Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

MODEL REUSABILITY IN A GRAPHICAL SIMULATION PACKAGE

Betty J. Bortscheller
Emilie T. Saulnier

GE Research and Development,
Schenectady, NY 12301, U.S.A.

ABSTRACT

Model reusability is becoming more important as simula-
tions grow larger and more complex. Altiough graphical
user interfaces have already proved to be a valuable tool in
many phases of discrete event modeling, sim ‘lation, and
analysis of computer networks, their potential fo. support-
ing model reuse has not yet been fully exploited. This is
partly because although several graphically-based coni-
mercial packages are available of varying levels of me -
rity, none yet provides all of the features needed to effec-
tively reuse simulation models. In this paper we describe
the general requirements needed to support model reus-
ability in the “ideal” graphical discrete event simulation
package. The BONeS simulation package is used as one
example of how a commercially available graphical simu-
lation package currently supports these requirements to
various degrees. The most critical areas for improvement
are discussed.

1 INTRODUCTION

With the advent of large and complex systems such as dis-
tributed communications networks, simulations are be-
coming proportionately large and complex. This increas-
ing complexity mandates cost-effective, integrated and
automated support of simulation model development
throughout the entire model development life cycle (Balci
et al. 1990).

Since simulation is essentially software, it is natural to
try to apply software engineering techniques such as ob-
ject oriented design, top-down design, and bottom-up val-
idation to improve simulation efficiency and reliability.
For example, many of the computer aided design tech-
niques that were used previously for hardware and soft-
ware design have been successfully applied to system
simulation (Jerome et al. 1987, LaRue et al. 1989, Saulni-
er et al. 1988). In fact, several commercial packages have
emerged (including BONeS, SES/workbench, OPNET,
LANSIM), all of which support discrete event simulation
through a graphical interface.

764

One design technique that has yet to live up to its prom-
ise in either the software engineering or simulation fields
is that of model reusability. This technique is particularly
well-suited to simulation because of the iterate-and-re-
fine nature of simulation experiments. However, as has
been found in software engineering, reusability cannot
occur without an organizational infrastructure which sup-
ports it (Prié¢to-Diaz 1991). This infrastructure includes
support for development, validation, documentation and
maintenance of reusable models, an easy-to-use library
system, and reuser support (see Figure 1).

Much of the reuse infrastructure that is needed could be
provided by a graphical simulation package. Unfortunate-
ly many of the packages currently available are very
strong in graphical capture of design but provide minimal,
if any, support for model reuse. In this paper we introduce
a framework of requirements needed to support model re-
usability in an integrated graphical simulation environ-
ment. We use the BONeS (Block Oriented Network Simu-
lator) (Comdisco Systems Inc. 1992) simulation package
to illustrate how one commercially available tool supports
these requirements to varying degrees. Finally, we sum-
marize the most critical areas for improvement.

=)

Reuser

Reuser Support

Validation

Figure 1: Organizational Infrastructure Required for
Model Reuse



Model Reusability in a Graphical Simulation Package 765

2 WHY A GRAPHICAL ENVIRONMENT?

Although a reusability infrastructure could certainly be
provided without a graphical environment, there are many
advantages to using a graphical tool to support model re-
usability. These advantages are summarized below.

Model Development: Perhaps the most important ad-
vantage is that a graphical simulation tool provides the
user with an integrated environment that allows the user to
focus on the high-level details of the model and simula-
tion experiments. Not only can it insulate the user from the
programming language details, it can also free the user
from knowing the commands, file structure, and other
specifics of the operating system. As a result more time
can be focused on careful specification, design and imple-
mentation of a reusable model, and even facilitate adop-
tion of proposed frameworks for design-for-reusability
(Pratt et al. 1991, Harel 1992).

Model Validation and Documentation: Another
benefit is that a graphical simulation tool by its very na-
ture provides a graphical representation of the model.
This graphical representation is essentially a form of self-
documentation and simplifies the task of understanding
the logical design of a model. This graphical representa-
tion of the model and related results also simplifies the
process of design reviews and debugging that is essential
for verification and validation. Naturally, the potential re-
use of a model is easier to assess when its behavior is easy
to understand and verify.

Model Library and Maintenance: A good graphical
tool can also automate software and project management.
Requirements include not only configuration and version
control, but also model categorization and search func-
tions. Documentation functions are also needed for effec-
tive model reuse.

