Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

MIMD PARALLEL SIMULATION
OF CIRCUIT-SWITCHED COMMUNICATION NETWORKS

David Nicol

Dept. of Computer Science
College of William & Mary
PO Box 8795

Williamsburg, VA 23187-8795

ABSTRACT

This paper describes techniques for the parallelized
simulation of circuit-switched communication net-
works. We discuss implementations based both on
conservative synchronization, and optimistic synchro-
nization. Performance results are presented from ex-
periments on 256 processors of the Intel Touchstone
Delta, wherein we observe call simulation rates of
nearly eight million calls per minute on a realistic
network.

1 INTRODUCTION

We are interested in using parallel computers to sim-
ulate realistic models of large circuit-switched net-
works. A motivating example is the the AT&T
long distance telephone network, composed of nearly
120 switching centers distributed throughout the US,
with fiber-optic links between centers. A link {u, v}
is a connection between two centers u and v, and
is comprised of a number of {runks, each of which
can carry one call. The link capacities vary by as
much as three orders of magnitude throughout the
network. A call is placed between switching centers
by identifying a path between them, and allocating
one trunk on each link of the path. A trunk is allo-
cated for the entire duration of the call. The network
(say with N nodes) is nearly fully connected (there
are ~ N(N —1)/2 links), so that most calls can be di-
rectly routed over a single link. However, an arriving
call may find that its direct connection is loaded to
capacity, in which case an alternative two-link route
(called a wvia) is sought. Should either link on the
alternative path also be saturated, the call is blocked.

In our simulations we use a via selection policy
known as ALBA, for Aggregated Least Busy Alter-
native (Mitra et al., 1991). This policy is a close
approximation of that used in the AT&T network.
Under the ALBA-K policy, the state of a link {u, v}

629

Albert Greenberg
Boris Lubachevsky

AT&T Bell Labs
600 Mountain Ave
Murray Hill, NJ 07974

is encoded as in integer S(u,v) between 0 and K.
Thresholds rg, r9,...7K specific to the trunk govern
the state assignment. If the link is using ¢ trunks, the
ALBA state is the smallest index j such that ¢ < r;.
For a given link, the smaller the state, the more free
trunks are available. If a call arrives and cannot be
placed on its direct link {u,v}, a node w is sought
that minimizes max{S(u, w), S(w,v)} < K. A link in
state K may not accept a rerouted call, as n — rg_;
trunks are reserved for direct calls (n = rg being the
capacity of the link). A call that cannot be placed di-
rectly or find an acceptable via is said to be blocked.

Simulation plays a critical role in the design and
analysis of such networks. Network engineers fre-
quently use simulation to predict network perfor-
mance under stress conditions such as severed links,
and overloads. The simulation events are individual
call arrivals and departures. Production simulations
of a network the size of AT&T’s involve simulating
call-by-call activity over the course of at least twenty
million calls. Owing to the size of the simulation, se-
rial simulations require a dedicated workstation with
a large memory (128 Mbytes) if they are to avoid
memory thrashing. Without such a memory, a se-
rial simulation of twenty million calls on an ordinary
workstation takes many hours. It is clear that par-
allelization has much to offer this application, both
in terms of exploiting the larger memories of parallel
machines, and execution speed.

In this paper we describe two parallel techniques
used to simulate large networks similar to AT&T’s.
Our methods are suitable for MIMD multiprocessors,
and are implemented on the Intel Touchstone Delta
(Lillevik, 1991) multiprocessor, using up to 256 pro-
cessors. On a network similar to AT&T’s, our algo-
rithms achieve a simulation execution rate of over 7.9
million calls per minute, reducing the time required
for a production run to a small number of minutes.

Previous treatments of this simulation problem in-
clude an application of synchronous relaxation (Eick

630 Nicol, Greenberg, and Lubachevsky

et al., 1991), and a “sweep” algorithm (Gaujal et al.,
1992). Both methods are geared primarily for SIMD
architectures. The present treatment is specifically
MIMD; furthermore, the call simulation rates we re-
port are larger than those reported before.

