Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

PROCESSOR ALLOCATION IN PARALLEL BATTLEFIELD SIMULATION

Narsingh Deo

Department of Computer Science
University of Central Florida

Orlando, Florida 32816, U.S.A.

ABSTRACT

Load balancing is a critical issue for exploiting the
parallelism in any application and, particularly, in
battlefield simulation where the computational load
dynamically changes with both time and space. Do-
main decomposition is an effective means to balance
the load distribution in battlefield simulation. Iow-
ever, finer domain decompositions that lead to better
load balance incur heavier communication overhead.
Earlier attempts in parallelizing battlefield simula-
tion have traded load balance in favor of low com-
munication overhead. In this paper, we present three
parallel battlefield simulators, implemented on Intel’s
iPSC/2 and BBN Butterfly GP-1000 multicomput-
ers, with finer domain decomposition and address the
communication overhead problem by processor allo-
cation strategies that suit the underlying architecture
of the machine. On the shared-memory BBN Butter-
fly, the strategy leads to a new parallel battlefield
simulation with dynamic load balancing. Execution
times of these simulators are provided, which show
that the communication overhead is tolerable.

1 INTRODUCTION

Battlefield simulations are amongst the most irregu-
lar, computationally intensive, and complex simula-
tions in existence. Parallel processing offers the pos-
sibility of greatly increased performance for simula-
tions which are computationally bound on existing
sequential machines. However, mapping a simulation
onto a multicomputer is especially difficult when the
computational load changes dynamically as a func-
tion of time and space as in battlefield simulations
such as CORBAN (Gilmer 1986). CORBAN, a time-
stepped simulation, focuses on military units such as
regiments and battalions. The units move through a
two-dimensional domain tessellated by hexagons, and
combat with nearby units from the opposing side.

Muralidhar Medidi

718

Sushil Prasad

Math & Computer Science Department
Georgia State University
Atlanta, Georgia 30303, U.S.A.

Zipscreen, a simplified version of the CORBAN,
was presented 1n an attempt to parallelize the bat-
tlefield simulation (Gilmer, Hartwig, and Kokinakis
1986). It included only the perception, combat and
movement processes and was implemented on the
Butterfly using software locks to protect the shared
data. On a large-scale simulation, Zipscreen provided
50% efliciency on a 40-processor Butterfly. Zipscreen
was later adapted to the distributed-memory archi-
tectures by replicating the state-space (Gilmer and
Hong 1986). Computational load is distributed by
assigning equal number of combat units to each pro-
cessor at the beginning of the simulation. Each pro-
cessor maintains a replica of the states of all units.
In every time-step, each processor (i) simulates the
actions of the units assigned to it; (11) sends messages
to the processor assigned to the units modified dur-
ing the simulation; and (iii) disseminates the states
of its units to all other processors. Thus, the repli-
cated state-space approach requires that every pro-
cessor communicate with every other processor re-
sulting in heavy communication overhead.

The replicated state-space approach also suffers
from load imbalance because serious computation
takes place only when units are geographically close,
so that during any given time-step a combat unit may
or may not demand substantial computation. The
expected speedup (ratio of the execution time with
I processor to that with p processors) in the repli-
caled state-space approach is inversely proportional
to the number of combat units (Nicol 1988). To im-
prove speedup, Nicol proposed parallelizing the sim-
ulation by distributing the battlefield domain instead
of the combat units. The battlefield is covered by w-
by-h hexagon (hex, from now on) rectangles and the
processors are viewed as forming an r-by-c rectan-
gle. The battleficld rectangle (u, v) is assigned to the
processor occupying the (u mod r, v mod ¢) position
in the processor rectangle. Each processor also holds
only the copies of units on the adjacent hexes. Com-



Processor Allocation in Parallel Battlefield Simulation 719

munication and redundant computation are required
in every time-step to properly maintain the states of
the units on the adjacent hexes.

