Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

SIMULATION THROUGH EXPLICIT STATE DESCRIPTION AND
ITS APPLICATION TO SEMICONDUCTOR FAB OPERATION

Mutsumi Fujihara
Kiyoshi Yoneda

Toshiba Corporation Systems and Software Eng Lab
70 Yanagi, Saiwai, Kawasaki, 210 JAPAN

ABSTRACT

A nonstandard methodology in simulator construc-
tion is introduced along with its application to on-
line simulation of semiconductor fabs. The simulation
proceeds by sequentially rewriting state description,
written in a language. A text in the state descrip-
tion language consists of a collection of titled two-
column tables. The description is stored in an in-
core database equipped with a splay tree algorithm.
The initial state representing the fab’s present state
is downloaded from the fab’s database. The simu-
lation is for lotwise trace prediction needed for day-
to-day fab operation rather than to estimate steady
state performance indices. Its use at production sites
involves frequent model modification. A one-month
simulation of a clean room operation involving 1,300
lots and 200 machines is processed in five to ten min-
utes on a workstation, using 30 megabytes of internal
memory. The execution time is O(logN), where N
is the number of lots and machines; memory usage
is proportional to N. The simulator enjoys an ex-
tremely small source code: 1,200 lines in C.

1 INTRODUCTION

This paper proposes to look at discrete event simu-
lation as a form of language processing. The word
“language” here means a system of symbols used to
describe the state of the object to simulate rather
than a simulation language such as SIMULA or GPSS.

Consider the case of simulating a semiconductor
fab. The contents of a state description would be like
this: “Lot L consists of W wafers of product type
P. Lot L is presently being processed by machine M,
scheduled to finish at time t. Machine M is processing
lot L and will go through maintenance after time s.
Etc...” The system of symbols used to describe this
is called a state description language. The language
may resemble a natural language as above, or may

899

be more succinctly coded. Simulation proceeds by
rewriting such a description step by step according
to a set of rules. This process parallels interpretive
execution of a computer language.

The language is to be used by a team involved in
building a model for negotiating an agreement among
themselves and to communicate with computers for
discovering mistakes, delegating execution, and re-
ceiving the result reports. We design a common lan-
guage for people and machines, taking them as equals
with different characteristics and abilities. Conse-
quently we start with what computers are rather than
what they should be.

This i1s in contrast with modern computer lan-
guages which try to hit a balance between human

~and machine processing efficiencies by defining sep-

arate languages and bridging them with translators:
a graphic model in a visual language is translated
into a compiler language which is in turn compiled
to a machine language to be finally executed; its out-
put in table form is translated into animation. The
language for human use is based on some powerful
concept, computational model, or metaphor contend-
ing what computers ought to be like. This approach
is unaffordable for us because it requires building a
large amount of software.

Section 2 explains the background motivation for
considering the state description language approach
in semiconductor fab simulation. In Section 3 we give
a rationale for limiting the scope of language design
so it depends on efficient handling of ordered multi-
sets. Section 4 summarizes the splay tree algorithm
for ordered multisets. The design and implementa-
tion of the language, described in Sections 5 and 6, is
based on the nature of this algorithm. The problem
of balance between description flexibility and execu-
tion performance is addressed in Section 7. Section 8
relates experience in using the language for semicon-
ductor fab online simulation. Finally in Section 9 we
summarize our approach.

900 Fujihara and Yoneda

2 SIMULATION AS LANGUAGE PRO-
CESSING

A qualitative change 1s taking place in demand for
simulation that arises in semiconductor factories. Un-
til several years ago simulation was treated as a phase
in research type projects, as described by Burman et
al. (1986), Dayhoff and Atherton (1987), and Miller
(1990). Typically, a client would come up with two
or more alternatives in production method or system
configuration, looking for data with which to decide
on the best. Simulation would be run offline; the de-
cision is made by observing steady state performance
indices. Numerical solution of queueing networks as
in Chen et al. (1988) or Inoue and Yoneda (1989)
often work better in such cases, especially when op-
timization is involved as in Yoneda et al. (1992). To-
day, a typical demand would be as follows.

Factory managers wish to run simulation routinely
to use the results in instructing the operators on the
work to be done during a time span. They prefer that
the simulation be initialized automatically by down-
loading the status quo from production and quality
control computers. The result they need is individ-
ual behavior of products and resources in the form of
predicted traces rather than statistical performance
measures. Since factories constantly change systems,
easy model modification is essential. Numerical so-
lution of queueing networks does not help not only
because we need lot traces but also because we are
not interested in the steady state.