2 A CONSERVATIVE METHOD

The first algorithm we describe is conservative, be-
ing based on the notion of appointments (Nicol and
Reynolds, 1984, Nicol, 1988). To appreciate the syn-
chronization problem we face, imagine a simulation
decomposed naturally by assigning links to proces-
sors. Problems arise when a call arrives on a sat-
urated link {u,v}, say at simulation time ¢. Under
ALBA, the processor responsible for that call needs
to find a via whose cost at simulation time t is least,
and then request that the two associated links—say
{u,w} and {w, v}—carry the call. Under a conserva-
tive philosophy, we ought not permit a processor to
simulate past simulation time ¢ if there is any possibil-
ity of later receiving simulation work for time s < t.
In particular, the processors responsible for {u,w}
and {w, v} should not simulate them past time ¢.

If processors responsible for {u,w} and {w,v}
could be forewarned of the via request, they could
simply synchronize (at time t) with the processor re-
sponsible for {u,v}. The principle difficulties with
such an approach are that

e Link {u, v} must simulate up to the time of the
call arrival at ¢ before it can determine that the
call cannot be directly placed.

e Once {u,v} realizes a via is needed, the selec-
tion of the via route is dependent on instanta-
neous state information from all links of the form
{u, w} or {w,v}.

The most difficult of these i1ssues 1s that of via se-
lection based on instantaneous data. Our solution
sacrifices a small amount of model fidelity in order
to finesse the problem: via decisions are based on
slightly old state information. This is justified, as
a link’s state changes slowly, and experiments have
shown the insensitivity of the resulting statistics to
slightly stale state information.

Our method is synchronous, and window-based.
Supposing all processors have simulated up to and
synchronized at time s (initiaNy s = 0), they co-
operatively define a simulation time ¢, simulate all
workload in [s,t), and globally synchronize again at
t. Time t is carefully chosen so that no call arriv-
ing in [s,t) can also be completed in [s,t). Window
construction is not difficult, for call arrival and dura-
tion times are randomly sampled from distributions

that are independent of the state of the system. Qpe
issue is whether enough events can be found in the
window to make this approach viable. In (Gaujal ¢
al., 1992) we have shown that if the aggregate call
arrival rate to the network is A, and if the call dura-
tion is comprised of a constant C (0 < C < 1) plus
an exponential with mean 1 — C, then on average
AC + V/AC = 1)7/2 + O(1/V/A) calls are processed
in each window. We have observed that C ~ 0.025
is large enough to ensure good performance on net-
works modeled after AT&T’s, owing to tremendously
large aggregate arrival rates.

Link state information is globally disseminated as
part of the synchronization at time s, as follows.
Each processor initially clears a table containing
N(N - 1)/2 link state codes. Then, for each of its
assigned links 7 (in global link coordinates) it records
the ALBA code for link 7, in position i of the table.
The processors then perform a global vector OR re-
duction (supported on Intel multiprocessors with the
gior () system call), which has the effect of providing
every processor with a copy of every link’s state code.
This state information is assumed to be constant over
the interval [s,t). Upon receiving the completed ta-
ble, a processor categorizes every possible via for ev-
ery one of its assigned links {u,v}. To select a via
for {u, v} the processor is able to select uniformly at
random from the set of {u, v} vias with lowest ALBA
classification.

Given window [s,t), each processor builds a lin-
early linked event list for each of its assigned links. A
link’s event list spans [s,t). Then, for every call ar-
rival event, a via for that event is chosen, even though
we don’t yet know whether the via is needed. Messages
reporting the via selection are sent to the processors
holding the via links. Upon receipt of such, additional
via arrival events are merged into the link event lists.
For the purposes of simulation, these events play the
role of appointments—a processor will not simulate
past the time of a via arrival event until it knows
whether the via is needed. By preselecting vias we
establish the synchronization points needed by a con-
servative approach.

Following these steps, every link’s event list con-
tains arrival events, via arrival events, and call com-
pletion events. The completions are associated with
calls accepted in a previous window, and so are un-
conditional events. It is not yet known which of the
via arrival events might actually be needed, nor is
it yet known which of the new call arrivals can be
accepted. Simulation will provide those answers.

Consider the processing of a link’s event list. Call
departure events are simple—increment the link's
number of free trunks. To process a call arrival we see

Simulation of Circuit-Switched Communication Networks 631

W

—
e

Figure 1: Three-Way Synchronization For a Call Ar-
rival Event.

if any free trunks are available on the associated link,
and send a message (either yes or no) to the links
carrying the preselected via arrivals. A yes message
is interpreted to mean that the call can be routed
directly, no means it cannot, and so is viewed as a
request to carry the call. Similarly, upon reaching a
via arrival event, the processor sends a yes (a via can
be placed here) or no message to both the other via
link, and to the link originating the call.

