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ABSTRACT

We evaluate, theoretically and empirically, the power
of a family of tests for initial-condition bias.

1 INTRODUCTION

When the goal of a simulation experiment is to esti-
mate steady-state parameters, the initial conditions
of the simulation usually bias the estimators. This
initial-condition-bias problem has been studied exten-
sively.

Goldsman, Schruben, and Swain (GSS 1991) pro-
pose a family of tests for the presence of initial-
condition bias that generalize and extend the tests
proposed earlier by Schruben (1982) and Schruben,
Singh and Tierney (1983). These tests are appeal-
ing because they are easy to implement and can be
applied to the output of a single-replication experi-
ment, which is the experiment design that is often
recommended by researchers.

Using asymptotic results derived by GSS, and three
simple models—the AR(1), the M/M/1 queue, and
the Markov Chain—this paper attempts to answer
several questions about these tests: When do the
tests work and when do they fail? When the tests
do work, which test is most powerful? And how does
the batching strategy—which determines the degrees
of freedom—affect the power of the tests?

2 THE TEST STATISTICS

Let X, Xa,..., X, be a simulation output process
in time-dependent order, and let X, be the sample
mean, a point estimator for the steady-state mean, 4.
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Using various functions of the original data, GSS de-
rived a family of tests for initial-condition bias; that
is, tests for the bias in X, as an estimator of p. All
of the tests are based on an F statistic that com-
pares the variability in the first portion of the output
process to the variability in the latter portion of the
process. The null hypothesis of no initial-condition
bias is rejected if F > Fi_q 4, the 1 — o quantile
of an F distribution with ¢ and d degrees of freedom.
The test statistics in GSS are reviewed in the follow-
ing subsections.

2.1 Batch-Means Test

Partition X;,Xs,...,\, into b nonoverlapping
batches of m observations such that n = bm, and
define the following functions of the original data for
i=1,2,...,b

b
QM = mz X’i—%zjj

VemM = b— 1

The quantities X; and Vgps are the batch means and
the batch-means variance estimator, respectively.
Suppose the b batch means are partitioned into two
not necessarily equal-sized groups consisting of the
first ' batch means and the last b — b’ batch means.
Let VA3, be the variance estimator defined above, but
computed from only the first b’ batches, and let V374
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be the variance estimator defined above, but com-
puted from only the last b — b’ batches. Under the
null hypothesis, the ratio Fpar = VA3, /VAE4# con-
verges in distribution to an F random variable with
appropriate degrees of freedom. The critical value for
this test is Fl—a,b’—l,b-b’—1~

2.2 Area Test

For the same b batches, transform the data into b
standardized time series and compute a variance esti-
mator based on the area under the standardized time

series as follows, where ¢ = 1,2,...,b,5=1,2,...,m
and 0 <t <1
- 1J
Xij = —.Zx(a—l)mu
J i3

[mt_| (X’,',m - 4\_’g‘,|_mtj )
ay/m

A = % Z V12T, m(j/m)
j=1

,I‘i,m(t) =

b
QaRea = Z fi?

VArRea = T

Here, |-] is the greatest integer function and ¢? is the
asymptotic variance constant of the output process.

Again suppose the b batches are divided into two
parts. Let Vi , be the variance estimator from the
first b’ batches and let V274 . be the variance esti-
mator from the last b — &’ batches. Under the null
hypothesis the ratio F4 = Vi{pa/V2k% 4 converges
in distribution to an F random variable with appro-
priate degrees of freedom. The critical value for this
test is Fi_o b/ p—b-

2.3 Maximum Test

Using the cumulative within-batch means, X’,-,j, de-
fined for the area test, a test based on the location
and magnitude of the maximum deviation is possible.
The test presented here is for the presence of negative
bias; an analogous test is available for the presence of
positive bias. For ¢ = 1,2,...,band j =1,2,...,m
compute

Si,j = }{’i,m_‘\:i.f
L; = argmaxlsjsm{jsi,j}

Si = KiS; g,

13

b

mS?
Quax = lz:;f{;(m—f{,-)

VMax = QA;;X .