Noting the dependence of speedups obtained on the
size of the rectangles into which the battlefield is di-
vided, a pseudo-dynamic remapping of the battlefield
onto the processors is also proposed (Nicol 1989). The
decision to remap must take into account the perfor-
mance gains and costs involved and simulation’s fu-
ture behavior. However, many of these factors cannot
be quantified in battlefield simulation.

Some other reported works on event-driven paral-
lel battlefield simulation include the application of
QSIM, a tool to model division level tactical com-
munication systems (Malmberg et al. 1984); the us-
age of an object-oriented message-passing language
ROSS to model a ground battle (IXlahr et al. 1986);
and the utilization of the Timewarp operating system
(Weiland et al. 1989).

In this paper, we consider the parallelization of
only time-driven battlefield simulation. We describe
three parallel battlefield simulation programs imple-
mented on the Intel’s iPSC/2 and the BBN Butter-
fly GP1000. Earlier domain-decomposition strategies
(Nicol 1988) for message-passing architectures like
the iPSC/2 sacrificed load balancing to reduce the
communication overhead. When the rectangles that
divide the battlefield contain only 1 hex, the efficiency
of the simulator drops to about 20%. Increasing the
rectangle size reduces the communication overhead
but results in load imbalance. The i1mprovement
in efficiency due to the expansion of the rectangle
was attributed to a reduction in the communication
overhead. However, as the rectangle size increases,
the redundant computation decreases which also con-
tributes to the improvement in efficiency. Moreover,
the technological advances in the interprocessor comn-
munication hardware, as the improvements of inter-
processor communications of the iPSC'/2 over that of
the iPSC/1 indicate (Chorafas and Steinmann 1990),
decrease the emphasis on communication overhcad.
Our first battlefield simulator, implemented on a 16-
processor iPSC/2, employs a static mapping ol the
battlefield to the processors with one hex per rect-
angle and without any redundant computation. The
mapping function exploits the characteristics of the
hypercube interconnection and guarantees that adja-
cent hexes are mapped to processors that are at a dis-
tance of at most two communication links. Then, we
ported the simulator from the iPSC/2 to the shared-
memory Butterfly for comparison purposes.

The bottlenecks caused by the software locks and
the load imbalance inherent in the Zipscreen simula-
tor reduce its scalability. The static-assignment bat-

tleficld simulator on the Butterfly can be easily mod-
ified to use a dynamic mapping of the hexes to the
processors. We implemented such a simulator, the
third parallel battlefield simulator, on a 32-processor
Butterfly using a processor allocation strategy effec-
tive for the underlying shared-memory architecture.

2 DBATTLEFIELD SIMULATORS: LOAD
ASSIGNMENT STRATEGIES

All our simulators are modeled after Zipscreen and
are time-stepped and unit-centered. Each unit is of
battalion size and consists of tanks and machine-gun
vehicles. On the battlefield, each combat unit seeks
enemy units, engages in combat, and moves follow-
ing the combat. The actions of these units during
the battle are simulated. Each combat unit is rep-
resented by an identification number, type and its
assets. Each asset is attributed with a weapon type,
number of such assets and the amount of ammuni-
tion. The two-dimensional battlefield is divided into
regular hexes and each hex is referred to by a hex co-
ordinate system. The opposing units move through
the hexes, engaging in combat only when they are on
the same hex or adjacent hexes.

PITASES: The simulation in each step consists of the
following four phases:

1. Perception: Enemy target information is gath-
ered by exchanging combat-unit-information be-
tween neighboring hexes.

2. Combat: Enemy target units are identified and
arc fired at. The casualty reports are exchanged
between neighboring hexes to update the status
of the combat units. If all assets of a combat unit
are destroyed, it ceases to exist.

3. Migration: Depending on the firing done in dif-
ferent directions, each combat unit identifies a
direction of movement if any, and moves in that
dircetion.