For every call arrival there are three events, in
three different links’ event lists. We need to effect
a three-way synchronization between these events, as
illustrated in Figure 1. The action a processor takes
upon reaching an event depends on the event state, a
3-tuple (z,y, z) where each component is either yes,
no, or ? describing respectively the processor’s knowl-
edge of the original link’s ability to accept the call,
and the two vias’ abilities to accept the call.

A brute force means of synchronizing three links at
an event is to have each event dispatch a state mes-
sage to the others, and then wait for them to send
their own states. Once a link knows the states of
all three events involved, it can determine for itself
whether the call is routed directly, routed using the
via, or is blocked. This approach clearly has high
overhead, as it involves the exchange of six messages
for every single call arrival. Such a voluminous ex-
change is not always necessary, for any one of the
links can preempt the possibility of the via call being
accepted—e.g., the original call may be acceptable,
or one of the via links is unable to accept the call,
if requested. Consequently, if a processor scans an
event and can discern from the event state that the
via has already been preempted, there is no reason
for it to send or receive further information.

The table below gives the actions associated with a
call arrival event, with optimizations to reduce mes-
sage passing. z signifies “don’t care”; CLP means
“Continue Link Processing”, i.e., advance to the next

event in the link’s list. Finally, messages are sent only
the first time the event encountered; a link returning
from suspension doesn’t need to resend its state (even
if message transmission is indicated by the table).

Table 1: Event Actions for Call Arrival Event

Event State Action
(call, vial, via2)

(n,?,? Send “n” msg. Suspend link.

(n,n,z) Record call as blocked. CLP.

(n,z,n) Record call as blocked. CLP.

(n,?,y) Send “n” msg. Suspend link.

(n,y,7) Send “n” msg. Suspend link.

(n,v,y) Send “n” msg. Record call
as rerouted. CLP.

(v,7,7) Send “y” msg. Accept call.
CLP.

(v,9,9) Send “y” msg. Accept call.
CLP.

(y,n, z) CLP.

(y,z,n) CLP.

In Table 1, to accepta call is to decrement the num-
ber of free trunks on its link, record it as accepted,
and to schedule the call’s completion. To suspend a
link is to remove it from a list of active links. At the
point of suspension, the event upon which the link
suspends 1s recorded. The link rejoins the active list
when the missing message(s) for that event are re-
ceived. These messages alter the state of the event,
which is then processed according to Table 1. For
example, if {u, v} suspends at some event e in state
(n,7,7), the link is reactivated only by a message that
changes e’s state to (n,n,?), (n,?,n), or (n,y,y) (our
message handler does not reinstate the link in inter-
mediate states (n,?,y) or (n,y,7)).

Corresponding tables describe processing for via ar-
rival events. Table 2 below is tailored for vial, (arbi-
trarily) the via link with lowest index.

Table 2: Event Actions for Via Arrival Event

Event State Action
(call,vial, via2)

(?,n,?) Send “n” msg. CLP.

(1; z,n) CLP.

(y,z,z) CLP.

(n ¥,7) Send “y” msg. Suspend link.
(n,y,9) Accept via call. Send “y”

msg. CLP.

632 Nicol, Greenberg, and Lubachevsky

Much of the extra work performed by the conser-
vative method supports the pre-generation and han-
dling of via arrival events that are never used. This
presents a prime opportunity to employ optimism,
in order to avoid generating via arrival events until
actually needed. This issue is taken up in the next
section.

3 AN OPTIMISTIC METHOD

It is relatively straightforward to add optimism to our
conservative method. Furthermore, within its basic
framework we can minimize traditionally expensive
overheads such as state-saving and rollback. As we
will see, distinct performance advantages are gained
by using optimism.

Windows are defined exactly as before, event-lists
for the window are constructed, and ALBA state in-
formation is exchanged exactly as before. One key
difference between the conservative and optimistic
methods is that we do not pre-generate via arrival
events for every call arrival. Another difference is
that the optimistic method will retain a link’s win-
dow event list throughout the processing of the win-
dow, because an event can be scanned any number
of times, as dictated by rollback activity. However,
by construction, the list itself changes little over the
course of processing a window (the only changes being
the insertion of via arrivals) a pointer to the current
position in the list is maintained.