A natural direction to take in order to fulfill the
above requirements is the separation of data and pro-
gram. That is, a general purpose database stores the
downloaded data; all programs are designed to access
a common database. Such architecture permits most
work of model modification to be confined to data
modification, having little to do with programs. For
simulation purposes it is necessary that the database
be totally incore since external memories are too slow.
The data downloaded into the database represent the
initial state for simulation.

In order to point out a resemblance between sim-
ulation and language processing, let us take a look
at execution of a computer language. It proceeds
by sequentially rewriting the contents of the mem-
ory according to the instructions given in the form of
a program. Discrete event simulation parallels this in
the sense that it is a process of sequentially rewriting
state description according to the instructions given
in the form of an event list. Figure 1 depicts this view
taking a fab simulation as an example. The similar-
1ty is no coincidence, by the definition of “computer
simulation.” The object we wish to simulate is de-

scribed in a language, which is in turn executed by
a computer. Thus a simulator allows to be seen as a
language processor.

The similarity is clearer in the simulation of a com-
puter’s instruction set. The instruction set of a newly
designed computer is implemented in terms of that
of an old computer, which amounts to writing an in-
terpreter such that executes programs written in the
new computer’s machine language. The program in
the new language represents the initial state of the fi-
nite state machine to simulate. The execution of the
program by interpretation entails rewriting the states
sequentially, starting from that initial state. Here the
incore database or data structure to store the internal
state of the machine plays an essential role in both
ease of implementation and performance.

The largest difference between simulation of a com-
puter and discrete event simulation regarding imple-
mentation is that while in the former the chronologi-
cal order of execution is controlled by an instruction
counter, in the latter the same is accomplished by an
event list. Consider a computer address space or an
event list as an ordered multiset, a set allowing multi-
ple appearance of elements with a linear order defined
among the elements. From an abstract point of view,
both instruction counter and event list mechanisms
are implementations of an ordered multiset of rules
to transform states, such that the ordered multiset
itself forms a part of the state: the rules contained in
the ordered multiset transforms the ordered multiset
itself, like self-referencing in languages.

Tables 1 and 2 summarize the similarities between
simulation or database operation and language pro-
cessing.

3 A MULTISORTER FOR LANGUAGE
PROCESSING

A problem which arises immediately is how to hit
a good balance between the flexibility in describing
system states and the efficiency in analyzing its rep-
resentation. A simple machine language is easy and
fast to process but limited in convenience, while a
language with large specification would be powerful
but slow to process. With this problem in mind, in
this section we propose to limit the scope of the state
description language design. The class of languages
we choose is such that their structures fit into or-
dered multisets: in short, we call multisorted table
structure a language.

We pointed out in the previous section that event
list and instruction counter are both ordered multi-
sets. There is no doubt that representation of ordered
multisets is fundamental in a language for describing

Download

Semiconductor Fab Operation

Factory

Rewriting

901

Simulator

Process
computer

State
> Description

Initial state
description

Final state
description

State
Description

Figure 1: Simulation as a Sequence of State Description Rewriting

Table 1: Correspondence between Simulation and Language

Simulation

Language

State description represents a system state accord-
ing to a format.

Simulation sequentially transforms a state descrip-
tion according to rules in the event list.

Event list determines the sequence in which events
occur.

Self-transforming instruction to change state is a
part of the state itself.

Sentence describes an idea according to a grammar.

Interpretation sequentially rewrites a string of
symbols according to rules in the program.
Execution control determines the sequence in
which instructions are executed.

Self-referencing is possible in many languages.

Table 2: Correspondence between Database and Language

Database

Language

Data access is performed according to rclationship
among data.
View represents the same relationship seen from dif-
ferent angles.

Context analysis is performed according to rela-
tionship among words.

Voice represents the same meaning under different
forms.

902 Fujihara and Yoneda

states, even though there may be other useful struc-
tures. Therefore efficient handling of ordered multi-
sets is essential for a state description language. The
same can be said for an incore database. That 1s, a
large portion of data access operations seem to re-
quire some kind of ordering: picking the n-th of an
order, inserting new data according to the ordering,
or checking an entry in an ordering to see the corre-
sponding data in another ordering.