Conceptual
Model

Abstraction ‘

4
’

.,/ Validation

¥

Natural
System

Validation

3 GENERAL REQUIREMENTS

Model development requires the construction of a model
that represents all of the “important” aspects of the system
(Pollacia 1989). The key purpose of the graphical envi-
ronment is to free the developer from inappropriate levels
of detail and thus simplify the translation of an idea for
solving the problem into an appropriate high-level model
specification (Harel 1992). For example in the modeling
and simulation process proposed by Garzia (1990), the
addition of a well-designed graphical interface can sim-
plify the transformation from a conceptual to a computa-
tional model, automate much of the implementation
phase, and aid in verification and validation (see Figure
2). The general requirements include user friendliness of
the environment, the clarity of the graphical depiction,
and support of the specific requirements of the modeling
and simulation process.

3.1 User Friendliness

In order to be accessible to the widest range of users (both
model developers and potential re-users), the user inter-
face needs to be easy to use. It is preferable that standard
use be made of the mouse, windows, and keyboard. Our
example tool, BONeS, runs in X-windows and incorpo-
rates the graphical user interface look-and-feel called
OSF/Motif. Therefore the user interacts with BONeS in a
way consistent with other Motif-based interfaces.

Using the interface look-and-feel as a foundation, the
user’s choices should be organized and conveyed so that
the next step a user needs to perform should be easily ac-
cessible and almost intuitive. A rich set of capabilities will
also encourage use of the tool. For example, the editing
capabilities should include not only basic features such as
move, copy, and undo, but also “convenience” features
such as replace and group-edit.

Computation
Specific
Model

Computation

Figure 2: Role of the Graphical Interface in the Modeling Process



766 Bortscheller and Saulnier

The learning curve can be further shortened if the inter-
face is context sensitive and does not allow the user to per-
form inappropriate actions. This guidance should include
helpful error messages and prompting of appropriate ac-
tions when there is an error, as well as on-line help. Our
example tool, BONeS, offers error messages when an in-
appropriate action is made by the user and offers some in-
formation on what the user should do to correct the situa-
tion. BONeS also offers detailed on-line help with the user
being able to select help on a specific part of an object or
the entire object. Although this type of user-friendly de-
sign should seem obvious, many tools still are inadequate
in this area.

3.2 Clarity of Graphical Depiction

Clarity of graphical depiction is important even for a non-
user. For example, design reviews require documentation
that can be easily explained and reviewed for logical er-
rors by non-users with a variety of backgrounds. Similar-
ly, a reuser needs to be able to quickly understand the
model. Diagrams that don’t clearly depict the model can
be easily misunderstood and result in misuse or replica-
tion of models.

The clarity of a graphical depiction is affected by the
design paradigm, the iconic representation, and labeling
capabilities. For example, BONeS employs a data flow
design paradigm so that a model diagram consists of
blocks with connections between the blocks that represent
the flow of data in the model. The developer can assign
names to blocks that reflect or clarify their function and
basic annotation capabilities are provided. This helps
even the non-user to understand the model function. One
shortcoming is the lack of user defined model i/o labels,
which becomes even more important in reuse of higher
level models that don’t have simple in to out data flow.

Another shortcoming is the limited (although improv-
ing) capability provided for the user to define the icon rep-
resentation of a model. This capability is essential to a
clear graphical depiction: the power of a graphical repre-
sentation is not being fully utilized unless the appearance
of the blocks in the diagram helps convey their function.
This capability is complicated in a general simulation
package since each different application often requires
different, and sometimes unique, depictions. However,
the crucial first steps of the modcling process will be poor-
ly supported as long as users have to first use pencil and
paper (or another graphing package) to design or explain
their model.

3.3 Support of the Modeling, Simulation and Anal-
ysis Process

Of course the process of modeling, simulation and analy-
sis has many specific requirements beyond that of the ge-
neric graphical capture user interface. Figure 3 illustrates

the simulation model development process in terms of a
fountain life-cycle previously proposed for object-ori-
ented systems development (Henderson-Sellers 1990).
The impact of each phase of this life-cycle on the graphi-
cal simulation package requirements as they pertain to re-
usability will be described in the rest of this paper.

4 MODEL SPECIFICATION

Model specification requires both functional specifica-
tion and parameterization.