Again suppose the b batches are divided into two
parts. Let V4 x be the variance estimator from the
first b’ batches and let VZ*dy be the variance estima-
tor from the last b — b’ batches. Under the null hy-
pothesis the ratio Fasax = Vithx/ Vﬁj}fx converges
in distribution to an F random variable with appro-
priate degrees of freedom. The critical value for this

test 1s Fi_ o 3b,30-38"-

2.4 Combined Tests

Because they are asymptotically independent, we can
combine the batch-means test statistic with the area
test statistic and with the maximum test statistic to
create two more F-tests:

QBM+aREA = @BM + QAREA
VBM4+AREA = QoM+aREA
26 —1
QBM+Max = QM+ Qmax
Vamarax = QBM+MAX
4b -1

Under the null hypothesis of no bias

— 1st 2nd
FM+AREA = VB yarea!/VBM+AREA

and

R 1st 2nd
Femimax = Vermimax/VeM+max

are distributed as Fopi—1 2p—25—1 and Fapr_1,4p—ap'-1,
respectively.

3 POWER CALCULATIONS

GSS derived expressions for the power of the BM,
AREA, and BM+AREA tests under the following as-
sumptions:

1. The output process X; = Y; — pa;, where
Y1,Ys, ... 1s a stationary process with mean p,
and @, as,... is a sequence of constants such
that a; — 0 as t —» oo. Thus, E[Xs] =
pt— app, and Bias[,i'n] = —app, where

n
_ 1
Ay = — E ag.
n
t=1



Evaluation of Tests for Initial-Condition Bias 579

2. Statistics (batch means and squared area esti-
mators, respectively) computed from different
batches are independent and follow their asymp-
totic distributions (normal, \2, respectively).

For a fixed number of batches, 6 = 20, and a spe-
cific form of the transient bias, a; (see (3) below),
GSS studied the effect of changing b’ (' = 5,8) on
the power of the tests. They indexed their power
calculations by pu?/a?, the square of the steady-state
mean in units of the limiting process variance.

In this section we use the expressions in GSS to
examine the effect of the total number of batches, b,
and the form of the bias, a;, on the power. We index
our power calculations by the relative bias

Bias[X,]2 _ \/,Tz

T e
which is the bias of the sample mean in units of the
limiting process variance. The relative bias is a mea-
sure of how significant the bias is relative to the noise
in the process; power should be an increasing func-
tion of the relative bias. We constructed examples
with different forms of the bias function, a,, but the
same relative bias; they are described below.

3.1 Bias Functions

We constructed four bias functions. In all cases n =
2400, /o = 1, and @400 = 7 > 0, so that the relative
bias is 7. In addition, and somewhat artificially, a,
goes to 0 at the midpoint of the output process; this
allows us to examine the power of the tests when the
assumptions are exactly satisfied and when they are
not. The four bias functions are listed below:

Mean-shift bias function:

[ 2r t=1,2,...,1200 )
%=1 0 t=1201,...,2400

Linear bias function:

. _{ %r(l—ﬁ) t=1,2,...,1200
TL0

t =1201,...,2400 (2)
The constant 4800/1199 = 4.

Quadratic bias function:

7 2
R

0 t =1201,...,2400
(3)
The constant 1.728 x 107/2876401 ~ 6. GSS used
this bias function, but with different constants.

Damped, oscillating bias function:

18U gin (£5) t=1,2,...,1200
- P 300 )&y y
a4 { 0 1=1201,....2a00 Y

Figure 1 shows all four bias functions.

10

5
i
§
i

Figure 1: Bias Functions used in the Power Study

3.2 Results

We studied the power of the BM, AREA and
BM+AREA tests against the bias processes (1)-(4)
over the range of parameters given in Table 1. Notice
the factor f, the fraction of the batches used to com-
pute V!*!', which determines . For our bias func-
tions, in which a; goes to 0 at the midpoint of the
output process, f = 0.5 should be the best choice.
By varying f from 0.25 to 0.75 we examined the ef-
fect of dividing the process too early and too late,
respectively.