Looking at computation this way reveals that well
over a half of the operations performed in nonnumer-
ical computation, such as business type information
processing or systems programming, seem to reduce
to ordered multiset handling. Perhaps this is not sur-
prising since in a Von Neumann type computer, data
are represented as bit patterns sequenced according
to the order defined by address. From this obser-
vation we conclude that the determination of data
address from an arbitrarily defined data ordering is
a fundamental operation in computing. The idea of
assoclative memory is based on the same premise.

With these considerations we restrict our attention
to the class of languages which allow efficient analy-
ses provided there is some efficient means of handling
ordered multisets. This amounts to limiting the lan-
guage we consider to multisorted tables. We adopt
the splay tree algorithm as the basis for this. The task
of language design and its solution now reduces to the
items shown in Table 3. The following three sections
are arranged according to the Table: we briefly touch
the splay tree, then describe the state description lan-
guage, and finally explain the implementation.

4 SPLAY TREE

A splay tree is a binary search tree which, each time
a node is accessed the tree structure is reorganized
adaptively. The reorganization is performed in such
a way that the most recently accessed node will be
the root, which is the quickest position to access. At
the same time, the path length from the old root
to the new is reduced to about a half the previous
length. The data structure and the algorithm were
introduced by Sleator and Tarjan (1983, 1985).

The principle of splay tree is like cache or virtual
memories in the sense that they all make use of the
locality in data access. A single access to a node in a
splay tree will in many cases be slower than in a fixed
structure binary tree, since an extra task of reorganiz-
ing is involved. However, the average time measured
over a sequence of such operations as retrieval, inser-
tion, and deletion will usually turn out considerably
shorter with a splay tree. Such phenomena have been
studied using the concept of amortized time complez-

ity introduced by Tarjan (1985). The amortized time
bound for a splay tree is O(logN), where N is the
number of nodes, meaning that the access will not
slow down drastically as the tree grows.

Experimental results concerning the adequacy of
splay tree for event list implementation are shown in
Jones (1986). There are even faster algorithms if we
limit our attention to event lists. Calendar gqueue by
Brown (1988) is, for instance, intuitively and empiri-
cally with O(1) average performance. While event list
operation constitutes of deleting the topmost element
and inserting elements more or less randomly, an al-
gorithm for generic ordered multiset manipulation re-
quires a wider variety of operations, e.g. finding the
position of a specific element in the multiset. This
1s the reason why splay tree is preferable to calendar
queue in our case.

There are two major variations in splay trees: top
down and bottom up. A top down splay tree is faster
than the bottom up (with the same order time com-
plexity), but can be used only when the data access
starts from the root. So the top down does not sub-
stitute the bottom up. By experimenting with and
without the top down code we decided that the in-
crease in program complexity caused by the inclusion
does not compensate the gain in speed.

The splay tree may seem memory expensive as
an incore database algorithm, requiring three extra
pointers besides a key. However, the rate of increase
in RAM capacity over the years is well known to have
been much faster than the decrease in RAM access
time or the increase in CPU speed. Since there is no
sign of change in this trend, the general strategy of
spending more memory in order to gain in time would
seem to remain valid through at least several years.

5 A MINIMAL LANGUAGE

This section describes DEUS90 (short for deus ez
machina, or Discrete Event Universal Simulator), the
present version of the language used for state descrip-
tion. For the sake of explanation we treat the system
as an incore database.

A word, which represents an item in the database,
is one of the following types:

String-string pair: TIME EVENT
String-integer pair: SEC 1198
Integer-integer pair: -61232 24
Real: 29.89

The words are totally ordered by rules such as:
paired words are ordered first by the left element and

Semiconductor Fab Operation

903

Table 3: Language Design Tasks and Solutions

Task

Solution

Devise an efficient algorithm for handling ordered
multisets.

Give a minimal specification of a state description
language.

Implement the language using the algorithm.

then by the right; strings are ordered by appearance;
strings precede integers; paired words precede reals;
and numbers are ordered naturally.

A line, corresponding to a database record, com-
prises three words as in

WL WC WR
e.g.

SEC 1198 TIME EVENT lot_arr 78354
Here w; are individual words, with j = L, C, R stand-
ing for left, center, and right, respectively. The design
rationale is that we would need to describe at least an
entity, an attribute, and a value. Thus in many cases
in practice {L,C, R} is used as if it meant {entity,
attribute, value}, even though there is no such rule.
With less than three words per line practical state
description would be impaired.
A line

wzy

appears in the following four forms, or views in
database terminology, simultaneously:

(w,1) Left w center-sorted:
the lines whose left (L) word is w, sorted with
respect to the center (C') words.