4.1 Functional Specification

Top down design greatly enhances functional specifica-
tion, especially in a teamwork situation where interfaces
must be defined first. Top down design allows incomplete
models to be used to define high level interfaces. This al-
lows one group to continue progress on the model while
another group is ironing out bugs in their particular por-
tion of the model. Of course a simulation cannot be run un-
less all models are completed. This is one reason that tools
such as BONeS do not normally support top down design
(although BONeS does provide a save-incomplete that al-
lows models with only inputs and outputs to be defined).
The facilitation of top-down design would allow more
careful interface design and thus enhance model reuse.
Hierarchy is also a valuable tool in design specifica-
tion. Hierarchical design allows a large complex model
design to be broken into several smaller functions that can
be individually developed and specified. This method is
often described as “divide and conquer,” and is similar to
the use of subprograms in traditional programming lan-
guages (Jain 1991). The hierarchical modeling approach
is especially valuable when used to manage modeling
complexity and to capture the layered architectures of net-
works. As in top down design, hierarchy can be used to de-
fine interfaces for and isolate reusable parts of a system

Figure 3: The Fountain Life-cycle Model for Object Ori-
ented Software Design as Applied to Simulation



Model Reusability in a Graphical Simulation Package 767

specification. See Figure 4 for an example of an hierarchi-
cal block diagrams in BONeS.

An especially valuable feature which is not yet avail-
able is the ability to define hierarchy in a top down man-
net. In this way a logically coherent parts of a large com-
plex diagram could be “reduced” to a submodel in an
automated fashion. This feature would accommodate the
common practice of designing and verifying a simple
model upon which additional complexity is added as
need. Without a “reduce” feature this leads to large
crowded diagrams that are impossible to follow.

4.2 Parameterization

Parameterization is a fundamental requirement for trade-
off analysis simulations. The flexibility of parameter
specification in a graphical simulation tool is even more
important in the context of model reuse. Models used for
similar purposes often contain similar components al-
though the parameterization of these components may
differ (Cellier et al. 1990). If models can be customized
for different applications by parameter specification they
are inherently more useful.

Parameterization of a reusable model is simplified if
the graphical simulation package checks for type consis-
tency so that inappropriate types can not be assigned as
parameter values. The model developer should also be
able to specify ranges to prevent inappropriate specifica-
tion by the reuser. This feature is especially important
when the model reuser is not the original developer.

Similarly, a parameter should be able to be defined in
terms of other parameters. In other words instead of as-
signing an explicit value to a parameter the user should be
able to assign a value based on other parameters. By using
these types of expressions for parameter values, it reduces
the number of model (external) parameters and simplifies
the process of assigning values when the block is used at a
higher level. This approach also prevents parameteriza-
tion errors by allowing any assumed relationships be-
tween parameters to be hard-wired into the model.

Finally, a graphical simulation package should allow
for parameters to be assigned at the appropriate hierarchi-
cal level in the model. Certainly, parameters that have a
fixed value regardless of simulation goals would be best
assigned at the lowest hierarchical level. In this way the
user can defer assigning a value only to parameters that
will be needed for trade-off analysis at the highest level in
the hierarchical model.

The BONeS simulation package provides a full range
of parameter support. It does type and range checking on
all parameters and allows the user to define parameters in
terms of other parameters. BONeS also allows the user to
assign values to parameters at the hierarchical level in
which they first appear or to defer assigning a value to a

NODE From Disk
<
o Disk
A
A
Gereric B Higher level
[pplization G- et modules
y i ¥
Generic > “File
“ifpplication < 7System
Generic AR Lower level
{(“Applization < \_L \ modules
To Bus \l/
A
(Al
From Bus

PROCESSOR

rroa mppliation
To Applination [N TN

K

Frcw Disk

i
1o Disk

“HF$ Geamon

........... il

e

Qo v i
— [

oV
Sucket

Switch
N

by n
APAY
Transport

1T A

Figure 4: A BONeS Hierarchical LAN Model




768 Bortscheller and Saulnier

higher level by exporting the parameter. Finally, at the
simulation level BONeS allows iterated parameters. In
all, this area is well covered by at least the BONeS pack-
age.

5 MODEL DESIGN AND IMPLEMENTATION

In a graphical simulation package, once a model is speci-
fied it is designed and implemented using what we will
call building blocks. These building blocks can also be
thought of as reusable models.