1. Update-Battlefield:  The migrating units are
placed in the proper hexes.

I'he simulation program outputs a description of the
hattlefield in terms of the combat units. All the three
simulators allow the size of the battlefield itself to be
varied and interactively prompt the user for the num-
her of simulation steps. The simulators load the ini-
tial unit-assignment on the battlefield from an input
file.

The computational load in the simulation is dis-
tributed by dividing the battlefield hexes among pro-
cessors. In the static allocation described in Subsec-
tion 2.1, the assignment is done at the beginning of



720 Deo, Medidi, and Prasad

the simulation and does not change during the sin-
ulation. The dynamic allocation, on the other hand,
views the simulation as a collection of subprocesses,
one each for the processing required at every hex of
the battlefield. The load is distributed by allowing
the free processor to work on the next subprocess to
be computed.

2.1 The Static Assignment

The static assignment suits the distributed-memory
hypercube machines, like the Intel’s iPSC/2 com-
puter. The iPSC/2 of dimension d consists of n = 2¢
node processors labeled 0 through n — 1. Two proces-
sors 7 and j are connected via a direct physical link
if the Hamming distance between the binary codes
of integers ¢ and j is 1. To map the processors onto
the battlefield domain, they are viewed as forming
a two-dimensional grid with ¢ = 2[%/?] columns and
r = 2l4/2] rows. The location (i, j) of the grid is
occupied by the processor k, 0 < £ < n—1, such that
the binary code of k is the reflected binary Gray code
of 7 concatenated to that of j. The battlefield hex
(, j) 1s assigned to the processor occupying the grid
position (i mod r, j mod ¢). Each processor simulates
the actions of all the units on the hexes allocated to
it. The mapping strategy ensures that any two adja-
cent hexes are assigned to processors which are cither
directly connected by a link or have a common proces-
sor to which both are linked. We implemented simu-
lators using the static assignment on both the iPSC/2
and the Butterfly. The required inter-processor com-
munication on the Butterfly is performed using the
shared-memory.

During each phase in a simulation step, each pro-
cessor needs to know about the combat units on all
the neighboring hexes. In the battlefield simulator
on the iPSC/2, enemy-unit-information is obtained
by exchanging messages with the processors associ-
ated with the adjacent hexes. Since the distance he-
tween any two processors assigned to adjacent hexes
1s at most two, the communication cost is dependent
only upon the number of hexes assigned to each pro-
cessor (Prasad 1990). The message exchanges also
serve to synchronize the processors within each phasc.
In the static-assignment battleficld simulator on the
Butterfly, the combat-unit-information is exchanged
using the shared-memory. The processor which nceds
the information copies it from the shared-memory.
Processors are explicitly synchronized in the static-
assignment simulator on the Butter(ly, using a global
counter.

2.2 The Dynamic Assignment

The dynamic assignment strategy is designed for
shared-memory machines like the BBN Butterfly.
The battlefield is not mapped onto the processors g
priory; instead, the data structures representing the
battleficld are stored in the shared-memory such that
any processor can access any hex of the battlefield.
To reduce memory contention, these data structures
are distributed across the memory modules. A global
counter is maintained which indicates, in any phase,
the next hex to be worked upon. In each of the four
phases, the next free processor starts executing the
action required by the next hex. Thus the computa-
tional load within each phase is more or less evenly
distributed across the processors. Since one phase
cannot start before another completely ends, the pro-
cessors need to be synchronized between the phases.
A battlefield simulator using dynamic load allocation
is implemented on the Butterfly.

2.3 Static vs. Dynamic Assignments

In the static-assignment simulators, the hexes of the
battlefield are assigned a priori to the processors.
The combat units move unpredictably and sometimes
cease to exist as battle progresses. Since the hex-to-
processor mapping is permanent, there is no guar-
antee that the combat units will be uniformly dis-
tributed among the processors as battle progresses,
which could create load imbalance. The main ad-
vantage of static mapping is the simple and easy-to-
compute communication patterns between the pro-
cessors.