(z,L) Center z left-sorted:
the lines whose center (C) word is z, sorted
with respect to the left (L) words.

(z, R) Center z right-sorted:
the lines whose center (C') word is z, sorted
with respect to the right (R) words.

Right y center-sorted:
the lines whose right (R) word is y, sorted with
respect to the center (C') words.

(y,7)

Note that this is not symmetric with respect to
{L,C, R}: there is an emphasis on the center C word.

Employ the splay tree algorithm.

Describe states in the form of a table whose entries
are sorted In various ways.
Organize the table as interlaced splay trees.

A consequence is that accessing from C to L or R
and vice versa will be easier than from L to R and
back, both notationally and operationally and hence
in terms of performance.

A text 1s a denotational representation of a form,
ie.

wiL wWic WiR
w2 W2Cc W2R
w3L W3c W3R

where w;;, are words in lines ¢ = 1,2, ... If the form is,
say, center-z right-sorted (z, R), then all words w;c
in the center are z; if h < k then wy, g weakly precedes
WkR-

Since there are four forms for each line, a line gives
rise to four different texts. Upon registration of a line,
the line is conceptually stored into four different but
mutually related texts. When a line is modified, many
texts may go through restructuring. For instance,
suppose line w z y is modified to z z y. Then:

w,l) text gets line w z y deleted.
z,1)

text gets line 2 z y sorted 1n.

(
(
(z,L) text gets resorted.
(z, R) text gets line w z y changed to z z y.
(

y,7) text gets line w z y changed to z z y.

A change in the center word causes similar but more
extensive changes.

A line does not stand alone: it is retained only in
the form of its representation which consists of the
four texts. A line should be considered a unit for reg-
istration and deletion in texts rather than an entity
whose projections are the four texts.

In order to be able to identify the context in which
a line appears, a line is dealt with as assuming one
of the forms at a given time, even though the four
texts always exist. That is, given a line, one can ask

904 Fujihara and Yoneda

the form in which the line is currently in. If the user
wishes to look at the same line in another form, the
line goes through a transformation that changes its
form.

Now we introduce a shorthand text notation. Sup-
pose the text in the above example is in the center-
w ¢ right-sorted (w.¢, R) form. Then instead of writ-
ing extensively, we write the common center word w ¢
once at the top, followed by two-column lines of L and
R words:

w.ce

wir W1R
war W2R
w3L W3R

Similar notations apply to the other forms. With this
notation, the state description language shown as a
text in a specific form, is a collection of titled two-
column tables, with each entry a word consisting of a
pair or a real:

TIME EVENT
SEC 1198 lot_arr 78354
SEC 1354 stat 82016

STEP RECIPE
MPU_EQA3 723240
DRAM_3EQA4 721800

Furnacel41 1440144
Etching993 8640144

The availability of four forms with equal handling
efficiency turns the design of state description consid-
erably more flexible than doing the same with a mere
table such as the spreadsheet. This may easily be
appreciated by designing a state description format
using the language.

6 THE LANGUAGE PROCESSOR

There are forty or so language processing functions
provided by DEUS90, which may be classified as fol-
lows:

Initialization. Clear the incore database.

Word composition/decomposition.
Given strings and numbers, compose a word and
backwards.

Line registration/deletion. Create a new line and
position it. Given a line, delete it.

Word comparison. Given two words, compare
their precedence.

Form identification/switching. Given a line, find
its form. Switch the form to another.

Line extraction. Given a word and a form, find a
line in the corresponding text.

Word extraction/modification. Given
a line, pick its words. Given a line, change its
word to another.

Line position finding. Given a line, find its posi-
tion in the text.

Current line pointing. Change the line in focus.
Input/output. Read in or write out lines or texts.

Subroutine linkage. Link subroutines which, given
an event name, tell DEUS90 how to rewrite the
state description. These subroutines represent
the lowest layer executor in interpreting the state
description.

The data structure used for implementation of the
above functions is illustrated in Figure 2. There are
six lines registered in this example, listed in the mid-
dle part of the Figure. Six words, u to z, are involved.
Any word, say z, defines four distinct forms, (z,I),
(z,L), (z, R), and (z,r). To each form a text is asso-
ciated. Each text is represented by a splay tree. The
tree’s node is a pointer. The pointer points to a word
in a line. The line pointed to is such that appears in
the text represented by the tree. The word pointed
to appears in the line, in the position specified by
the form as the sorting position: left if (., L), right if
(., R), and center if (.,1) or (.,r). Each line appears
in four distinct texts. Therefore, the three words in
a line are pointed to by four nodes in four distinct
splay trees: the left word is pointed to by a node in a
tree representing (., L), the right word by (., R), and
the center word is pointed to twice, by (.,{) and (., 7).