In any graphical simulation package there are two ba-
sic types of building blocks; primitives and higher level.
Primitives are the lowest level model and must be speci-
fied using a programming language, while higher level
building blocks consist of one or more interconnected
primitives. A user can avoid introducing programming er-
rors by avoiding design of new primitives and specifying
only higher level models.

Additionally, a particular building block may be either
pre-defined or user-defined. Pre-defined building blocks
are reusable models supplied by the vendor. They should
be generic in nature and comprehensive enough to encom-
pass many modeling possibilities. User-defined blocks
are developed by the user and provide a way to further ex-
tend and customize the tool capabilities either at the prim-
itive level or at the higher level. Of course the more flex-
ible the pre-defined building blocks are, the fewer
user-defined blocks will have to be created. It should be
transparent to the user whether a given building block is
pre-defined or user-defined, or a primitive or higher level
module. Any module should be able to be reused in any
other module.

For example, BONeS supplies a user-extendable li-
brary of building blocks. The library consists of approxi-
mately 200 models. The users can use these models to
create their own models and then add the user-created
models to the BONeS library. BONeS also provides the
user with the capability to create primitive models using
the C programming language and to add these primitives
to the user’s BONeS library. In addition, BONeS provides
specialized libraries such as a LAN model library.

Of course, the more general a model is the more it can
be reused. In order to support this generality the tool must
also provide a method for inputs and outputs to be data
type independent so the module can accept different data
types. In the case of BONeS there is a deferred data type
that allows the user to create models that are not data type
specific so they can easily be reused.

6 MODEL VERIFICATION AND VALIDATION

Once a model is designed and implemented, the next step
is usually verification or validation through simulation. In
order to support this phase of the process, a graphical sim-

ulation tool must support simulation specification, con-
trol, debugging, and data collection and processing. The
capabilities a tool provides in these areas not only impacts
the reusability of simulation models during a given ex-
periment, but also allows more thorough testing of reus-
able models.

6.1 Simulation Specification and Control

The capability to easily run parameter iteration simula-
tions and run confidence interval calculations is critical,
Parameter iterations allow the user to efficiently run many
simulations while gathering the necessary statistics on
each iteration for trade off analysis. Similarly, multi-batch
simulations can simplify the use of confidence intervals to
measure the statistical significance of a simulation result.
The impact on reusability is simplified (and therefore
hopefully more thorough) validation and model charac-
terization. The BONeS package provides simple specifi-
cations for both parameter iterations (over a set of avail-
able hosts) and confidence interval calculations.

The ability to control the simulation is also important,
although this area has less to do with model reusability
than to do with usability. For example, changing the prior-
ity of a simulation allows better use of a workstation CPU
and may allow the user to borrow “extra” time on other
machines. Similarly, ability to pause and restart a simula-
tion is more efficient than killing and restarting. Finally,
availability of data and statistics on-the-fly allows the user
to monitor simulation results as they are collected.
BONeS does allow the user to pause and restart simula-
tions. Viewing of intermediate data results is also avail-
able but should also be extended to wrap-up statistics.

Another useful feature is to use an assortment of trig-
gers, other than simulation time, to stop a simulation run,
The user should be able to stop a simulation run based on a
parameter reaching a specified value. If the user can pause
a simulation to check values of interest, it may prevent
aborting a time investment in an already long simulation
task. This feature should also include the option of stop-
ping a simulation before it is actually finished and modi-
fying simulation parameters (e.g. to insert failure points).
In the BONeS package a stop point for a simulation is set
by the user specifying a stop time or specifying a parame-
ter value to stop simulation at. This capability really needs
to be expanded to be truly useful, say run until a given con-
fidence interval is reached. It is also not yet possible to ad-
just parameters during simulation runs.

Finally, many times a user interface host is not the most
efficient place to run long compute intensive simulations.
The tool should allow the user to compile and remotely
run the simulation on other hosts that may be available.
Similarly, windowing support is not always available at
all terminals. It would be helpful to have some basic simu-
lation specification capability available without invoking



Model Reusability in a Graphical Simulation Package 769

the graphical interface. The BONeS simulation manager
allows the user to specify which processor the simulation
is to execute on and to set a priority for the simulation.