In the dynamic-assignment simulator, the compu-
tational load within each phase is more or less evenly
distributed across the available processors. Thus the
dynamic mapping can adapt to the unpredictable
movements of the combat units and distribute the
computational load evenly among processors in each
time-step.  However, it is advantageous only when
the cost of dynamic assignment is small as in shared-
memory machines like the Butterfly.

3 EXECUTION TIME

We conducted experiments on our three simulators by
varying (i) the size of the battlefield as 8x8, 16x16,
24x24 and 32x32 hexes, (ii) the number of simulation
steps as 5, 15 and 25 steps, (iii) the number of combat
units on each side, and (iv) the number of processors.
For the battlefield with 8x8, 16x16 and 24x24 hexes,
the number of combat units was varied as 10, 20 and
50 units on each side. The number of combat units
was varied as 50, 100 and 250 on each side for the



Processor Allocation in Parallel Battlefield Simulation 721
TABLE 1: Execution Times, in Scconds, of the Simulator on the iPSC/2
for a 32x32 hex Battlefield
Combat Units on Each Side
50 100 250
Processor Simulation Steps Simulation Steps Simulation Steps
5 15 25 5 15 25 5 15 25
1 69.93 217.26 355.59 75.75 23555 377.36 87.18 296.45 440.11
2 46.35 144.79 239.18 49.61 154.90 249.98 55.09 187.06 283.18
4 27.22 83.18 137.75 29.54 89.31 142.80 32.38 106.44 162.72
8 14.21 43.51 71.80 15.72 48.66 77.15 17.98 57.67 86.59
16 7.60 22.87 37.36 8.53 26.36 40.86 9.60 32.87 47.70
bigger battlefield of 32x32 hexes. The number of pro-
cessors was varied as 1, 2, 4, 8, and 16 (powers of
2) in the experiments on static-assignment battlefield 10 — T T
simulators. For the dynamic-assignment simulator on 9l gy —— /
the Butterfly, the number of processors was varied "16x16" — 7
from 1 to 27 in increments of 1. Initially, the com- 8 1 "ax24" o /’//// 1
bat units were randomly distributed in the two halves 7} "33 o
of the battlefield in all these experiments. In these o //
timing studies, we suppressed the output generating .§ 6t ///'
routines. 3 5t
7
4t
3.1 Static-Assignment Simulator on the
iPSC/2 3
In this paper, we provide the execution times of the 1 ¢
battlefield simulator on the iPSC/2 obtained only for ] ¥ 1
the 32x32 hex battlefield due to the space limitations. 12 4 8 16

A complete listing of the execution times of the three
simulators obtained for all the experiments is given in
(Deo and Medidi 1992). Table 1 lists the execution
times for a 32x32 hex battleficld as the number of
combat units is varied with 50, 100 and 250 units on
each side and for 5, 15, and 25 step simulations.

As expected, the execution time is linearly propor-
tional to the number of simulation steps. On the
other hand, the execution time grows slowly with the
number of combat units because (i) the units engaged
in combat are only those that are on same or adjacent
hexes and (ii) the Perception phase, which forms the
bulk of the execution time, is independent of the num-
ber of combat units. As can be seen, the execution
time is almost inversely proportional to the number
of processors used. Figure 1 shows the speedup ob-
tained, as the size of the battlefield varies, against the
number of processors. The number of combat units
initially placed on the battlefield for each side is kept
fixed at 50 and the number of simulation steps at 15
for the speedups shown. As expected, the speedup
increases as the size of the battlefield increases.

Number of Processors

Figure 1. Speedup of the Battlefield Simulator on
the iPSC/2 with different Battlefield Sizes
No. of Simulation Steps = 15
No. of Combat Units on Each Side = 50

3.2 Static-Assignment Simulator on the

BBN Butterfly

Table 2 lists the execution times of the static-
assignment simulator on the BBN Butterfly for a
32x32 hex battlefield. Again, the execution time is
almost linearly proportional to the number of sim-
ulation steps and grows slowly with the number of
combat units. The execution time of this simulator is
greater than that of the simulator on the iPSC/2 for
the same input configurations as the Butterfly em-
ploys slower and less powerful processors than the
iPSC/2.