Table 1: Cases Examined in Asymptotic Power Study

factor parameters
total number of batches, b | 2,8, 16, 20,40
relative bias, r 0.01,0.1,0.25
f=b/b 0.25,0.5,0.75
confidence level, a 0.05

scale u?/a? 1

The power against relative bias » = 0.1 is shown
in Tables 2-4. For all values of f, power increases as
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we move from shift to linear to quadratic to oscillat-
ing bias function. Qualitatively, the power increases
the more pronounced the bias is at the beginning of
the output process, even if it dies out quickly (recall
that all four examples have the same relative bias of
the sample mean). When f = 0.5, the tests have
no power against the shift bias; this is not surprising
since the tests are designed to detect differences be-
tween the variability in the first and second portions
of the output process, but there is no difference when
f=0.5.

In most cases power is near its peak at b = 16
batches; in some cases it decreases beyond b = 16.
In the next subsection we argue that we only need to
consider small values of 6.

Comparing Tables 2 and 4 to Table 3 shows that
power is reduced by making b’ either too large or too
small. Of course, the practitioner never knows what
“too large” or “too small” is.

Table 2: Power when Relative Bias r = 0.1 and f =
0.25

bias b BM
shift

AREA BM + AREA

8 0.00 0.05 0.00
16 0.00 0.05 0.00
20 0.00 0.05 0.00
40 0.00 0.05 0.01

linear
8 0.04 0.06 0.05
16 0.05 0.05 0.05
20 0.05 0.06 0.05
40 0.05 0.05 0.05
quadratic
8 047 0.17 0.49
16 047 0.07 0.41
20 0.45 0.06 0.38
40 0.38 0.05 0.29
oscillating

8 1.00 1.00 1.00
16 1.00 0.86 1.00
20 1.00 0.67 1.00
40 1.00 0.16 1.00

The following is a summary of the results from the
other cases we examined that are not presented here:

1. When r = 0.01, none of the tests showed power
significantly larger than the size of the test, a.

2. When r = 0.25, the BM and BM+AREA tests
had power nearly 1 for all but the shift bias pro-
cess; the AREA test still had very low power.

Table 3: Power when Relative Bias r = 0.1 and f =
0.5
bias b
shift

BM AREA BM + AREA

8 0.05 0.05 0.05
16 0.05 0.05 0.05
20 0.05 0.05 0.05
40 0.05 0.05 0.05

linear
8 0.40 0.07 0.45
16 0.44 0.05 0.39
20 0.43 0.05 0.36
40 0.36 0.0 0.28
quadratic
8 0.72 0.12 0.85
16 0.84 0.06 0.83
20 0.84 0.06 0.81
40 0.80 0.05 0.70
oscillating

8§ 1.00 0.99 1.00
16 1.00 0.66 1.00
20 1.00 0.44 1.00
40 1.00 0.11 1.00

3. The AREA test performed somewhat better
against the linear and quadratic bias when b = 2
and b = 1; it is the only test of the three that
can be applied with just two batches. However,
it is still inferior to the other two tests. Table 5
shows the power of the AREA test when r = 0.1
and b = 2.

In Section 4 we present small-sample, empirical es-
timates of the power of all five tests against more
realistic examples.

3.3 Batch-Size Effects

To apply any of the tests we must choose b, the num-
ber of batches. For the BM test we will show that
b should be relatively small, even if b could be made
larger without violating the assumptions behind the
test. We conjecture that the argument generalizes to
the other tests.