6.2 Data Collection and Statistics

The results that are needed in a particular simulation may
vary and are closely tied to the problem being investi-
gated. The simulation tool should be able to eliminate the
need for a hand-held calculator as a post processor! In
addition, since the collection of data often impacts the
length of the simulation, it is important that the simulation
tool allow for flexibility in specifying the data that is col-
lected and the method for collecting. For example, some
tools allow the user to define which types of statistics to
collect and other tools automatically collect certain statis-
tics such as mean, variance, minimum, and maximum,
For example, flexibility is becoming even more important
as new statistical approximations are used to characterize
correlated network traffic.

Another important issue is the location in the model at
which the data collection takes place. For example, some
tools allow the user to specify the location of data collec-
tion and other tools automatically collect data at all mod-
ules. The ability to be selective can have a profound effect
on CPU time needed to run the simulation as well as the
CPU time needed to plot the results.

Other options for statistical collection should include
the length of time to collect the data for and whether to cal-
culate on the fly. Of course sampled data should always be
an option. The ability to write the data collected during
simulation, or a portion of it, to a file gives the user anoth-
er method for debugging and verifying the model.

The BONeS package applies a paradigm from the
hardware world by allowing the user to choose where data
is to be collected by placing a “probe” at the appropriate
input or output. BONeS offers different types of probes in-
cluding generic (sampled data), batch mean, batch statis-
tics, histogram, and throughput and delay. In addition us-
ers can create their own probes for specific statistical
collection and add them to the BONeS probe menu. When
a probe is placed on a BONeS simulation, the user is in-
formed as to what data is available at that probe location
and is prompted to select the specific data to be saved dur-
ing simulation.

6.3 Model Testing

Although model testing is important in any simulation
project, it is of even greater importance if a model is to be
reused. Since simulation is essentially software, some
testing support is needed to verify simulation operation in
the face of unexpected results. A simple version of testing
is a simulation trace at various levels. Animation can
often serve as an excellent testing tool for locating the spot
in the model where the problem is occurring. Finally, a

graphical simulation package that does consistency
checking of the model can prevent a lot of errors that a user
would spend time trying to locate and correct.

Arelated issue is that of a test suite for reusable models.
Each reusable model really needs an accompanying test
program that can be run and compared to the original re-
sults. In the absence of this type of semi-automated test, a
reuser will eventually have to spend a significant amount
of time testing each reused model. This issue is especially
important to detect bugs related to the “unanticipated con-
sequences” of software updates.

Testing support is one area that needs improvement in
all currently available tools. This is one area where capa-
bilities commonly available for software debugging have
not been transitioned to the simulation environment. For
example, BONeS does not have a mechanism for provid-
ing the user with a simulation trace. Although BONeS
does have animation, it is playback animation only and is
not interactive.

In fact, debugging support is probably the most critical
area where the BONeS package, specifically, could be im-
proved to promote model reuse. There appears to be a
large void in this area of the tool in comparison to the other
capabilities. Although not directly related to reusability
the lack of debugging support can seriously impact the
quantity and quality of models developed for reuse.

6.4 Trace-driven Simulation

As good as statistical load models are, in many cases they
aren’t able to adequately represent the flow of actual data.
Therefore, in some cases it is advantageous to run simula-
tions using measured or empirical data. Since the data re-
flects real traffic patterns, users could run multiple scenar-
ios to find the most efficient configuration. Although it is
not part of the standard BONeS package, Comdisco Sys-
tems Inc. does have an interface available that allows a
BONeS model to accept empirical data from a Sniffer net-
work monitor as simulation input.

Empirical data also has its limitations: the biggest one
being the difficulty of collection. An alternative method is
the use of scripts or scenarios to specify the correlation be-
tween network application traffic. This method has the
additional advantage of abstracting the traffic character-
ization to the application level rather than the packet level
characteristic of measured data.

6.5 Results Analysis and Presentation

Before a model is reused it is imperative that the model
behavior be verified to avoid errors being replicated in
other models. A tool that offers flexible results analysis
can help the user perform a thorough verification.

In order to effectively depict the simulation results it is
important that the user be able to customize the graph as
needed to emphasize significant results. A flexible tool



770 Bortscheller and Saulnier

will allow the user to adjust ranges on the axis as well as
chose line types, symbols, and color for each data set The
capability to display multiple plots and axes simulta-
neously for comparison enhances the efficiency of a tool.

Another useful feature is the capability to compare
data from different simulation runs. For example, before
reusing a model a reuser may want to test the model to
confirm it behaves as documented. Similarly, the capabil-
ity to plot theoretical or other data along with simulation
data is necessary for evaluating the correctness of simula-
tion results. Confidence intervals and other statistical tests
are another critical feature.