7 FREEDOM VS. PERFORMANCE

The design and implementation explained above
may seem redundant having to maintain the four
texts concurrently. In this section we discuss a way
to reduce the redundancy and claim that the present
design hits a good balance in convenience for pro-
cessing either by human or by computer. Jakobson’s
remark (1959) “Languages differ essentially in what
they must convey and not in what they may convey.”
applies here, in that language design concerns how

Semiconductor Fab Operation 905
(x,L) N/ (x,R)
Vv X Z X X X
WXy y X X
X X X w Xy
y x X U Xxz
4
N
Yy v Yy vy l \ 4 1 \4
X U w VU Xz w Xy X X X y x x y w x
(x,r)
(x, 1) y u x
X uuw X X X
X X X S/ y x X
Figure 2. The Implementation
Table 4: Simulator Code Size
Language | Module Size in lines G/F Comment
C Splay tree 300 v | Total 1,200 lines
Incore database 500 1
Event list processing 100 G
Event exccution 300 F
DEUS90 Downloaded data on lots and machines 3K F Total 4.5K lines
Downloaded data on routing 1.5K F
Initial state description 30K F After expansion
Month’s final state description 300IK F Trace records

G: for general simulator; F: fab simulator specific.

906 Fujihara and Yoneda

to describe or ease of linguistic analyses rather than
what is described or phenomena to simulate.

The state description format for the semiconductor
fab simulation can be designed so as to use only (., L)
and (., R) forms, without (.,[) and (.,). Forinstance,
consider this (ProductA Lot1D1,!) text:

ProductA LotiD1

LOT STEP Diffusion 1200
LOT SIZE Wafers 20
LOT MACHINE DifMCA 60
LOT DELIVERY Before 921224

All this information on ProductA LotiD1 can be
picked up using only (., L) form but various texts with
different C words:

LOT STEP

ProductA LotiD1 Diffusion 1200
ProductB LotiD2 Test 3600
LOT SIZE

ProductA LotiD1 Wafers 20
ProductB LotiD2 Wafers 10

LOT MACHINE

ProductA LotiD1 DifMCA 60
ProductB LotiD2 TesterB 40

LOT DELIVERY
ProductA LotiD1
ProductB LotiD2

Before 921224
Before 921226

This eliminates the necessity of two among the four
texts, hence reducing the maintenance at the cost of
losing options among the forms, meaning less freedom
in state description.

An experiment in doing this without actually re-
ducing the number of forms supported by the language
processorresulted in a 30% increase in execution time.
This may be explained as follows: less options in texts
implies less freedom in choosing the shortest among
the texts; during the simulation the program ended
up searching longer texts.

The execution time of an update operation will be
halved by limiting the number of forms from four to
two. However, in other kinds of operations the execu-
tion time depends on text length and access pattern
rather than the number of forms. Therefore the ex-
ecution time for the limited version would be over a

half the original: the 30% increase mentioned above
may eat up the gain.

From this observation we conclude that the human
and the machine information handling efficiencies in
DEUS90 are well balanced with respect to our present
concern, which is semiconductor fab simulation.

8 THE FAB SIMULATOR

With the state description language we built the semi-
conductor fab simulator. The simulator is being used
in various DRAM and ASICs fabs, including both
clean room wafer processing and chip packaging fabs.
Presently the simulation is deterministic, involving no
random numbers. The simulator’s major advantages
have been found to be quick model specification and
extremely small size of the simulator’s source code.
Kamimura et al. (1992) describes the fab model in
some detail, which explains why the program can be
made small.

The quick modeling is due to the human readable
nature of the state description language. The exis-
tence of the state description, a document common
to both factory engineers and model builders helps
make clear who is responsible in case the model be-
haves in an unexpected way. Interpretation of event
is discussed referring to two state descriptions, before
and after the event. The document eliminated unrea-
sonable requests from both sides, such as asking for
unavailable input or impossible output data.