For illustration, consider f = 0.5 (i.e., dividing the
output process in half). Table 6 shows the F criti-
cal values for the BM test with a = 0.05 at selected
values of . The minimum value of b is 4 for this
test. The critical value initially decreases dramati-
cally as b increases, but the marginal decrease dimin-
ishes rapidly. Remember that we reject the hypothe-
sis of no bias if the test statistic exceeds the critical
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Table 4: Power when Relative Bias » = 0.1 and f =
0.75

bias b BM
shift

AREA BM + AREA

8 0.11 0.05 0.16
16 0.16 0.05 0.17
20 0.17 0.05 0.17
40 0.17 0.05 0.14

linear
8 0.14 0.06 0.28
16 0.28 0.05 0.33
20 0.30 0.05 0.32
40 0.32 0.05 0.28
quadratic
8 0.17 0.07 0.43
16 0.42 0.06 0.55
20 048 0.05 0.55
40 0.55 0.05 0.50
oscillating

8 0.39 0.55 0.99
16 099 0.28 1.00
20 1.00 0.20 1.00
40 1.00 0.08 1.00

Table 5: Power when Relative Bias r = 0.1 and f =
0.5

bias b AREA
shift 2 0.05
linear 2 0.25
quadratic 2 0.36
oscillating 2 0.65

value.

Of more importance is how the test statistic, Fgas,
behaves relative to the critical value as a function of
b. Suppose that we have an output process of length
n, and that a; = 0 for t > n/2 (i.e., there is no bias
in the second half of the process). Define

1 m
a; -_— E a1 .
im m (i—1)ym+j
j=1

Let f = 0.5, so that ' = b/2. Using results in GSS
we can show that E[Fpga] is equal to

(t—g) (1 + 24 sy L (@im = Tln)z)
= (522 (1+ 25 v(0/2) (5)

The term (b — 2)/(b — 6) is the expected value of

Table 6: Critical Values for the BM Test with a =
0.05 and ¥’ = b/2

b Fi_ap—1p-1
4 161.
6 19.0
8 9.28
12 5.05
16 3.79
26 2.69
122 1.53
00 1.00

Fpar if there is no bias; v(b/2) represents the effect of
the bias. Nelson (1990, Proposition 2) showed that
v(b/2) will be a decreasing function of b when n is
fixed for typical bias functions a;. Therefore, we want
to keep the number of batches small to make the test
statistic significantly larger than its expectation when
bias is present. Based on this result and the power
calculations described above, we used b < 16 in the
empirical study.

4 EXPERIMENTS

We selected three models to study the power of the
five tests: The AR(1) process, M/M/1 queue, and
Markov chain. They are easy to simulate and known
results allow us to calculate the bias and the vari-
ance of the process mean as a function of the process
parameters and the length of the simulation. A dis-
advantage of these simple models is that it is difficult
to simultaneously have a long run—a requirement for
the tests to be valid—and significant bias; we discuss
this issue below.

To evaluate the effectiveness of the tests against
these different models, an index of the deviation
from the null hypothesis is required. Define Bias, =
Bias[X,], the bias of the point estimator at observa-
tion n, and a}n = 02 /n, the asymptotic variance of
the process divided by the number of observations, n;
this is approximately Var[X,] in large samples. Then
two candidate indices are:

| Bias,, |

7
| Biasy, |

(6)
(7)

ox,
While index (6) has a natural interpretation and is
similar to a measure used in GSS, index (7) can be
thought of as a signal-to-noise ratio related to the
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length of the simulation, n. In our experiments we
used index (7) and set this index to 0.1 and 0.25;
that is, a relative bias of 10% or 25%, respectively,
of the standard deviation of the point estimator .\, .
Certain model parameters and initial conditions will
allow each of the three models to achieve this relative
bias at a run length n that is large enough to allow
batching. This in turn allows the application of the
five tests defined above.

To study the implications of the batching strategy
we apply five different b and ' combinations to the
simulation output. Table 7 gives the batching strate-
gles, defined as (b’,)), exercised in the experiments.
Notice that for BM and the combined tests the (1,2)
strategy cannot be used.