We associate an event state (z,y) with every call
arrival event. The first component z € {y, n} signifies
whether a via request has ever been generated for the
arrival; the second component y € {y,n,?} signifies
whether the call arrival was accepted or rejected the
last time it was scanned. The initial state of every
call arrival event is (n, 7).

Table 3 below specifies the state-dependent behav-
1or for a call arrival event, when it is determined that
the call cannot be placed given the current link state.

Table 3 : Event Processing for an
Non-acceptable Call Arrival

Event State Action New State
(sent, call)
(n,?) Select vias. Send (y,n)
MakeVia msgs.
CLP.
(n,y) Select vias. Send (y,n)
MakeVia msgs.
CLP.
(v, 9) Send NeedVia (y,n)
msgs. CLP.
(y,n) CLP. (y,n)

Table 3 illustrates that upon the first recogni-
tion that a via is needed on link {u,v} (ie., when
sent = n) a vianode w is selected and special Make-
Via messages are sent to links {u,w} and {w,v}.
(Upon receipt, via arrival messages are inserted into
the via link’s event list. Rollback occurs if the link
has already simulated past the insertion point.) The
event is found in state (y, y) if the call arrival to {u, v}
already selected vias once, and if on the previous scan
it appeared that they weren’t needed. Since they ap-
pear to be needed again, {u, v} sends NeedVia mes-
sages to both via links. If the event is found in state
(y,n) there is no need to notify the vias, as the last
acceptability transition will have done that.

Table 4 gives the appropriate event behavior when
the call arrival can be accepted.

Table 4: Event Processing for an
Acceptable Call Arrival

Event State Action
(sent,call)
(n,?) Use 1 trunk. CLP. (
(n,vy) Use 1 trunk. CLP. (
(v,9) Use 1 trunk. CLP. (
(

New State

YY)
(y,n) Use 1 trunk. Send (y,y)
RemoveVia msgs.
CLP

Table 4 shows that messages need be sent only to
to cancel a previous via request.

Now consider the handling of via arrival events,
which are inserted only by receipt of MakeVia mes-
sages. Tables 3 and 4 show that the originating call
arrival event may later toggle its via request (by send-
ing NeedVia and RemoveVia messages) as its own
apparent state shifts between rejecting and accepting
the call. Clearly then, one component of a via’s ar-
rival event state must indicate whether the call can
be carried directly, or not. This component is up-
dated immediately upon the receipt of any MakeVia,
NeedVia, or RemoveVia message. Next, since the
via arrival event may be scanned several times, a
second component records whether on the last scan
where the via appeared to be needed, it was deter-
mined that the via link could carry the call. Finally, if
the via is needed, then the link needs to know whether
the other via link can carry the call. A third compo-
nent records present knowledge of that link’s ability
to carry the call. Thus a via arrival’s event state is a
3-tuple, with each component being y or n.

Table 5 gives the event actions when the via arrival
cannot be accepted. The table is given with respect
to vial. Any messages generated are sent only to

Simulation of Circuit-Switched Communication Networks 633

via2. Observe that a message is sent to via2 even
if we presently believe that via2 is unable to carry
the call. This ensures that whenever the original link
needs a via, both via links have an up-to-date copy
of the other link’s state.

Table 5 : Event Processing for an
Non-acceptable Via Arrival

Event State Action New State
(call, prev, via2)
(y,z,2) CLP. (y,z,z)
(n,y,z) Send “n” msg. CLP. (n,n,z)
(n,n,z) CLP. (n,n,z)

Again we see that the only communication occurs
to notify the other link via that the state has changed.

Table 6 gives the event actions when the via arrival
at link vial can be accepted. All messages are sent
only to vial. Here we see that if the via is needed
and can be carried locally, the via link optimistically
assumes that the other via can also carry it, unless it
has information to the contrary.