Our example tool, BONeS, has an extensive post pro-
cessor that analyzes and plots simulation results. The post
processor has many features that allows the user to ex-
amine and modify the plot for important results. The tool
has a documentation feature that prompts the user for in-
put whenever new models or simulations are created or
modified. BONeS provides a way of copying any BONeS
window into PostScript format which can be incorporated
into many text processing systems. BONeS also has a
method of plotting out the actual data values from the data
sets. Overall the post processor is well designed. Areas for
improvement include the ability to plot expressions that
use data from two simulations, and the ability to do cor-
relation type calculations where the current data sample is
compared to another in the same stream.

7 MODEL LIBRARY SYSTEM

Issues related to the model library include configuration
and version control, documentation, and model catego-
rization and search functions.

7.1 Documentation

Thorough documentation of models allows for a more in-
formed reuse of the model. When all components of the
model, such as parameters, inputs, and outputs are well
documented as well as the model itself, it makes the func-
tion of the model clearer to all considering it for reuse. It
also provides insight as to where modifications might be
needed to better fit the model into the current application.

Since documentation, presentations and reports are a
way of life, it is important to be able to print a hard copy of
the model and the model documentation. Another feature
that is important for reports is the ease in incorporating
diagrams of the model and plots into a word processor
such as interleaf. Similarly, simulation results need to be
easily incorporated into written reports. Even beyond the
reuse of a specific model, documentation plays a key role
in being able to replicate or modify simulations for further
study.

Our example tool, BONeS, has a documentation fea-
ture that prompts the user for input whenever new models
or simulations are created or modified. This is useful if the

developer uses it! BONeS also provides a way of copying
any BONeS window into PostScript format which can be
incorporated into many text processing systems. The data
values of each data set can also be plotted. The biggest
shortcoming is the limited annotation that is provided, and
the difficulty in reading the legends of crowded plots.
Support for dates and times on the print outs would also be
useful.

7.2 Configuration and Version Control

In order for a large simulation model to be developed by
several designers, a design management system is essen-
tial. This system is needed to maintain version and config-
uration control so that changes to the system may be ad-
ministered by a central database.

The system should control model access to prevent
multiple editing sessions from occurring to the same mod-
el concurrently and as such should provide separate work-
ing libraries for each user or group. The design manage-
ment system should support read and write permissions to
these libraries or models, with owner, user, and group ac-
cess defined much as in a file system. The user needs to be
able to set read and read/write permissions on all models
created. For example, a model created for reuse could be
set with read only permissions to prevent modifications
being done that might cause problems with other
instances of that model in use.

When a reusable model is modified, users should be
alerted that the model has been changed and occurrences
of that model need to be updated. It is also important that a
history of revisions be provided not only to assure users
that they have the most recent version available, but also
to debug sudden operational differences. The tool should
provide a simple automatic updating process.

The BONeS design management system provides con-
figuration control and locking of models that are open
with write permission to other users. The BONeS database
manager allows the user to specify read/write permissions
for owner, user, and group on every model the user creates.

Each time a new object is created in BONeS the user is
prompted to set read/write permissions. Whenever a mod-
el is modified, any model that incorporates the changed
model needs to be updated. BONeS has a feature to update
libraries that contain modified models as long as no in-
puts, outputs or parameters have been deleted or added. If
the modification did include the addition or deletion of
those objects the user must manually update any models
that are effected by the change. The utility that performs
the updating provides the user with a list of the models it
could not update in the specified library.

7.3 Library Organization and Retrieval

Model reuse can be simplified by a good library. If it is
simpler for a user to recreate a model than to actually iden-



Model Reusability in a Graphical Simulation Package 771

tify and retrieve an existing model, any other infrastruc-
ture for model reuse is wasted.

The tool needs to provide the user with the ability to es-
tablish user and project libraries to organize the models,
making them easy for a reuser to locate and use.

In order for simulation models and submodels to be re-
used, a model library capability is essential to categorize
models and provide basic information about previous ver-
ification and validation. This library must be organized
logically and also provide some assistance in locating use-
ful models. For example, BONeS takes a first step in this
direction by providing a object name search function.
However this function needs to be expanded to include
searches of documentation text and allow searches to be
narrowed by user or library type.