Table 7: Batching Strategies (', )

o b
1 2
4 8
4 16
8 16
12 16

The experiments consisted of specifying the model
parameters, initial conditions and run length n so
that the relative bias was either 0.1 or 0.25. For each
model thus specified, 1000 replications were gener-
ated. For each replication all five batching strategies
were employed. And for each batching strategy, all
five tests were applied, if possible, at the o = 0.05
level. With this design, the power computed for each
test (within batching strategy within model) is ac-
curate to one digit after the decimal place with an
additional digit useful for rounding.

In the subsections that follow we display results for
relative bias 0.25. For some models the run length
required to achieve this bias was quite short, lead-
ing to small batches. Thus, the effect of batch size
(dependence between batches, convergence to asymp-
totic distributions within batches) are confounded
with the properties of the individual tests to some
extent. Nevertheless, we feel that it is important to
maintain some fixed level of bias across examples to
compare the results. We observed no improvement
in the absolute performance or change in the relative
performance of the tests at relative bias 0.1, which al-
lowed significantly longer run lengths and batch sizes.

4.1 AR(1) Process
Let X; be the tth term in the AR(1) process

Xy =¢Xio1 + e

fort =0,1,...n, where the ¢, are i.i.d. N(0, (1 -¢))
random variables and the initial state zg is a constant,
Formulas for Bias,, and the limiting process variance
o? are given by Kelton and Law (1984). We set ¢ =
0.7 and 0.9, and varied z¢ and n to achieve the desired
relative bias (7).

The marginal distribution of X, is normal, which
should be conducive to the tests. The E[X;] converges
monotonically to 0 for this process.

Table 8 shows the estimated power of the tests
when ¢ = 0.9 and n = 1200. For all batching strate-
gies the power of the BM, AREA and BM+AREA
tests is barely larger than the size of the test. The
MAX and MAX+BM tests do better, particularly
with & = 16 batches. For the best combination,
b' = 4,b = 16, the relative bias at the break point
(n = 300) 1s 0.50, twice as large as the relative bias
for the entire process.

Table 8: Results for AR(1) with ¢ = 0.9, Initial State
zo = —0.96 and n = 1200, implying Relative Bias
0.25

Estimated Power
BM AREA BM+A MAX BM+M

b
1 2 0.06 0.27
4 8 (0.07 0.08 0.08 0.47 0.43
4 16| 0.10 0.17 0.19 0.79 0.76
8 16 | 0.06 0.12 0.11 0.61 0.59
12 16 | 0.06 0.08 0.08 0.42 0.38

4.2 M/M/1 Queue

Let X; be the delay in queue of the tth customer ar-
riving to an M/M/1 queue with arrival rate ), service
rate 1 and k customers present at time 0. The Bias,
can be calculated using recursive algorithmsin Kelton
and Law (1985), and the limiting process variance o*
is given by Whitt (1989). We set A = 0.5 and 0.8 (im-
plying traffic intensity p = 0.5 and 0.8), and varied k
and n to achieve the desired relative bias (7).

The steady-state marginal distribution of X; is a
mixture of an exponential distribution and a point
mass at 0. Depending upon the choice of k, E[Xi]
converges to 2 monotonically from below, from above,
or crosses p from above then converges monotonically
from below.

Table 9 shows the estimated power of the tests
when p = 0.8, k = 10 and n = 112; E[Y,] converges
to ¢ monotonically from above for this example. The
run length is quite small, implying very small batches.
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The results are nearly the same when the relative bias
is 0.1, which allows a run length of n = 736.

The BM test does somewhat better in this exam-
ple relative to the AR(1) example. The BM+MAX
test does the best at combination, b’ = 12,b = 16;
the relative bias at the break point (n = 84) is 0.27,
so there must still be significant bias after the break
point.