Table 6 : Event Processing for an
Acceptable Via Arrival

Event State Action New State
call, prev, via
(call,p a2)
(y,z,2) CLP. (y,z,2)
(n,n,n) Send “y” msg. (n,y,n)
CLP.
(n,n,y) Send “y” msg. Use (n,y,y)
1 trunk. CLP.
(n,n,?) Send “y” msg. Use (n,y,y)
1 trunk. CLP.
(n,y,n) CLP. (n,y,n)
(n,v,9) Use 1 trunk. CLP. (n,y,y)

Only two pieces of data state need to be saved to
support rollback. After we scan an event we save
two integers : the current link capacity, and the state
of the link’s random number stream. State-saving
costs are thus negligible. Now a link is rolled back
if it receives a message at a time less than that of
the event at the list’s current position pointer. After
the pointer is moved back, the link’s state is restored
using state saved in the event just prior to the new
current position. Lazy message cancellation (Reiher
et al., 1990) is already built into our state transition
tables.

When implementing our optimistic code we en-
countered a fundamental problem. We desire that
processors synchronize globally at the upper edge of

the window, yet a processor cannot be sure that it
won’t be rolled back after entering barrier synchro-
nization logic. We have addressed this problem else-
where (Nicol, 1992). The solution we propose allows
processors to be rolled back out of the barrier logic; at
the same time, it ensures that no processor leaves the
barrier until all processors have received all messages
destined for them prior to synchronization. Follow-
ing such a synchronization, a processor knows that
the current states of all events in all links are final.
At this point each processor goes through the lists,
accepting call and via arrivals as indicated, and re-
leasing the space used to store events. It should be
noted that a link does not know whether a call it can-
not accept itself was accepted by the vias. For the
purposes of statistics, we have the via links record
that the call was carried, or blocked. In a final step
at termination we are able to reconstruct each link’s
blocking statistics.

Scheduling is always a critical issue for optimistic
simulations. We experimented with a scheduler that
allocates a quanta of simulation time to each link,
with a quanta allocated to the link whose next event
time is least. A link that exhausts its quanta but
has remaining workload is returned to the priority
heap. Since the cost of probing for possible messages
is relatively high on Intel multiprocessors, our intu-
ition was that as the quanta grows (from allowing
one event per link to simulating a link all the way to
the window’s edge), different overheads would domi-
nate. Each quanta slice involves priority heap man-
agement overheads, as well as message probing over-
heads. A system using tiny quanta receives messages
almost as soon as they arrive, and is careful to exe-
cute local events in nearly monotone increasing order
(between rollbacks). A system using larger quanta
reduces these overheads, but increases the risk of er-
roneous computation. As we see in the next section,
the balance turned in favor of large quanta.

4 EXPERIMENTS

Both the conservative and optimistic methods have
been implemented the Intel Touchstone Delta (Lille-
vik, 1991), an architecture based on the Intel 1860
CPU (Intel Corporation, 1990). The system has 560
processors, connected in a mesh. Our test problem is
based on measured network capabilities and demand
following the accidental severing of several links at a
switching center on the east coast. As a result, the
network suffers significant blocking on several hun-
dred links.

All these experiments use an ALBA-4 via selec-
tion policy. The link state tables are updated every

634 Nicol, Greenberg, and Lubachevsky

unit of simulation time. The experiments also use a
small call duration constant portion of C = 0.025.
The link-to-processor mapping is the same in both
methods, being based on the longest processing time
first list scheduling heuristic analyzed in (Graham,
1969) (we use link capacities to estimate “processing
time”). This heuristic makes no attempt to optimize
communication patterns, but does balance the work-
load quite effectively.

Table 7 below compares the performance of the two
methods on various numbers of processors. Each ex-
periment measures the average number of calls simu-
lated per minute, on simulation runs of approximately
ten million calls. For the optimistic version we also
present the percentage of “extra” events simulated
due to rollbacks. For these experiments, the quanta
used by the optimistic version’s scheduler is the entire
window width.

Table 7: Call Processing Rates on Intel
Touchstone Delta

Conservative Optimistic
procs Calls/Min. | Calls/Min. % extra events
16 810,300 | 1,410,300 14%
32 1,447,080 | 2,433,780 15%
64 2,339,400 | 3,959,760 16%
128 2,700,480 | 5,351,640 17%
256 2,496,180 | 7,920,840 17%

Consider first the conservative performance. While
a peak rate of over 2.7M calls/minute is observed,
we also see that performance improvement drops off
sharply for more than 64 processors. While the 64
processor run achieves a rate nearly three times faster
than the 16 processor run, the 128 processor run is
only 1.15 times faster than the 64 processor run; the
256 processor run actually runs slower than the 128
processor run. This occurs because the relative (and
increasing) cost of frequent synchronization eventu-
ally dominates performance.

