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ABSTRACT

A considerable amount of research in recent years has
been conducted to explore the coupling of artificial
intelligence concepts with simulation, some of it fruitful
but much of it still in the prototype or developmental
stage. In this paper we present a three dimensional
perspective of the types of possible couplings of expert
systems with simulation models. This perspective serves
as a foundation for discussing a heuristic reverse
simulation procedure developed by Wild and Pignatiello
(1992). Reverse simulation employs an embedded
expert system to adapt simulation model configurations
to user-defined target performance requirements to
identify initial feasible values for simulation system
design variables. We discuss reverse simulation within
the context of our three dimensional model and suggest
several enhancements for improving and implementing
the technique.

1 INTRODUCTION

Research efforts aimed at creating intelligent simulation
environments and those combining artificial intelligence
concepts with simulation techniques are in essence two
sides of the same coin. The former focuses on
conceptualization of characteristics that make a
simulation environment an intelligent one, the latter on
materialization of such characteristics. Among the
various fields in artificial intelligence, expert systems
has earned the most consideration from simulationists.
Research efforts focused on using expert systems (o
enhance simulation studies have stimulated interest in
recent years. This paper contributes to such efforts.

We first consider research efforts using expert
systems to facilitate simulation studies. A three-
dimensional perspective for such consideration is
presented with a premise that such an extended
perspective is needed to gain more insight into the
problem and process of coupling expert systems with
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simulation. With this perspective in mind, a reverse
simulation technique is discussed as a distinct approach
for combining an expert system with a simulation
program to find initial feasible values for simulation
system design variables. Finally, we present our
ongoing efforts to improve the proposed reverse
simulation technique.

2 HISTORICAL PERSPECTIVE

In a landmark article, Henriksen (1983) proposed a
direction for simulation environments of the 1990's. The
central idea is to achieve an "integrated" environment in
which all essential tasks in a simulation life cycle are
concurrently supported, integrated basically by a
common "knowledge base”. Shannon (1986) addressed
this issue of integration as "precisely the goal of Al
based Expert Simulation systems, with the added goal of
embedding within the software as much of the expertise
as possible.” Thus, the dual key concepts of intelligent
simulation environments are brought together:
integration and intelligence. The goal of injecting
"intelligence” into a simulation environment is twofold:
as a key (o integration as well as a means to provide
users with the expertise needed during the stages of a
simulation study. Naturally, the field of artificial
intelligence (AI) was considered to be an obvious
candidate for achieving an intelligent simulation
environment. Oren and Ziegler (1987), Reddy (1987),
Rothenberg (1990), Nielsen (1991) and Rao et al.
(1990) are among many researchers who have explored
the challenge of applying Al philosophies, concepts,
tools, and techniques to enhance simulation studies and
environments.

Expert systems is one of the earlier fields in Al that
has attracted and is still gaining the attention of
simulationists.  Shannon et al. (1985) discussed
prominent characteristics of expert systems and lucrative
possibilities to couple expert systems with simulation 10
make simulation a more useful and accessible tool for
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analysts. They indicated that "The goal for the
development of expert simulation systems is to make it
possible for engineers, scientists, and managers to do
simulation studies correctly and easily without ...
elaborate training." O'Keefe (1986) introduced a
taxonomy for combining expert systems and simulation
in which four possibilities of the coupling were
presented: embedded, parallel, cooperative, and
intelligent front-end.

3 A THREE DIMENSIONAL PERSPECTIVE
FOR USING EXPERT SYSTEMS TO
ENHANCE SIMULATION STUDIES

Although O'Keefe's taxonomy undoubtedly offers a
useful view of research efforts in combining expert
systems with simulations, it does not include two other
dimensions that should be considered in the use of expert
systems to enhance simulation studies. We propose that,
together with O'Keefe's taxonomy, which is concerned
primarily with the architecture of the link, two other
dimensions should be included: those of a link dynamic
and the simulation task. Figure 1 illustrates the proposed
perspective.