722 Deco, Medidi, and Prasad
TABLE 2: Execution Times, in Seconds, of the Static-Assignment Simulator on
the BBN Butterfly for a 32x32 hex Battlefield
Combat Units on Each Side
50 100 250
Processor Simulation Steps Simulation Steps Simulation Steps
5 15 25 5 15 25 5 15 25
1 329.44 992.84 10650.15 336.83  1007.20 1664.78 339.45 1035.65 1696.25
2 170.15 516.60 876.36 171.41 518.84 887.58 181.05 550.10 903.03
4 93.59 27140  169.39 94.13  280.78  467.49 97.98 29245  476.57
8 54.55 158.92 26341 55.10 163.70 268.17 56.25 169.73 274.64
16 44.87 127.08 208.33 43.35 115.23 214.00 44 .51 134.88 220.91
fromy memory contention in addition to the load im-
balance and communication overhead inherent in the
§ T T static assignment utilized.
"8x8" ——
Tp o leI6" 3.3 D ic-Assi t Simulat th
"04x04" g . ynamic-Assignment Simulator on the
61 3 BBN Butterfly
o //jf" Table 3 lists the execution times obtained for a 32x32
3 St // hex battlefield, as the number of processors is varied,
§ /(}" the number of combat units is varied with 50, 100
o 4t & 1 and 250 units on each side and for 5, 15, and 25 step
/ simulations. The execution times of the simulator
3t f running on 1, 2, 4, 8, 16, and 27 processors only are
provided.
2t ] The execution time, as can be seen from Table 3,
15 almost linearly proportional to the number of sim-
1 & ) ' ulation steps and grows slowly with the number of
12 4 8 16 combat units. Also, the execution times of the two
Number of Proccssors

Figure 2. Speedup of the Static-Assignment
Battlefield Simulator on the BBN Butterfly with
different Battleficld Sizes
No. of Simulation Steps = 15
No. of Combat Units on Each Side = 50

The inverse relation between the processors and ex-
ecution time, once again, can also be discerned. How-
ever, the speedup is decreasing, at a very slow rate,
as the number of combat units are increasing. Fig-
ure 2 shows the speedup obtained, plotted against the
number of processors, in experiments with 50 combat
units on each side initially and simulated for 15 steps,
as the size of the battleficld is varied. Even though
the speedup increases as the hattlefield size increases,
the speedup values are smaller than those obtained by
the simulator on the iPSC/2 as the shared-mcmory
used in the simulator on the Butterfly could suffer

simulators on the Butterfly are comparable for the
same input configuration when the number of proces-
sors 1s one. Hence, the cost of dynamically assigning
hexes to processors is very small. The inverse rela-
tion between the execution time and the number of
processors can also be discerned from Table 3. In ad-
dition, the speedup does not seem to vary with the
number of combat units. Hence, the dynamic assign-
ment scems to adapt to the unpredictable movement
of the combat units very well. In Figure 3, we plot-
ted the speedup, against the number of processors,
of the dynamic-assignment simulator in experiments
with 50 combat units on cach side and 15 simula-
tion steps as the battlefield size is varied. Compared
to the static ones, the dynamic-assignment simulator
provides more speedup that is increasing with the size
of the battlefield.