The optimistic version fares much better in general,
especially at high processor counts. Even though the
relative fraction of time a processor spends in syn-
chronization related activities must also increase with
the processor count, that fraction is lower than that of
the conservative method. However, further improve-
ments in performance are hindered by load balancing
considerations; in our 256 processor runs several pro-
cessors are assigned only one “fat” link. So long as
we constrain ourselves to assigning at most one pro-
cessor to a link, the addition of more processors will
not reduce the total finishing time. We believe this
might be ameliorated using an optimistic version of
our sweep algorithm (Gaujal et al., 1992), which sup-

ports splitting a single link’s workload across proces-
SOIS.

In another set of experiments (on 32 processors) we
examined the sensitivity of the optimistic version’s
performance to the scheduler quanta. Somewhat to
our surprise, we discovered that it is less expensive
to suffer the re-execution costs associated with large
quanta, than it is to suffer the overhead costs of small
quanta. Table 8 below presents measured call simu-
lation rates, as a function of quanta ¢. Quanta units
are “fraction of window width”; e.g., ¢ = 0.01 means
the quanta is 1/100 of the width of the synchroniza-
tion window. The data clearly indicates that in this
simulation it is cheaper to re-execute events than it
is to probe for messages and manage priority heaps.

Table 8: Sensitivity to Scheduling Quanta

Quanta Calls/Min % extra events
0.001 1,737,720 %
0.01 1,873,080 7%
0.1 2,045,820 8%
0.2 2,197,680 9%
0.5 2,222,000 12%
1.0 2,433,780 15%

Table 7’s peak measured performance is nearly 8M
calls/minute, a rate that will simulate a production
run of twenty million calls in approximately two and
a half minutes. How good is this? The memory of
one Delta processor is too small to contain an op-
timized serial implementation, so that true speedup
can’t be measured. However, we have measured an
optimized version’s performance on a smaller net-
work, and found it to be 0.2M calls/minute. Taking
this as an upper bound, we observe a performance ac-
celeration of nearly 40, using 256 processors. While a
“speedup” of 40 in 256 seems modest, one should keep
in mind that the hypothetical serial version requires
an enormous memory—at least 128 Mbytes—to con-
tain the simulation. Without such a large memory,
we estimate the serial running time would be on the
order of ten hours for twenty million calls (a figure
arrived at by measuring serial execution time of a
twenty million call run on a Sparc, then accounting
for the speed differential between the workstation and
single Delta node). Our methods ought to be viewed
as a way of exploiting multiprocessor’s larger mem-
ory capacity. Secondly, one ought to bear in mind
that our simulation is doing more work than does
an optimized serial implementation. An important
advantage our optimistic version has over the conser-
vative one is that generation and processing of via
events is greatly reduced, an advantage clearly borne
out in the performance numbers. Even so, the opti-
mistic version generates messages, computes the link

Simulation of Circuit-Switched Communication Networks 635

state table, and may execute events more than once.
None of these activities are mirrored in the serial ver-
sion; they are simply the price one pays to exploit
parallelism.

As a final note we remark that we have observed
entirely similar call processing rates on the more com-
monly available Intel iPSC/860 multiprocessors. We
report measurements on Touchstone Delta primarily
to show simulation rates on large numbers of proces-
sors.

5 SUMMARY

This paper describes two techniques for the paral-
lelized simulation of large, nearly fully connected
circuit-switched networks. Notable characteristics of
our methods are (i) they are window based, (ii) they
map network links to processors, and (iii) on a net-
work similar to AT&T’s long-distance phone network
they achieve a call simulation rate of nearly eight mil-
lion calls per minute, using 256 processors of the Intel
Touchstone Delta. Our methods offer the promise
of reducing production simulation execution times
from several hours, to several minutes. The first
characteristic is the key to our success. By choos-
ing small enough windows, we are able to craft very
efficient inter-link synchronization mechanisms used
while processing the window. While small windows
might be faulted for allowing in too few events, net-
works of the size of AT&T’s are so large that thou-
sands of calls are simulated within each window.
Two issues invite yet further study. Our methods
only approximate the actual network’s use of instan-
taneous state information when making a via selec-
tion. We believe we can incorporate instantaneous
state changes into our optimistic version, by the in-
clusion of state-change broadcasts. The severity of
the performance penalty one pays for this accuracy is
an open question. A second issue 1s to examine a sim-
ulation based on the seemingly more natural method
of mapping network nodes to processors, rather than
links. It is quite possible that a node-mapped sim-
ulation will better handle instantaneous link state
changes, as well as being more “self-balancing”. We
intend to pursue these issues in the near future.