Table 9: Results for M/M/1 with p = 0.8, Initial
Condition £ = 10 and n = 112, implying Relative
Bias 0.25

Estimated Power
BM AREA BM+A MAX BM+M

b
1 2 0.11 0.47
4 81022 0.14 0.31 0.49 0.45
4 16| 0.16 0.15 0.19 0.48 0.27
8 16| 0.31 0.17 0.39 0.47 0.49
12 16 | 0.32 0.13 0.50 0.37 0.62

4.3 Markov Chain

Let .X; be the state after transition ¢ of a finite-state,
ergodic Markov chain with one-step transition ma-
trix P, where the initial state z¢ is fixed. Formulas
for Bias, and the limiting process variance o? are
given by Glynn (1984). We constructed two tran-
sition matrices and varied zo and n to achieve the
desired relative bias (7). The two transition matrices
are shown below: P; is a five-state chain with state
space {1,2,3,4,5}, while P is a ten-state chain with
state space {1,2,...,10}.

02 0 06 02 0
0 03 O 0 0.7
P, = 0 0 05 05 0

0 04 0 06 0
01 0 0 03 06

P;:

(099 0 001 0 0 0 0 0 0 O
0o 03 0 0 070 0 0 0 0
06 04 0 0 0 0 0 0 0 0
o 0 1 0 0 0 0 0 0 0
0O 0 05 0 0 005 0 0 O
0o 0 0 04 030 0 03 0 0
o 0 o0 0 0 1 0 0 0 0
o 0 0 0 0 009 0 0 01
0o 0 0 0 0 0 0 06 0 04

0 0 0 0 0 0 0 0 01 09

The marginal distribution of X, is discrete. The
five-state chain is relatively balanced, while the ten-
state chain is relatively unbalanced in the sense that
it has two nearly absorbing states which are distant
from each other. Consequently, one would expect the
extent and duration of the bias to be strongly depen-
dent on the initial state for P,. The intent of the
unbalance is to allow us to induce a large bias. For
both chains E[\;] converges to p monotonically.

Table 10 shows the estimated power of the tests for
P, with initial state 1 and n = 160. The run length
is quite small in this example, implying very small
batches. Similar to the M/M/1 example, the power
is low, barely larger than the size of the test for the
BM, AREA and BM+AREA tests.

Table 11 shows the estimated power of the tests for
P, with initial state 5 and n = 928. The run length
is much longer here, but with the same relative bias
as the previous example. The power of the tests im-
proves dramatically. At the midpoint of the process
(n = 464), the relative bias is 0.35, quite a bit larger
than the relative bias tor the entire process.

Table 10: Results for P, with Initial State zg = 1
and n = 160, implying Relative Bias 0.25

Estimated Power

BM AREA BM+A MAX BM-+M

b
1 2 0.06 0.20
4 81005 0.07 0.07 0.36 0.32
4 16| 0.08 0.12 0.11 0.57 0.52
8 16 | 0.07 0.07 0.07 0.40 0.34
12 16 | 0.06 0.07 0.06 0.21 0.16

Table 11: Results for P, with Initial State zo = 5
and n = 928, implying Relative Bias 0.25

Estimated Power

BM AREA BM+A MAX BM+4M

b
12 0.22 0.62
4 8032 0.48 0.49 0.73 0.72
4 16 | 0.37 0.51 0.50 0.68 0.68
8 16| 0.43 0.54 0.54 0.73 0.72
12 16 | 0.50 0.59 0.61 0.76 0.75

4.4 Size of the Tests

Subsections 4.1-4.3 examined the power of the tests
when bias is present. Also important is the size of
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each test, which is the probability that a test rejects
the null hypothesis of no bias when there is in fact no
bias. Asymptotically, the size of all of the tests is a.
In this subsection we estimate the size of the tests in
small samples.

We repeated all of the experiments in Subsec-
tions 4.1-4.3 with two additional sets of initial condi-
tions: Starting each process from the minimum-bias
initial state (e.g., o = 0 for the AR(1) model), and
randomly sampling the initial state from the steady-
state distribution. From these experiments we esti-
mated the size of each test. The results are summa-
rized in the following paragraph and representative
results for the AR(1) process are presented.

In all cases the estimated size of the tests was
less than the estimated power of the tests presented
in Subsections 4.1-4.3. However, the estimated size
was frequently larger than the nominal size, o =
0.05, particularly in the examples with short run
lengths. As b decreased (fewer, larger batches), the
estimated size decreased toward the nominal size, as
expected. The convergence was slowest for the MAX
and BM+MAX tests.