3.4 Analysis

To analyze the execution times of the battlefield simu-
lators, we used the mathematical package Mathemat-



Processor Allocation in Parallel Battlefield Simulation

-1
(8]
w

TABLE 3: Execution Times, in Seconds, of the Dynamic-Assignment Simulator on
the BBN Butter(ly for a 32x32 hex Battlefield

Combat Units on Each Side

50 100 250
Processor Simulation Steps Simulation Steps Simulation Steps

5 15 25 5 15 25 5 15 25

1 340.55 1026.18 1706.21 344186 1042.13 1721.60 354.67 1085.15 1766.20

2 173.48 520.16 865.27 175.65 528.60 873.11 182.02 549.67 895.02

4 90.44 268.38 446.88 91.96 272.20 447.45 93.59 281.75 457.99

8 49.47 147.52  210.14 50.54 146.59  239.43 51.00 151.76  246.94

16 27.26 81.99 137.50 27.76 83.12 139.28 28.56 87.30 141.83

27 19.98 60.42 100.47 20.31 61.35 101.94 20.83 64.65 104.89
where area is the number of hexes in the battlefield,
units is the total number of combat units, p is the
18 B IP T number of processors, stepsis the number of simula-
6 "165)1(8" i X;{;’: tion steps and Ty is the execution time in seconds.
"4xD4" e )/’éf,"r*” The c-onst.ant‘s a1, B1, 71, & and e; depend on the

14t 930" e ,‘,;,,E'F’ machine.

The constant a; represents the start-up time re-
Q. quired by the program. Time for allocation and
g initialization of local variables contribute the con-
R 8t stant term. Each processor simulates for the given
" number of steps using a control loop. The term
6 (1 x steps) represents the overhead due to the con-
4t trol loop and the synchronizations within each sim-
ulation step. The computation due to the (area/p)
21 liexes, assigned to each processor, for the given num-
0 L ) \ her of steps will be proportional to (steps x (area/p))
12 ¢ 8 16 27 and contributes the third term to the execution time.
Number of Processors The combat units also get distributed among the pro-

Figure 3. Speedup of the Dynamic-Assignment
Battlefield Simulator on the BBN Butterfly with
different Battleficld Sizes
No. of Simulation Steps = 15
No. of Combat Units on Each Side = 50

ica for curve-fitting in the data obtaincd. Mathcmal-
ica allows fitting polynomials into given data using
least-squares optimization technique (Wolfram 1955).

For the execution times of the simulators employ-
ing static mapping, the following equation is obtained
from Mathematica:

slteps X arca
T, = steps x dred

ay + (B x steps) + (61 X ;

steps x unils .
+ <€1 X —pp——> + (v1 x units),

cessors and hence the processing time to simulate
the actions of the combat units for all steps which
accounts for the fourth term. In the static map-
ping of the battleficld onto the processors, there is
no guarantee that the load due to the combat units
will be balanced evenly among the processors (Nicol
1989). Even though the initial unit-assignments in
the experiments placed the combat units randomly in
the battlefield, the combat units move unpredictably
as battle progresses and can create load imbalance
among the processors; hence the presence of the term
(71 x unils). However, the speedup curves show that
the effect of the load imbalance is insignificant as
speedup did not deteriorate with increase in combat
units. Strictly speaking, the initial distribution of the
combat units affects the load imbalance and hence v;.

The first, second and fifth terms in the equation do
not depend on the number of processors and form the
scquential portion of the execution time. The other
terms form the parallelizable portion. The sequential



724 Deo, Medidi, and Prasad

portion is independent of the size of the battlefield
and hence, as battlefield size increases, parallelism
increases. The number of combat units contributes to
the sequential portion indicating that as the number
of combat units increase, the load imbalance increases
and the speedup decreases. The values, for the data
obtained from the simulator on the iPSC/2, for ay,
B1, 61, €1 and v, are 5.05,0.38,0.011,0.017 and 0.25,
respectively.

For the data on execution times of the simulation
program employing dynamic mapping, the following
equation was obtained from Mathemalica:

steps X area
T, = as+ (B2 x steps) + (62 x _(p.s—___)
p
( steps x units)
+le2 X — |,
[

where as, (32, 62 and €5 are constants.