ACKNOWLEDGEMENTS

The contribution of David Nicol was supported in
part by NASA grants NAG-1-1060 and NAG-1-995,
NSF grants ASC 8819373 and CCR-9201195. This
work was initiated during a supported visit by him
to AT&T Bell Laboratories. The authors are also
grateful for the support of Sandia National Labs in

providing access to the Intel Touchstone Delta at Cal-
tech.

REFERENCES

Eick et al., 1991. Synchronous relaxation for paral-
lel simulations with applications to circuit-switched
networks. In Proceedings of the 1991 Workshop
on Parallel and Distributed Simulation, pages 151~
162.

Gaujal et al., 1992. A sweep algorithm for massively
parallel simulation of circuit-switched networks.
ICASE Report 92-30 Available from ICASE, MS
132C, NASA Langley Research Center, Hampton,
VA 23668.

Graham, 1969. Bounds on multiprocessing timing
anomalies. SIAM J. Appl. Math, 17(2):416-419.

Intel Corporation, 1990. 860 64-bit microprocessor
programmer’s reference manual. Intel Literature

Sales, P.O. Box 7641, Mt. Prospect, IL 60056.

Lillevik, 1991. The Touchstone 30 gigaflop DELTA
prototype. In Distributed Memory Computer Con-
ference 91, pages 671-677. IEEEPRESS.

Mitra et al., 1991. Analysis and optimal design
of Aggregated-Least-Busy-Alternative Routing on
symmetric loss networks with trunk reservations.
circuit-switched networks. In 13th International
Teletraffic Congress, North Holland, Copenhagen,
Denmark.

Nicol and Reynolds, 1984. Problem oriented proto-
col design. In Proceedings of the 1984 Winter Sim-
ulation Conference, pages 471-474, Dallas.

Nicol, 1988. Parallel discrete-event simulation of
FCFS stochastic queueing networks. SIGPLAN
Notices, 23(9):124-137.

Nicol, 1992. Optimistic barrier synchronization.
ICASE Report 92-34. Available from ICASE, MS
132C, NASA Langley Research Center, Hampton,
VA 23668.

Reiher et al., 1990. Cancellation strategies in opti-
mistic execution systems. In Distributed Simula-
tion 1990, pages 112-121. Society for Computer
Simulation.

636 Nicol, Greenberg, and Lubachevsky

AUTHOR BIOGRAPHIES

DAVID M. NICOL received a Ph.D. in Computer
Science from the University of Virginia in 1985, and
i1s presently an Associate Professor in the Depart-
ment of Computer Science, at the College of William
and Mary, Williamsburg, Virginia. He is an asso-
ciate editor for the ACM’s Transactions on Modeling
and Computer Simulation and for the ORSA Jour-
nal on Compuling, and has served as the 1989 Pro-
gram Chairman and the 1990 General Chairman of
the Workshop on Parallel and Distributed Simulation
(PADS). His interests are in parallel simulation, per-
formance analysis, and algorithms for mapping par-
allel workload.

ALBERT G. GREENBERG received a Ph.D. in
Computer Science from the University of Washing-
ton in 1983. Since 1983 he has been a Member of the
Technical Staff at AT&T Bell Laboratories, in Mur-
ray Hill, New Jersey.

BORIS D. LUBACHEVSKY is a Member of the
Technical Staff at AT&T Bell Laboratories, in Mur-
ray Hill, New Jersey. He received the candidate de-
gree (equivalent Ph.D.) in Computer Science in 1977
from Tomsk Polytechnical Institute (USSR). From
1980 to 1984 he was a member of the Ultracomputer
project team in New York University. His research in-
terests include parallel programming and simulation
techniques.

