).

From Table III of Tew (1992) we sce that we sep-
arate R;; (¢ = 1,2,...,m and j = 1,2,...,7)
into two mutually exclusive sets of random num-
ber streams, (Ri;j,Rai;), such that Ro; (10 =

1,2,...,m and j =1,2,...,7)1s randomly selected
across all design points and replicates so as to in-
sure the presence of ¢;; (i = 1,2,...,m and j =

1,2,...,7) in (10). Also, the number of replicates,
r, is assumed to be even. We assume that (7,k =
1,2,...,m and j {=1,2,...,7):

var(y;; (Ryj)) = o*

(homogeneity of variances),

cov(yij(Riy), ykj (Raj)) = 0%py
where 0 < p; <1 and i #k%

(homogeneity of p4 correlations

across design points),

cov(y; (Ray ), yet(Rt)) = 0 py
where 0 < p, <1 and
H=jl=2,4,....7 =2

(homogeneity of p; correlations

across replicates),

cov(yi; (Rij), yer(Rea)) = o”p
where — 1 <p_ <0, and
—jl=r-1

(homogeneity of p_ corrclations

across replicates),

(20)

where R;; = (Ry;;, Ry;j) as described carlier. These
assumptions along with the assignment procedure
given in Table 111 of Tew (1992) yield:

E()—fr) = Cov(y)

2

o2
- T(l_p+)1(mx1n)

Tew

2
o
+T(P+ + P-)E(mxm), (21)

where E(pxm) is the m x m matix of ones. A proof
of (21) is given in Appendix IT of Tew (1992).
Substitution of ES—,’ into the expression for the dis-

persion of B in (12):

Cov(B(cr)) = 2‘(3”)
02
= T(l—P+)(X'X)'1
2 1
+Z+00)| g o |

where 0 is a (p—1) x 1 column vector or zeros and O is
a(p—1)x (p—1) matrix of zeros. Inspection of equa-

tions (17) and (22) clearly indicates that Cov(B("))

is superior to Cov(ﬁ(”)) = Cov(y) provided that the
assumptions in (20) are not violated.

Note that a direct comparison of the entries in these
matrices may not always be appropriate due to vio-
lations of the assumptions needed for each strategy.
We recommend that, as a first step in the analysis,
the simulation analyst conduct a relatively small pi-
lot study to test for these assumptions before con-
ducting the full experiment with its associated assign-
ment strategy. Presently, such a pilot study has not
been developed for this strategy. This subject is to
be addressed in a future paper (see Tew and Wilson
1992a for the development of such a pilot study for the
Schruben-Margolin correlation induction strategy).

5 EXAMPLE

In this section we illustrate the implementation of
the correlation induction strategy presented in Sec-
tion 4. We also present and summarize the results
of a large-scale Monte Carlo experiment conducted
with this strategy in order to assess its performance
in estimating 3 for the metamodel given in equation

(10).

5.1 A Job Shop Network

We consider the job shop example introduced by
Nozari, Arnold, and Pegden (1987) and Tew and Wil-
son (1987) which is given in Figure 1 of Tew (1992).
This job shop network operates as follows. Jobs ar-
rive to the shop according to a Poisson process with
an arrival rate of 10 jobs per hour. All jobs enter the
network through Station 1. The processing of jobs
at Station 1 constitutes a single server, single queue
operation with a FIFO queue discipline. Upon com-
pleting service at Station 1, 80% of the jobs go to
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Station 2, 5% go to Station 3, and 15% leave the net-
work. The processing of jobs at each of stations 2 and
3 constitutes a sinzle server, single queue operation
with a FIFO queue discipline. A job at either Station
2 or Station 3 leaves the network upon completion of
service. The shop admits jobs from 8:00 A.M. to 4:00
P.M. daily. However, service at each station continues
until all jobs admitted on one day depart the network.
The service time distribution (in minutes) at Station
3 is U(21.0,33.0). The service time distribution at
Station 1 is a constant and at Station 2 is uniformly
distributed. The specific distributions of the service
times for both Station 1 and Station 2 are given in
Table II. The purpose of this example is to estimate
the effects that different service time distributions at
Station 1 and Station 2 have on the expected time in
system for a job. Thus, the performance measure of
interest is the daily average system sojourn time for
all jobs entering the system. In the next section, we
discuss the metamodel used to relate the effects that
the service time distributions used at Station 1 and
Station 2 have on this performance measure.