The first dimension, O'Keefe's taxonomy, deals
essentially with the architecture of the link between
expert systems and simulation programs. It explores
possible ways of achieving the coupling using the
following categorization. An embedded link describes
an architecture in which an expert system resides within
a simulation environment or vice versa. As such, an
"embedded” expert system is conceptually part of the
execution of a simulation environment. A parallel link
refers 1o an environment in which an expert system and a
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simulation model execute separately or in parallel, most
likely while performing different tasks, but sharing
results with each other. A cooperative link differs from
a parallel link not only in terms of task but also in
emphasis. In a cooperative link, the expert system and
simulation model perform together on the same task.
Also, while in a parallel link either the expert system or
the simulation stands as the main tool—one to which
users have access; in a cooperative link both tools are
equally accessible to users. Finally, in an intelligent
front-end link, the expert system is used as a tool to
provide an intelligent interface between simulation
software and users.

Although O'Keefe's discussion does explore
possible areas of application for each architectural link,
the main emphasis of the taxonomy is on the architecture
of the link. Three application areas suggested in the
discussion of this taxonomy are: 1) entirely new
simulation tools developed by combining the two tools;
2) advice-giving systems for inexperienced users,
especially in the areas of experimental design and output
analysis; and 3) intelligent front-ends developed for
existing simulation packages. O'Keefe's taxonomy
offers a foundation for further consideration of
combining expert systems with simulations.

Motivation for the second dimension in our
perspective comes from a stream of research which
attempts to materialize conceptual discussions in the area
of intelligent simulation environments in general, and
coupling expert systems with simulation in particular.
Efforts aimed at building working simulation
environments, in prototype form or otherwise, that link
expert systems and simulation programs are becoming
more abundant. As is evidenced in this stream of
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Figure 1: A Model for Using Expert Systems to Enhance Simulation Studies
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research, most of the concrete systems that couple expert
systems and simulations select to concentrate only on
one particular task in a simulation study. As an example,
Mellichamp and Park (1989) described a statistical
expert system which offers assistance in statistical
analysis needed during a simulation life-cycle. Their
system—"Statistical Expert System for Simulation
Analysis" (SESSA), was designed to address statistical
analysis from a perspective specific to a simulation
study. Deslandres and Pierreval (1991) described an
expert system that also assists in the tasks of statistical
analysis but only those pertaining to the statistical
validation process. Hill and Roberts (1987) developed a
prototype knowledge-based simulation support system
which assists users in the task of debugging logical
errors in simulation code. Murray and Sheppard (1988)
developed a Knowledge-Based Model Construction
(KBMG) which automates the model construction phase
in a simulation life cycle. Coats (1990) used expert
systems as an “intelligent front-end” to interface with
users and assist them in the task of simulation model
modification.

From the cited examples, it appears appropriate that
research efforts in combining expert systems with
simulations need to be considered in relation to the task
or set of tasks such combined systems are intended to
support. Our perspective proposes that four major
phases in a simulation life-cycle lend themselves well to
categories of simulation tasks, i.e., model design, coding,
experimental design, and output analysis.

The third dimension originated from a distinct
characteristic of the focus of this paper, that is, a reverse
simulation technique. The dimension "link dynamic"
refers to the actual interaction between an expert system
and a simulation program, particularly to how results
from one are transferred to be used by the other and how
the transferred information affects the working of both
the expert system and the simulation which are being
combined. In most studies which combine expert
systems with simulations, the dynamic of the link can be
described as uni-directional, namely, results are
ransferred from one system to the other at some
specificd intervals, usually at the end of an execution.
As an example of a uni-directional link dynamic,
consider the statistical expert system developed by
Mellichamp and Park (1989). Their expert system
assists users at different intervals in a simulation study,
although the intervals span throughout a simulation life
cycle. Before an execution of a simulation model, users
might access the expert system to help with such tasks as
estimating parameters for input variables, identifying
distributions for input variables, or determining the
simulation run length and number of independent
replications. After a pilot run, users might access the

expert system again to seek help with such tasks as
comparing model response estimates to system estimates
or assessing the impact of initial conditions. Then again,
after actual execution of a simulation, users may need
help with tasks associated with output analysis such as
constructing confidence intervals for estimates of output
variables or comparing output from alternative designs.
For all interactions, results are transferred in one
direction at a time and only after a complete execution of
a simulation model by having the expert system read a
data file containing the simulation results or by having
users input such data to the expert system.