The code size is as in Table 4. That the program
can be made small supports that the set of elementary
operations has been chosen adequately. Smaller code
means less bugs. The portion depending on the fab
model is only the “event execution” portion; the rest
is common to any discrete event simulation.

The model, which is the present state of the fab, is
downloaded from the production control computer’s
master file. The modelsize listed in the Table is about
three times the number of lots (1,300) and machines
(200) involved. The downloaded data are first ex-
panded into the initial state, by for instance generat-
ing all the lots that will eventually arrive during the
simulation period. The state description grows con-
siderably as simulation proceeds, since the event list
and result records grow: both of them make part of
the state description. Taking traces of each lot and
machine increases the number of lines considerably.
Adding one line to the state description uses roughly
an additional 100 bytes. Thus a one month run re-
quires about 30 megabytes main memory; execution
time is 5 to 10 minutes on a SUN4 workstation.

Semiconductor Fab Operation

907

Table 5: Directions in Simulation

Conventional approach

Simulation as language processing

Graphic input with icons and state transition dia-
grams such as Petri nets.
Visual simulation such as animation.

Persuasion is the main purpose of simulation.

Small models are the norm.
Large software is inevitable.

9 CONCLUSION

The time and space efficiency measures in the pre-
vious section suggest that the simulator is ready for
larger fab models of the next generation which may
require waferwise trace prediction. From the amor-
tized time bound for a splay tree and the state de-
scription of the fab, the execution time is O(logN)
where N is the sum of the number of lots and the
number of machines.

Table 5 summarizes the difference between the
present paper’s and the conventional approaches.
The language provides a common platform for com-
munication among people and computers involved.

REFERENCES

Brown, R. 1988. Calendar queues: a fast O(1)
priority queue implementation for the simulation
event set problem. Communications of the ACM
31:1220-1227.

Burman, D. Y. et al. 1986. Performance analy-
sis techniques for IC manufacturing lines. ATHT
Technical Journal 6,4:46-57.

Chen, H. et al. 1988. Empirical evaluation of a queue-
ing network model for semiconductor wafer fabri-
cation. Operations Research 36:202-215.

Dayhoff, J. E., and R. W. Atherton. 1987. A model
for wafer fabrication dynamics in integrated circuit
manufacturing. IEEE Transactions on Sysiems,
Man, and Cybernetics SMC-17:91-100.

Inoue, G., and K. Yoneda. 1989. VLSI production
analysis using queueing network model. Proceed-
ings of the 176th Meeting, the Electrochemical So-
ciety.

Jakobson, R. 1959. On linguistic aspects of transla-
tion. In R. A. Brower (ed.) On Translation, 233-
239. Harvard University Press.

Jones, D. W. 1986. An empirical comparison

Explicit state description in a common language
for people and machines.

State transition as a sequence of rewriting the
state description.

Efficiency in description and execution is of
concern.

Large models are of interest.

Small software suffices.

of priority-queue and event-set implementations.
Communications of the ACM 29:300-311.

Kamimura, S., el al. 1992. Realtime simulation for
semiconductor fab operation. Proceedings of the
Pacific Conference on Manufacturing. To appear.

Miller, D. J. 1990. Simulation of a semiconductor
manufacturing line. Communications of the ACM
33:98-108.

Sleator, D. D., and R. E. Tarjan. 1983. Self-adjusting
binary trees. Proceedings of the 15th Annual ACM
Symposium on Theory of Computing 235-245.

Sleator, D. D., and R. E. Tarjan. 1985. Self-adjusting
binary search trees. Journal of the ACM 32:652-
686.

Tarjan, R. E. 1985. Amortized computational com-
plexity. SIAM Journal on Algorithms and Discrete
Mathematics 6:306-318.

Yoneda, K., et al. 1992. Job shop configuration with
queueing networks and simulated annealing. Pro-
ceedings of IEEE International Conference on Sys-
tems Engineering. To appear.

AUTHOR BIOGRAPHIES

MUTSUMI FUJIHARA's research interests in-
clude natural and artificial language processing, de-
sign and analysis of algorithms, discrete event simu-
lation, and computer utilization in humanity studies.
Phone +81-44-548-5636, fax +81-44-533-3593, e-mail
fujiha@ssel.toshiba.co.jp .

KIYOSHI YONEDA is Secretary of Production
Planning and Scheduling SIG jointly sponsored by
the Operations Research Society of Japan and Japan
Industrial Management Association. Same phone and
fax numbers; e-mail yoneda@ssel.toshiba.co jp.