Reusability also requires organization in terms of user
or project libraries with permissions which can be set to
allow read or write access to the appropriate user or group.
Model revisions should also be tracked so that a reuser can
either accept model updates or find documentation as to
the impact of changes. A shortcoming of BONeS, which
actually has a comparatively advanced library system, is
that a reuser does not have a choice of which model ver-
sion to use and must always update to the most recent.

Once a reusable model is located it must be incorpo-
rated into the reuser’s model. In many routine develop-
ment environments, a major block to the effective reuse of
existing functional models is the difficulty or impossibil-
ity of employing a model as a submodel to another model
(Freeman 1983). This process can be as uncomplicated as
simply referring to it like any other available model or it
may involve declaring an external reference to the model.
In BONeS all of the models appear together with the basic
building blocks in the same set of menus. Therefore model
reuse is a relatively simple task as the user uses the same
method to reuse a model as to use any other model.

[V3.1.1: Speciaiized for application 3 |

| VO: Alpha version | [V2.1: Detailed model |

[Vi: Validated version |-{ V2: New and improved model |

[V Spacialized for application 1

\

- Specialized for application 2 |

Figure 5: Revisions Should be Tracked so that Both Ge-
neric and Specialized Versions are Available to Reusers

Perhaps the biggest hurdle to reusability of simulation
models is that, unlike many software programs, the level
of detail required in a model may vary considerably with
the experiment. Thus a fully detailed Ethernet model may
be overkill for some applications, while the assumptions
used for a simplified version may be inappropriate for oth-
ers. As such it is likely that any reuse may involve some
degree of changes and the result should be a revision still
related to the original model (see Figure 5). The question
of which revisions should be inherited also impacts reus-
ability. For example, it would be desirable to inherit bug
fixes without necessarily losing the custom part of the
model. The closest our example package BONeS comes
to providing inheritance (as used in object-oriented de-
sign) is in the specification of data structures.

The BONeS database manager is very flexible. It al-
lows the user to define his own libraries for saving all
models, simulations and plots. The user can also specify at
which level in the appropriate BONeS menu the library
name should appear. In addition BONeS supplies the ca-
pability for the user to group the models in a particular li-
brary into subgroups.

Although the BONeS database capability is advanced
compared to many other commercial tools, there is still
much room for improvement. Ideally, a reuser needs a
query interface that can locate promising models in the li-
brary. Particularly challenging aspects include how to or-
ganize similar models at different levels of abstraction,
and how to organize the vast amount of data that may be
collected during an ongoing simulation experiment. Since
the current solution in BONeS is to overwrite the previous
results, a new simulation must currently be created for
each new set of data collected with a slight parameter
change. This solution raises some difficulties when
comparing consecutive runs of the same simulation with
slight changes in parameters. The parameter iteration fea-
ture solves this problem partially, but to be more effective
the iteration should be based on a list rather than a loop
with index.

8 CONCLUSIONS

Model reusability is becoming more important as simula-
tions grow larger and more complex. Although graphical
simulation packages are a potentially valuable tool, they
have yet to support all the requirements that would make
model reuse a reality.

Most of the shortcomings are reflective of the immense
database requirements associated with model library or-
ganization and retrieval. Since test cases are an essential
part of model documentation and validation, additional
requirements are imposed on the database to store, re-
trieve and filter data previously obtained for library mod-
els. Finally, simulation is unlike generic software in that
one real-life concept or system may have several model



772 Bortscheller and Saulnier

representations at various levels of abstraction. Catego-
rizing and reusing these models appropriately will require
a sophisticated expert system.

An extension of model reusability is the concept of sep-
arate development and user groups. In this paradigm mod-
els are developed and validated by one group, and then
used to specify simulations by another group. This con-
cept is an advanced application of model reusability, and
requires a sophisticated library and validation process.

Another issue that has yet to be addressed is the ques-
tion of who will maintain reusable model libraries. In our
example Comdisco Systems has developed and supported
reusable models, while other vendors view model li-
braries as a third party responsibility. Alternatives to these
approaches include development of internally maintained
libraries, and informal shareware among user groups.
However once model reuse is more commonplace, issues
such as copyright protection will become important and
will impact library development and availability.