In contrast to the above link dynamic, the actual
transfer of results and its effect can be described as bi-
directional in a coupling such as that employed in a
reverse simulation technique . As will be more evident
later, a reverse simulation technique introduced by Wild
and Pignatiello (1992) employs a link dynamic between
an expert system and a simulation model that is bi-
directional in nature. In brief, throughout the execution
of a reverse simulation, the expert system actually
"supervises”" the simulation model linked to it based on
an ongoing transfer of simulation system state
information and expert system recommendations. The
link is "bi-directional” and the ongoing transfer of
information affects the actual execution of both the
expert system and the simulation model simultaneously.
This will be made clearer in the following section on
Wild and Pignatiello's reverse simulation technique.

As a final note on the perspective of using expert
systems to enhance simulation studies as presented here,
it is believed that the distinctions within each dimension
should be considered along a continuum rather than in
disjoint form, hence the lines with arrows at both ends in
Figure 1. Especially in the simulation task dimension, a
certain task domain, such as statistical analysis, can
cover the entire continuum while another task domain,
such as debugging, may well be mapped on the coding
phase of a simulation study.

4 REVERSE SIMULATION

Simulation studies are conducted for a variety of
objectives. Two of the more common objectives are to
explore the behavior of a system given a specified
system and its stochastic components and to optimize a
system’s response given the system, its stochastic
components and the response to be optimized. Hunter
and Naylor (1970) discussed appropriate experiment
designs for both objectives.

The second objective, to identify a system whose
response is optimized based on specified performance
requirements, is known as system design or system
synthesis (Gordon 1978). The simulation
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experimentation process generally involves a series of
iterative simulation experiments in which a proposed
system is modeled based on a pre-specified set of output
performance objectives. The output objectives may be
general, such as minimize the time customers spend in
queue, or specific, such as no customer should wait in
queue more than ten minutes. If the system’s
performance estimated by simulation experimentation
compares favorably with the specified, desirable
performance, the system is accepted. If not, the system
is redesigned and the simulation experimentation process
is repeated. The question an analyst faces initially is
which system design should be used to start the system
design process. Queueing theory may be applied in a
limited, restricted set of cases, but in many instances, it
is not appropriate and will provide only a “guesstimate”
of the initial system design to be simulated. It is
suggested in the simulation literature to determine the
initial values for system design variables using intuition,
cost constraints, or simple guesswork (Law and Kelton
1991).

System design identification can be a long and
arduous process, especially for complex systems. The
initial system specified may be far from optimal with
respect to the performance objectives. In fact, a great
deal of simulation experimentation may be required
merely to find a stable, not necessarily optimal, system
design. By a stable system design we mean one in which
none of the queues is backing up and thus the throughput
of the system approaches its expected value based on the
arrival rate to the system.

Wild and Pignatiello (1992) introduced a technique
they call reverse simulation as an initial step in system
design identification. Reverse simulation is a heuristic
procedure which attempts to find feasible values for
system design variables which, in combination, produce
a stable system design. A feasible value for a system
design variable is a value for which a specific queue
associated with that variable is not backing up. These
feasible system design variable values, in combination,
serve as a starting point for the system design process of
further system evaluation and optimization. Thus,
reverse simulation is employed in conjunction with, not
instead of, system design identification.

As with system design, reverse simulation requires
an analyst to state in advance desired system
performance in the form of target values or ranges of
values for system performance measures. Unlike system
design, reverse simulation does not require the
simulation analyst to identify a system design whose
estimated performance will be compared to the desired
performance specified. With the assistance of an expert
system which contains system knowledge and rules
regarding target performance, the system design variable

values are adjusted dynamically as the simulation
executes to satisfy performance criteria. Hence, the
expert system is used to adapt model configurations to
user-defined performance requirements to find feasible
values for system design variables. The system design
variable values produced by reverse simulation are used
to construct appropriate experiment designs for
subsequent simulation experimentation to search for and
identify an optimal or “best” system design through
statistical output analysis.

In summary, the objective of reverse simulation is to
find feasible values for system design variables which, in
combination, produce stable system designs that serve as
initial systems in the process of identifying a “best”
system design. The input is what is traditionally output
(target performance measures) and the output is what is
conventionally input (specified system designs that, in
the case of reverse simulation, satisfy performance
requirements).

Reverse simulation illustrates an alternative way in
which an expert system and simulation can complement
one another to enhance simulation as an analysis and
design ool and can be viewed within our proposed three
dimensional perspective as follows.