Table 12 shows the results for the AR(1) model ini-
tialized at zg = 0, for which Bias, = 0. These results
are representative of what we observed for the other
models and for random initialization. We found that
the size of the MAX test converged to the nominal
level at a run length of about n = 4992 and b6 = 2
batches for this model.

Table 12: Results for AR(1) with ¢ = 0.9, Initial
State zo = 0 and n = 1200, implying Relative Bias 0

Estimated Size
BM AREA BM+A MAX BM+M

b
1 2 0.04 0.18
4 8 0.05 0.05 0.05 0.27 0.24
4 16| 0.05 0.05 0.05 0.42 0.38
8 16| 0.05 0.05 0.06 0.32 0.25
12 16 | 0.06 0.07 0.06 0.19 0.16

5 DISCUSSION

In the introduction we posed three questions regard-
ing the tests for initial-condition bias: When do the
tests work and when do they fail? When the tests
do work, which test is most powerful? And how does
the batching strategy—which determines the degrees
of freedom—aflect the power of the tests? We offer
some answers here.

Recall that in the examples we examined in Sec-
tions 3 and 4 we maintained a fixed relative bias of
the point estimator, X,, for different bias functions
E[X: — p]. The tests seem to be most powerful when
the bias is severe at the very beginning of the output
process, but dies out quickly. The more slowly the
bias decays, the more difficulty the tests have detect-
ing it.

The MAX and MAX4+BM tests were not included
in the asymptotic analysis because their power func-
tions are intractable. Fortunately, our small-sample
study gives conclusive evidence regarding the relative
power of the tests: The MAX test is the most pow-
erful, while the BM and AREA tests are the least
powerful. Unfortunately, the power of the MAX may
test come at the expense of a larger size than the nom-
inal a level. The reader should be cautious regarding
the actual numerical values we reported. Many of the
experiments involved small batch sizes, so the perfor-
mance of the tests may have been influenced by the
dependence between batches and the distributions of
the within-batch quantities. We note that in those
cases that allowed longer runs and larger batch sizes
the results were not markedly improved.

In addition, the tests all test for statistically sig-
nificant bias, when, of course, we are most interested
in whether there is practically significant bias. The
small-sample results we displayed are for a bias that is
25% of the variability of the point estimator; whether
or not that is practically significant depends on the
application.

The batching strategy, which includes the total
number of batches, b, and the fraction of those
batches allocated to the numerator of the test, f,
clearly affects the power of the tests. Results from
the asymptotic study indicate that there is little if
any benefit from making b excessively large, even if
one can do so without jeopardizing the assumptions
behind the tests. On the other hand, having b small
helps insure that the assumptions behind the tests
are valid, although if b is too small then power is lost.
Based on the results presented here and others not
reported, we recommend the MAX test with b =8
batches, provided the run length is long enough so
that each of the 8 batches is large. This value strikes
a balance between obtaining high power when there
is bias, and maintaining the desired size when there
1s no bias.

Choosing a value of f is more difficult. Ideally, we
should divide the process at the point where the bias
becomes negligible. Since that point is never known,
f = 0.75 could be used to increase the chance that
there is little bias in the second portion of the output
process. Unfortunately, if the hypothesis of no bias is
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rejected and the remedy for bias is data deletion, then
it is not clear how much data to delete. Rejecting the
hypothesis when f = 0.75 does not mean that 75% of
the data must be discarded.

The deletion strategy that should be used in con-
junction with the tests is still an open problem. We
have discussed several strategies, including the fol-
lowing: First perform the test with f = 0.25; if the
null hypothesis is rejected, delete the first 25% of the
data and apply the test again to the remaining data.
If the null hypothesis is accepted, retest at f = 0.5
(and next at f = 0.75); the retest is needed because
we may accept the hypothesis when there is signifi-
cant bias in both the first and second portion of the
process.
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