Since simulation is by its nature an iterative process the
issues of reusability affect every simulation experiment to
some degree. Although simulation packages have yet to
live up to their potential for providing a model reuse infra-
structure, the adoption of user interface and windowing
standards will shift new emphasis to support for value-
added functions such as model reusability. It is expected
that not only will more tools provide database capabilities
similar to that of BONeS, but that these basic database and
presentation capabilities will be expanded to provide the
efficient documentation, storage and retrieval of simula-
tion models, and other features needed to make model re-
use a reality.

REFERENCES

Balci, O., R. E. Nance, E. J. Derrick, E. H. Page and J. L.
Bishop (1990) , “Model Generation Issues In A Simu-
lation Support Environment”, In Proceedings of the
1990 Winter Simulation Conference, O. Balci, R. P. Sa-
dowski and R. E. Nance, Eds. IEEE, Piscataway, NJ,
257-263.

Cellier, EE., Q. Wang and B. P. Zeigler (1990) , “A Five
Level Hierarchy For the Management of Simulation
Models”, In Proceedings of the 1990 Winter Simula-
tion Conference, O. Balci, R. P. Sadowski and R. E.
Nance, Eds. I[EEE, Piscataway, NJ, 55-64.

Comdisco Systems Inc. (1992), “BONeS User’s Guide ”,
Foster City, CA.

Freeman P. (1983), “Reusable Software Engineering:
Concepts And Research Directions,” In Tutorial on
Software Design Techniques, P. Freeman and A.l. Was-
serman, Eds. IEEE, Piscataway, NJ, 63-75.

Garzia, M. R. (1990), “Discrete Event Simulation Meth-
odologies and Formalisms,” Simulation Digest, Vol-
ume 21, No. 1., Summer, 3-13.

Harel, D. (1992), “Biting The Silver Bullet: Toward A
Brighter Future For System Development,” Computer,
Volume 25, No. 1., January, 8-20.

Henderson-Sellers, B. and J. M. Edwards (1990), “The
Object-Oriented Systems Life Cycle,” Communica-
tions of the ACM, Volume 33, No. 9., September,
142-159.

Jain, R. (1991), The Art of Computer Systems Perfor-
mance Analysis: Techniques For Experimental De-
sign, Measurement, Simulation, and Modeling , John
Wiley & Sons, Inc.

Jerome, A.C., S.P. Baraniuk, M.A. Cohen (1987), “Com-
munication Network and Protocol Design Automa-
tion”, In Proceedings of 1987 IEEE Military Commu-
nications Conference (MILCOM'87), Washington
D.C., October 1987, 334-339.

LaRue, W.W. , V.S. Frost, K.S. Shanmugan, E. Komp, D.
Reznik, S. Schafer (1989), “A Block Oriented Para-
digm for Modeling Communications Systems”, TISL
Technical Report TISL-8670-1, University of Kansas
Center for Research, Inc., Lawrence, Kansas.

Pollacia, L. FE. (1989), “A Survey of Discrete Event Simu-
lation and State-Of-The-Art Discrete Event Lan-
guages,” Simulation Digest, Volume 20, No. 3., Fall,
8-25.

Pratt, D. B. , P.A. Farrington, C.B. Basnet, H. C. Bhus-
kute, M.Kamath and J.H. Mize (1991), “A Framework
for Highly Reusable Simulation Modeling: Separating
Physical, Information, and Control Elements,”In Pro-
ceedings of the 24th Annual Simulation Symposium,
April 1991, 254-261.

Priéto-Diaz, R. (1991), “Implementing Faceted Classifi-
cation for Software Reuse,” Communications of The
ACM, Volume 34, No. 5., May, 88-99.

Saulnier, E.T., B.J. Bortscheller, B. A. Hamill, J.A. Lan-
gan, R. A. Locke and B.J. Scholz(1988), “NADE: Net-
work Assessment and Design Environment: User’s
Guide,” GE Internal Report, GE Research and Devel-
opment Center, Schenectady, NY.

AUTHOR BIOGRAPHIES

BETTY J. BORTSCHELLER is employed at General
Electric’s Research and Development Center. She re-
ceived a B.S. in computer science from Union College.
Her research interests are focused on the modeling and
simulation of data communication networks.

EMILIE T. SAULNIER received her B.S. and M.S. de-
grees from Rensselaer Polytechnic Institute, where she is
currently pursuing a PhD in the area of network traffic
characterization. She joined GE Corporate Research and
Development in 1986 and is currently technical coordina-
tor for the networks research projects.