The main difference between this equation and the
one obtained for static mapping is the absence of a
term dependent on combat units but independent of
the number of processors. Since hexes are assigned to
the next available free processor, the computational
load due to the hexes and also the combat units will
he evenly distributed among the processors. Hence,
the sequential portion of the execution time is inde-
pendent of the size of the battlefield and the number
of combat units. In the equation obtained, the first
two terms form the sequential portion of the execu-
tion time. Once again, the start-up time forms the
first term and the synchronization needed in each step
contributes the second term. The third and fourth
terms represent the computational load due to hexes
and combat units, respectively. The values we got,
for the data obtained from the simulator on the But-
terfly, for ag, B2, 62 and e, are 7.89, 0.7, 0.063 and
0.021, respectively.

4 CONCLUSIONS

We presented static and dynamic processor assign-
ments for parallel battlefield simulation. Our static
assignment strategy showed better speedup than ear-
lier domain partitioning approach because no repli-
cated computation took place. Since the simulator
on the Butterfly using static assignment did not give
better speedups than the one on the 1PSC/2, the mes-
sage exchanges in the hypercube did not suffer from
any contention. The speedups reported for the sim-
ulator on the iPSC/2, which are better than those
reported earlier (Nicol 1989), show that the commu-
nication overhead is tolerable in our finer-grained do-
main decomposition.

The dynamic-assignment simulator on the But-
terlly has better speedup, as expected. It showed
speedups almost independent of the number of com-
bat units indicating that the assignment strategy is
adapting well to the load imbalances created by com-
bat unit movement. The controlled replication of
the state space obviates the need for any software
locks to maintain the data consistency. Software locks
(Gilmer, Hartwig, and Kokinakis 1986), cause mem-
ory contention and limit the scalability of the parallel
battlefield simulation. Memory contention does not
seem to be a problem in the dynamic-assignment bat-
tleficld simulator as the speedups did not suffer when
the processors are increased.

The execution times obtained from varying the bat-
tlefield size, the number of combat units, the number
of simulation steps and the number of processors were
used to find analytical equations. As expected, the
equations show that as the resolution of the battle-
ficld is improved, that is, the battlefield is divided
into more hexes, the speedup improves. The equa-
tion obtained for static assignment shows that the
sequential portion of the execution time is dependent
on the number of combat units indicating load im-
balance. For the dynamic assignment, the sequential
overhead is independent of the battlefield size and the
number of combat units. Hence, massive parallelism
can be exploited in battlefield simulation (Gustafson
1988). As the complexity of the simulation grows
with added realism, the parallelizable portion of the
execution time increases improving the granularity of
the parallel tasks and hence speedup.

A formal analysis of domain decomposition was
performed by Nicol and Saltz for the restricted case
of a one-dimensional domain with the assumptions:
(1) the workload is a convex function of distance,
(1) the workload is a second-order stationary pro-
cess, and (iii) the communication and synchroniza-
tion costs can be ignored (Nicol and Saltz 1990). A
similar analysis for a two-dimensional case would be
valuable in establishing the effectiveness of domain
dccomposition technique for two-dimensional work-
loads.

ACKNOWLEDGMENTS

This rescarch was supported by US Army’s PM-
TRADE under contract N61339-88-G-0002 and Na-
tional Science Foundation grant CDA-89-20890.

REFERENCES

Chorafas, D. N., and H. Steinmann. 1990. Supercom-
pulers. New York: McGraw-Hill.



Processor Allocation in Parallel Battlefield Simulation

Deo, N., and M. Medidi. 1992. Parallel battle-
field simulation on Intel’'s iPSC/2 and BBN DBut-
terfly. Technical Report CS-TR-92-07, Department
of Computer Science, University of Central Florida,
Orlando, Florida.

Gilmer, J. B. 1986. Statistical measurements of the
CORBAN simulation to support parallel process-
ing. Technical Report BDM/ROS-86-0326, BDM
Corporation, Arlington, Virginia.