4.1 Task Dimension

To specify an experiment design (or data collection plan)
for simulation experimentation such as a factorial or
fractional factorial design, an initial set of values must be
identified for the system design variables that will be
manipulated during the simulation experimentation
process. Reverse simulation provides an adaptive
environment in which a system’s design variable values
adapt to user-defined performance requirements. The
feasible values of system design variables produced
through reverse simulation serve as the initial values to
be used in the experiment design for subsequent system
design identification. Thus, reverse simulation can be
viewed as a sub-task within the experimental design
phase of a simulation study.

4.2 Link Architecture

Essentially, the prototype system described by Wild and
Pignatiello (1992) employs an embedded architecture.
The concepts underlying the reverse simulation
technique are implemented by augmenting the
simulation program with an expert system. The
simulation program executes with direct
recommendations from the expert system; the
recommendations guide the simulation execution in a
dynamic manner. The simulation program captures the
physical layout of the system being simulated, the logic
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associated with entity flow, and any parameters
associated with a simulation run. The expert system is a
rule-based system which employs constraint-directed
reasoning. The problem-specific information that is
needed to customize the expert system for a particular
application is solicited from the analyst during an initial
dialogue between the simulation analyst and the expert
system. Figure 2 depicts a conceptual view of the
architecture for the reverse simulation technique.

As an example, consider a simple queueing system.
For such a system, system objectives may be to
minimize total time an entity or a transaction (e.g., a
customer, a part, etc.) spends in a system as well as to
maximize throughput (e.g., the number of customers
served in an hour, the number of jobs finished in a day,
etc.). Given these system objectives, the overall goal is
usually to find the optimal system configuration, one in
which system design variable values in combination
(e.g., the number of cashiers, the number of machines,
etc.) yield an optimal performance at minimum cost.

Simulation experimentation can be used to
determine the best system configuration among many
options (e.g., among systems with 3, 5, and 7 cashiers or
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machines). However, before such determinations are
made, the initial settings of the system design variables
need to be identified. Reverse simulation attempts to
find initial feasible values for system design variables
which, in combination, produce a stable system design.
This stable system design serves as a starting point for
subsequent system performance analysis and
optimization.

With reverse simulation, a simulation analyst
specifies the system performance objectives, states
desired target values or ranges of values for performance
measures, and indicates a preference ranking for
satisfying conflicting objectives. This specification is
done through a dialogue between the analyst and the
expert system. Once the information has been obtained
and verified, the expert system selects the appropriate
rules from its rule-base to be used during the reverse
simulation process. For example, for a queueing system,
target objectives might be to have no more than ten
customers in a queue, and a throughput of thirty
customers per hour. The expert system in the reverse
simulation will convert these objectives (and their
interrelationships) into a set of constraints. The
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constraints are represented in the expert system as rules.
During the execution of the reverse simulation, the
expert system will, in essence, "monitor” the values of
system design variables by "firing" appropriate rules.
The rules attempt to map target system performance onto
the actual system state. Thus, for example, resource
capacity may be altered dynamically to conform to target
performance criteria. As a simple example, a rule
associated with queue length might read: "if queue
length is greater than or equal to 10, add another server
to the system."”

The output of the reverse simulation will be
statistics associated with system design variables,
including the average and the maximum values of each
system design variable needed to satisfy system
performance objectives. Using our simple example, the
output might be that, given the two objectives, the
average number of cashiers needed in the shop is nine
cashiers with twelve as the maximum. Statistics other
than the average and the maximum are also possible.
For the prototype system, output are presented in simple
tabular and graphical forms, in which a histogram is
provided depicting the percentage of simulated time in
which one through the maximum value assumed by a
system design variable was required to satisfy system
performance target criteria.

4.3 Link Dynamic

As is evident from the above description, the reverse
simulation technique employs an expert system in a
different manner than many other efforts in combining
expert systems with simulations. First, the conclusions
drawn by the expert system are not drawn from a direct
consultation with the user. Rather, they are drawn from
a direct "consultation” with the simulation program. The
expert system is invoked by the simulation program as
the simulation is executing, and the advice given by the
expert system is given to the simulation program
dynamically as the simulation executes. The bi-
directional link dynamic is evident in this concurrent
transferring of data and monitoring of the system state as
the simulation program executes.