5.2 The Metamodel

In order to study this network, we employed the
a two-factor second-order central composite design
with one center point and the following independent
variables (factors): (a) service time distribution at
Station 1 () and service time distribution at Station
2 (p2) (past computational experience has indicated
that a first-order metamodel is inappropriate for this
system). That is, we used the following metamodel
(given in equation (10)) to study the cffects that these
independent variables have on the mean response (y)
over the design region of interest

vij = Bo' 4Bz + Porm + pi(ei; — EF)
+Bop(zd; — 23) + Broryizn + €5
for :=1,2,...,m and
J=12,...,7 (23)
where:

e y;; is the sample daily average job sojourn time
at the ith design point and jth replicate;

e (3o’ is the long-run daily average job sojourn time
across all design points;

e 31, Bo, B11, B2z, and B, are the metamodel co-
efficients;

o z1;(p1;) = {£5=2} is the first coded design vari-
able at the 7th design point;

Table I
Second-Order Central Composite Design
Design | Factor Combination (uncoded)
Point w; = (P11, P2:)
] P1; P2i
1 1 U(0.5,1.5)
2 17 U(0.5,1.5)
3 1 U(16.5,17.5)
4 17 U(16.5,17.5)
5 17 U(8.5,9.5)
6 1 U(8.5,9.5)
7 9 U(16.5,17.5)
8 9 U(0.5,1.5)
9 9 U(8.5,9.5)
Table 11

Second-Order Central Composite Design

Design Factor Combination (coded)
Point x; = (Z14,%2i)
! Ty To;
1 -1 -1
2 1 -1
3 -1 1
4 1 1
5 1 0
6 -1 0
7 0 1
8 0 -1
9 0 0
=1 if @2 = U(0.5,1.5),
l‘g,‘(tpgl‘) = 0 if @Yo = U(85,95), 1s the

1 if ¢o; = U(16.5,17.5),
second coded design variable at the ith design
point; and

e ¢;; is the experimental error at the ith design
point and jth replicate.

The design variable level assignments used for this
experiment are given in Tables I and II. In the next
section we describe how the Monte Carlo study was
conducted in order to make valid comparisons of
the correlation induction strategy presented in Sec-
tion 3 to the method of independent random number
streams.

5.3 The Monte Carlo Study

We used the SLAM II simulation language (Pritsker
1986) to implement a model of the job shop network
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described above. (The SLAM 1l code used by the
author as well as tables of the random number seeds
used and of the observed responses are available from
the author upon request.) In simulating this network
we dedicated a separate random number stream to
each of the following four random components in the
model: (a) interarrival times at Station 1 (ry), (b)
probabilistic branching upon completion of service at
Station 1 (r2), (c) service times at Station 2 (r3),
and (d) service times at Station 3 (ryq). Under the
correlated replicates strategy, we randomly selected
r3 across all design points and replicates in order to
ensure the presence of ¢;; in (10) (see Crenshaw and
Tew 1992, and Mihram 1974). That is, we set R, =
(ry,ra,r3) and Ry = (r4).

The Monte Carlo study consisted of performing 50
independent metareplications, where the basic meta-
replication consisted of making 18 replications at
each of the 9 design points given in Table II. That
1s, for this study, the full implementation for each
correlation-induction strategy was comprised of 8,100
simulation runs of the job shop network model dis-
cussed above, where a run consisted of simulating the
network for one 10-hour (simulation time) workday.
Thus, 16,200 simulation runs were required to per-
form the Monte Carlo study. Next, we discuss the
numerical results that we obtained.

5.4 Numerical Results

In order to give a concise and meaningful presen-
tation of the numerical results, we have condensed
them into the following components: (a) Cov(3), (b)
B, (c) det(Cov(B)), (d) trace(Cov(B)), (e) observed
estimated bias for all six metamodel coefficients
(OEB), (f) average-estimated-absolute bias across
all six coefficients (AEAB), (g) observed relative-
estimated bias for all six metamodel coefficients
(OREB), (h) average-relative-estimated-absolute bias
across all six coefficients (AREAB) and (i) total-
estimated-mean square-error for all six metamodel
coefficients (TEMSE). The last three items are calcu-
lated using the independent random number streams
case as the norm. That is, bias is estimated in terms
of the deviation from that observed for the indepen-
dent random number streams case. In all cases we
used four decimal-place accuracy. Though, the ma-
trices in (24) and (30) don’t indicate so because of
space limitations. The cstimation of 3, and Cov(,B)
was performed as follows: independent estimates ob-
tained for each metareplication were averaged over all
50 metareplications.