Gilmer, J. B., G. Hartwig, and L. Kokinakis. 1986.
Parallel entity centered simulation on the Butterfly
computer. In Proceedings of the 1936 International
Conference on Parallel Processing, ed. K. Hwang,
S. M. Jacobs, and E. E. Swartzlander, 793-795.
Institute of Electrical and Electronics Engineers,
New York, New York.

Gilmer, J. B., and J. P. Hong. 1986. Replicated state
space approach for parallel simulation. In Proceed-
ings of the 1986 Winter Stmulation Conference, ed.
J. R. Wilson, J. O. Henriksen, and S. D. Roberts,
430-433. Institute of Electrical and Electronics En-
gineers, New York, New York.

Gustafson, J. L. 1988. Reevaluating Amdahl’s law.
Commaunications of the ACM. 31:532-533.

Klahr, P., J. W. Ellis, W. D. Giarla, S. Narain, E.
M. Cesar, and S. R. Turner. 1986. TWIRL: tacti-
cal warfare in the ROSS language. In Ezpert Sys-
tems: Techniques, Tools and Applications, ed. P.
Klahr and D. A. Waterman, 224-268. Reading:
Addison-Wesley.

Malmberg, A. F., S. A. Hutchinson, R. D. Riggin,
and W. N. Friend. 1984. Modeling tactical com-
munication with QSIM. In Proceedings of the 198/
Winter Simulation Conference, ed. S. Sheppard,
U. W. Pooch, and C. D. Pegden, 729-734. Insti-
tute of Electrical and Electronics Engineers, New
York, New York.

Nicol, D. M. 1988. Mapping a battleficld simula-
tion onto message-passing parallel architectures. In
Distributed Simulation, ed. B. Unger, and D. Jef-
ferson, 141-146. Society for Computer Simulation
International, San Diego, California.

Nicol, D. M. 1989. Dynamic remapping of parallel
time-stepped simulations. In Distributed Simula-
tion, ed. B. Unger, and R. Fujimoto, 121-125. So-
ciety for Computer Simulation, San Diego, Califor-
nia.

Nicol, D. M., and J. H. Saltz. 1990. An analysis
of scatter decomposition. [EEE Transactions on
Computers. 39:1337-1345.

Prasad, S. 1990. Efficient parallel algorithms
and data structures for discrete-event simula-
tion. Ph.D. dissertation, Department of Computer
Science, University of Central Florida, Orlando,

~1
W
(%2}

Florida.

Weiland, F., L. Hawlcy, A. Feinberg, M. D. Loreto,
L. Blume, P. Reiher, B. Bechman, P. Hontalas,
S. Bellenot, and D. Jefferson. 1989. Distributed
combat simulation and time warp: the model and
its performance. In Distributed Simulation, ed. B.
Unger, and R. Fujimoto, 14-20. Society for Com-
puter Simulation International, San Diego, Califor-
nia.

Wolfram, S. 1988. Mathematica, a system for do-
ing mathematics by computer. Reading: Addison-
Wesley.

AUTHOR BIOGRAPHIES

NARSINGH DEO is the Charles N. Millican Chair
Professor of Computer Science and Director of the
Center for Parallel Computation at University of
Central Florida, Orlando. His research interests in-
clude parallel processing, combinatorial algorithms,
and graph theory. A Fellow of IEEE, Dr. Deo has
authored four textbooks and over 80 research papers.

MURALIDHAR MEDIDI received an M.Tech.
in Computer Engineering from Indian Institute of
Technology, Kharagpur, in 1986. Currently, he is a
Ph.D. student at University of Central Florida, Or-
lando. His research interests include data structures
in parallel processing and algorithmic graph theory.

SUSHIL PRASAD has done his Ph.D. in Com-
puter Science from University of Central Florida, Or-
lando, in 1990. Currently, he is an Assistant Profes-
sor at Georgia State University, Atlanta. His research
interests are parallel algorithms and data structures,
parallel simulation, graph algorithms, and complexity
theory.