4.4 Areas for Enhancement

As developed by Wild and Pignaticllo (1992), the
embedded expert system was in a prototype form.
Although the prototype well illustrates the concept of the
reverse simulation technique, there are several areas
where enhancement is needed before the system is ready
for practical, functional use. Candidate arcas for further
enhancement are as follows.

+ Viable communication link:  To our knowledge,
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there is currently no commercial simulation software that
is able to "communicate" directly with commercially
available expert systems. In the prototype system, a
"makeshift” link is achieved by building the expert
system in a language (FORTRAN) that is able to
communicate with the simulation environment
(SIMAN). This lack of ready, direct communication
links is a major issue, since the actual mechanics of the
reverse simulation technique require a direct
communication link between a simulation program and
the embedded expert system. Research efforts to
identify and explore possibilities of a feasible, efficient
link will contribute to the enhancement of the reverse
simulation technique. C++ is a candidate environment.

» User Interface Facilities: The prototype system
does not have a built-in user interface to handle the
needed dialogue between an analyst and the expert
system. For an embedded expert system to be put into
practical use, such an interface is obviously critical.
Studies which explore how such facilities should be
developed and implemented are therefore needed.

» Exhaustive Rule-Base / Knowledge-Base: The
prototype system contains only specific sets of rules,
adequate for illustrative and explorative purposes, but
clearly insufficient for practical use. An exhaustive rule-
base or knowledge-base needs to be compiled to handle
systems with varying objectives. Also, because of the
limitation put upon the prototype system by the
communication link between the expert system and the
simulation program, inference mechanisms are limited
and inflexible. In a functional expert system, inference
mechanisms should be more flexible and dynamic.

» Presentation Facilities: Output from the
prototype system are presented in simple tabular or
graphical forms. No mechanism for tracking the values
assumed by the system design variables during an
execution of a reverse simulation exists in the prototype.
Such facilities will enhance the usefulness of the expert
system. Also, exploration of other presentation
techniques that might be useful for the analysis will also
be of value.

» Qutput Analysis Facilities: Output from the
prototype cxpert system are comparatively not richly
descriptive. In the prototype system, statistics are given
based on results compiled from a reverse simulation run.
For a more meaningful analysis, explanation facilities
are needed. Such facilities would provide a detailed
description of the interaction between the expert system
and the simulation such that insight into system
performance can be gained. For example, queries into
when, why and how often each rule is fired would give
insight into the impact of its associated constraint. Such
insight provides an analyst with more varied information
to aid in subsequent decisions on the ultimate system
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design. Research efforts in developing powerful
explanation facilities will greatly enhance the usefulness
of reverse simulation.

S PROSPECTIVE DIRECTIONS

Given the above considerations on enhancement of an
expert system for reverse simulation, prospective
directions on the efforts are described here. Figure 3
provides an overview of these directions. The shaded
areas in the figure represents three areas identified for
further enhancement. Discussions of the three areas are
as follows.

5.1 Intelligent Interface

Two levels of interface are being considered.

« User Interface: To facilitate the dialogue
between an analyst and the expert system, a user-friendly
interface needs to be developed. The interface is
intended to intelligently manage the dialogue in two
ways. First, it will provide users with an appropriate and
inclusive menu of information needed for the expert
system to proceed with a reverse simulation run. The
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dialogue should proceed naturally both at conceptual and
interactive levels. Second, the interface and the dialogue
it manages will be based on the knowledge residing in
the rule-base or knowledge-base of the expert system.

« Yiable Communication Link: Investigation
into possible communication links will be made. A
survey of currently available expert systems and
simulation environments should provide insight into
viable options for an efficient interface mechanism
needed for a bi-directional dynamic link integral in a
reverse simulation run. The final result of this
investigation will be a set of efficient interface
mechanisms, one of which will be chosen for a system
we will develop for possible commercial viability.

5.2 Knowledge-Base for Reverse Simulation of
Queueing Systems

The second major effort for enhancement will be the
development of a comprehensive, general knowledge-
base which contains all encompassing knowledge
applicable to a study of any queueing type system.
Three major sub-tasks to achieve this knowledge-base
are in order.
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Figure 3: Prospective Enhancements of Reverse Simulation Technique
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1) Compilation of Factors for Consideration in a
Study of Queueing Systems: An integrated set of
factors to be considered in a study of queueing sysicms
will be compiled from a survey of simulation
applications. Domains for this compilation include but
are not limited to factors pertaining to the following:

»  Possible goals of a study.