First, we consider the numerical results obtained
under the independent random number streams strat-

Tew

egy. For this strategy, we obtained:
~(13)

Cov(B ) =

4 5 6 —31 —13 —10
5 51 —10 15 17 11
6 -10 67 15 9 16
31 15 15 261 o0 -8 | 29
13 17 9 0 221 —12
~10 11 16 -7.9 —12 66

Bo 136.638

B 70.181

G | gy | | 31.433
Po=l 5= | ssml| &)

s, 10.544

G —28.767
det(Cov(3""))) = 3.2307 x 1010, (26)
trace(Cov(8"")) = 710.9968, 27)

and

TEMSE = 710.9968. (28)

(Note that OEB, AEAB, OREB, and AREAB all are
equal to 0 in this case since the independent random
number streams is taken as the norm.)

Next, we consider the numerical results obtained
under the correlated replicates strategy. For this
strategy, we obtained:

cov(@d' ") =

04 02 01 02 00 -.0117
02 06 —.00 .02 —.00 .02
01 —00 04 01 —-01 .01

02 02 01 08 o1 o1 *
00 —.00 —01 01 .09 —.02
| —01 .02 01 .01 -.02 .08
[ By ] 135.362 ]
A 69.656
e g | 31345
Po=l 417 552 | G0
bs 10.251
e ~28.568 |
det(Cov(B'")) = 29907 x 10730, (31)
trace(Cov(8'")) = 0.3900, (32)
[ 1.2760 ]
0.5250
sler). 0.0880
0.2930
| —0.1990 |
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AEAB = 0.4482, (34)

0.9338%

0.7480%

Ser)y | 0.2799%
)= s2812% |°

2.7788%

0.6918%

AREAB = 1.7856%, (36)

OREB( (35)

and

TEMSE = 2.5218. (37)

Upon first view, some might think that with the
restricted number of blocks used in the Correlated
Replicates strategy, that an increase in bias would
occur due to the seemingly restricted sampling of the
blocking factor subspace (see Chapter 5 of Anderson
and McLean 1974 for a discussion of this concept).
However, this is not the case, in that in computer
simulation experiments the blocking factor is not the
seed selected, rather it is the resulting stream of ran-
dom numbers generated from that seed. Bias in the
response would arise if an inadequate sampling from
the selected random number stream occurred during
the simulation run, or if the generated stream itself
had bad properties (e.g., dependent elements, nonuni-
form elements, etc.). Thus, as long as the random
number generators used to drive a simulation model
arevalid and an adequate sampling of the random
number streams selectedis done during the simula-
tion run, then bias will not be significantly affected
under the Correlated Replicates strategy.

Inspection of the numerical results also clearly in-
dicates that the Correlated replicates strategy can
yield a greater than 99% improvement in performance
over the independent random number streams strat-
egy. These results are summarized in Table [11 below.
We also note, that this improvement in performance
has not resulted in any degredation in the diagonal
structure of CBV(B). In summary, we recommend the
Correlated Replicates strategy for the estimation of
the second-order metamodel coefficients in (10).

6 SUMMARY AND CONCLUSIONS

In this paper, we have proposed a corrclated repli-
cates strategy for computer simulation experiments
which utilize the central composite design that al-
low effective estimation of the unknown cocfficients
in a second-order metamodel by blocking on the ran-
dom number streams used to drive the simulation
model. Under certain mild restrictions, this strat-
egy is shown to be superior to the independent ran-
dom number streams strategy. A Monte Carlo study

Table III
Observed Variance Reductions

Performance | Variance Reduction
Measure (percent)
var(fo ) 99.9081
var($3;) 99.8783
var(f;) 99.9416
var(f1;) 99.9689
var(f22) 99.9615
var(f2) 99.8755

detCov(B)) > 99.9999

traceCov(3)) 99.9451

TEMSE 99.6453

was performed in order to empirically compare this
strategy to the independent random number streams
strategy. This study clearly shows that the superior
performance of the Correlated Replicates strategy. In
summary, we conclude that the Correlated Replicates
strategy is a preferred strategy for performing simu-
lation experiments that utilize the cental composite
design.

Although the results presented in this paper are
conclusive within the context of the simulation ex-
periment given in Sections 4 and 5, we point out
that we have considered only one type of second-
order metamodel. Much work remains to be done
in the areas of: (a) developing similar strategies to
other classes of second, and higher, order metamod-
els, (b) integrating the correlated replicates concept
with other productive variance reduction techniques
(e.g., control variates, batch means, etc.), (c) devel-
oping tests of validation for the required assumptions
for the Correlated Replicates strategy, and (d) ex-
tending these strategies to multiple-response simula-
tion experiments. Many elements of these research
topics are currently being undertaken by the author.
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