«  System types and their associated factors.

» Possible candidates for assumptions made
in a study together with their potential
effects.

+ Candidate factors for decision variables
and the transformation of these factors into
design variables.

« Candidate factors to be considered as
performance measures.

« Possible factors to be treated as random
components.

2) Integration of the Compiled Factors into a
General Knowledge-Base Applicable to a Study of a
Particular Queueing System:With the compiled
factors from the first step, a general knowledge-base will
be developed. A major issue to explore at this step will
concern consideration of appropriate knowledge
representation techniques for this knowledge-base. It is
expected that a rule-based expert system may be a likely
candidate since it appeared to work well in the prototype
system. However, it is also possible that as the
knowledge-base increases in size and complexity, some
other knowledge representation techniques, such as
frame-based or objected-oriented representations, may
be more attractive. Exploration of this issue is expected
to result in insight and rationale for an appropriate
choice of a knowledge representation technique for our
knowledge-base. The final result at this step will be an
all encompassing knowledge-base, from which a set of
necessary factors for a reverse simulation run of any
queueing system can be customized, according to
information gathered from a dialogue with an analyst.

3) Development of an Appropriate Inference
Mechanism: An inference mechanism will be developed
and applied for the working of the knowledge-base in
(2). Itis expected that a flexible and dynamic inference
mechanism will better support the bi-directional nature
of the link between the embedded expert system and a
simulation program since data from an ongoing reverse
simulation run will be applied more rigorously in the
execution of the expert system. A major consideration to
be resolved during this step is a management of
conflicting goals, a common phenomenon in a
simulation study. Conflicting goals result in conflicting
constraints in a reverse simulation and hence conflicting
rules in a knowledge-base. It is intended that a flexible
general scheme to prioritize and compromise conflicting
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goals, constraints or rules will be developed such that an
analyst is allowed (o customize a prioritizing and
compromising scheme for a particular study.

The final product of this second research effort will
be a fully-functioning expert system which can be
embedded in a simulation program to provide full and
customized support for a reverse simulation run of any
queueing system being studied.

5.3 Intelligent Output Facilities

The third and final research effort will concentrate on
enhancement of the content and form of output from a
reverse simulation. Intelligent output facilities will be
developed along the following dimensions.

The first step in this effort is to identify a
classification of the content of output from reverse
simulation. In the prototype system, content of the
output is essentially a set of static summary statistics. It
is believed that a more dynamic output should also be
made available given the potential provided by an expert
system. The power of an expert system lies in its
explanatory as well as prescriptive capacities. Output
from a reverse simulation should also contain this
explanatory descriptive content, which is lacking in the
prototype system. Detailed behavior of a system during
a reverse simulation run should be made possible. For
example, explanation should be available as to when,
why, how often, and to what effect certain rules have
been fired. Also, a record of values assumed by the
system design variables during a reverse simulation
should be kept to present output which helps to ensure
that the reverse simulation has been run long enough for
the system to have settled down. Such dynamic output
would provide more insight into the system and hence
more meaningful information on which a final decision
about initial feasible values for system design variables
can be based. For instance, explanatory output is
expected to provide useful qualitative information to the
analyst as well as alert the analyst to constraints that may
be too tight to find acceptable system design variable
values.

Given a classification and specification of desirable
content from the first step, the next step is to develop
mechanisms by which necessary information can be
gathered during a reverse simulation run such that the
desired output can be produced. These mechanisms will
then be incorporated in the embedded expert system.

The final step in the development of intelligent
output facilities is to devise a set of more sophisticated
output presentation formats. A guideline for this
development is to match an appropriate format to a class
of content. For example, it is possible that for dynamic
output, such as a tracking of the values of system design
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variables, a graphical output will be morc appropriate.
Mechanisms to create several formats of output, either in
tabular or graphical form, necd to be devised and
incorporated in the reverse simulation environment.

6 CONCLUSION

Research efforts in creating intelligent simulation
environments in general, and combining expert systems
and simulation in particular, have been underway long
enough to expect results from such cfforts which will
materialize in viable and functional products for users.
With this trend, users can expect to access a more
powerful yet practical simulation environment. The
reverse simulation technique discussed in this paper has
potential to contribute to such a success. Prospective
research efforts presented here have been devised with
the goal of bringing such potential closer to reality.
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