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ABSTRACT

PROPHET (PROspective Population Health Event
Tabulation) is an epidemiology-based network simulation
program, written in Pascal, for modeling the progression
of a chronic irreversible disease. It is designed to model
multiple clinical and quality of life endpoints
simultaneously. The program combines features of
decision trees, Markov processes, and Monte Carlo
simulation to produce a flexible and powerful
micro-simulation tool.

Transition from one state to another is
determined by a set of probabilities which are taken from
population-based time dependent incidence rates. Tools
have been developed to estimate incidence from
prevalence where needed. Mortality is based on U.S. life
tables and is adjusted for the additional risk imposed by
one or more disease states. Alternative strategies for
detecting and treating disease can be modeled in medical
and economic terms. Net costs or savings are determined
in each cycle and present value analysis is performed.
Sensitivity analysis can be performed on any variable or
group of variables. The benefit of screening and
treatment can be assessed in terms of person-years of
quality of life saved.

1. INTRODUCTION

Early detection and treatment are often the only effective
means of reducing the morbidity and/or mortality of
many chronic irreversible diseases. However, the costs
of screening and treating these diseases can be substantial
and decisions concerning screening strategies and targets
are often made based on the costs involved and the
benefits accrued. Although a variety of approaches to
medical decision-making have evolved since Pauker’s
(1975; 1976; and 1980) original works with clinical
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decision trees, few have been proposed that adequately
address the unique issues raised in modeling the course
of a chronic irreversible eye disease. In conditions such
as diabetic retinopathy, glaucoma, and macular
degeneration, patients may be at risk for multiple
ophthalmologic complications and may be eligible for
more than one therapy. Individuals with chronic eye
disease are frequently elderly and may have a greater
mortality risk than non-diseased individuals of the same
age (Podgor, Cosset, and Kannel, 1985). Furthermore,
chronic eye diseases are generally bilateral, outcomes
must be assessed in terms of the ultimate binocular
vision of the patient.

1.1 Bayesian Decision-Tree Approaches

Previous investigators have attempted to model screening
and treatment interventions in patients with glaucoma and
ocular hypertension using Bayesian decision trees
(Gottlieb, Schwartz, and Pauker, 1983; Eddy, Sanders,
and Eddy, 1983). This approach, based upon Bayes
Theorem, multiplies the probabilities at each branch of
a tree in order to determine the net probability of any
ultimate outcome. While this is the most commonly used
decision-analytic tool for many applications and by far
the simplest and fastest in terms of computational
complexity, constraints of the model impose major
limitations upon its usefulness in chronic eye diseases.
The principal constraint is that every individual in the
model must be assigned to an unique state to the
exclusion of all other states. Thus, the model begins by

a_priori dividing patients into normals, ocular
hypertensive, and glaucomatous individuals. This

structure imposes difficulties in modeling individuals
who move from one category to another or who can be
assigned to more than one category at a time.

A second constraint of the tree approach is that
the number of states increases geometrically as more
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eventualities are added. In general, given n possible
outcomes, the number of states necessary to include in a
decision tree can be as many as 2". While this is a small
portion of a much larger model, it is easy to see that the
tree can rapidly become too complicated for ready
comprehension by clinicians and others involved in the
decision-making process to be a useful decision-making
tool. This constraint becomes especially important in
modeling eye diseases, because of the need to consider
outcomes in each eye. Including the possibility of having
an outcome in one or both eyes doubles the number of
states for each outcome included. Examination of other
recent real life applications of decision trees quickly
reveals how quickly even simple conceptual models can
become complex trees (England, Halls, and Hunt, 1989;
Phelps and Phelps, 1989).

The third major constraint of Bayesian decision
trees is their insensitivity to the passage of time. While
this is not an issue in a short term decision, such as
whether to operate on a patient who presents with
abdominal pain, it limits the utility of the approach in
modeling chronic eye diseases. Screening and treatment
interventions in diseases such as diabetic retinopathy,
glaucoma, and macular degenerations must be made over
a period of years and the benefits of that intervention are
similarly obtained over a prolonged interval.
Additionally, during the course of the disease the patient
is subject to risks of mortality and vision loss from other
causes that may curtail the benefit of screening and
treatment. Thus outcomes are most appropriately
expressed in terms of "person-years” of benefit. Standard
probability trees do not allow for this level of
complexity.

1.2 The CAN*TROL Approach

The above limitations of Bayesian decision trees are
widely recognized among cancer epidemiologists.
Cancer, like many blinding eye diseases, follows a
chronic course during which the patient 1s subject to
multiple competing risks. In order to better model the
effect of cancer screening and treatment strategies, the
National Cancer Institute funded the development of
CAN*TROL (Eddy, 1986a; Eddy, 1986b; Levin, Gait,
and Kessler, et al., 1986). This modeling approach
incorporates Markov processes to analyze the likelihood
of state to state transitions during each passing time
interval. Life expectancy is calculated by projecting each
patient’s passage through a series of health states to
death. The Markov model is expressed via differential
equations that must be solved mathematically.

While the CAN*TROL model is extremely
useful in formulating cancer control strategies, it has

limited applicability to eye disease. Under this model,
living patients must be classified as either non-diseased
or diagnosed with a particular stage of disease. All
future events depend upon the initial disease state. The
model does not allow for transitions from one disease
state to another which is appropriate for cancer models,
in which the initial staging of malignancy predicts all
future events.

This is not the case in chronic eye disease. In
the example of diabetic retinopathy, a valid model must
allow for transition from background to proliferative
disease. Future events can only be predicted based on the
patient’s current state, not the state at entry to the model.
Allowing for these inter-state transitions in the
CAN*TROL model would necessitate a major revision.
Even if it could be accomplished, the model would still
be limited by the fact that it can deal with only two
outcome variables. Valid modeling of ophthalmologic
diseases often requires that we incorporate multiple
outcome variables, such as severe vision loss, reading
vision loss, and mortality in the case of diabetic
retinopathy.

1.3 The Coronary Heart Disease Policy Model

Weinstein and co-workers (Weinstein, Coxson, and
Willams, et al., 1987; Goldman, Sia, and Cook, et al.,
1988) have developed a decision-analytic model that does
allow for state to state transitions. In constructing their
model of coronary artery disease, they incorporated the
risk factors associated with the underlying disease
process in order to model the probability of moving from
one risk-category to another. The model tracks risk
factors for groups of individuals and applies known
survival probabilities based upon those risk factors in
each disease interval. The effects of preventive and
therapeutic interventions can be studied in terms of
prolonged survival and economic consequences.

Because the model deals with only one outcome
variable (survival), groups of individuals can simply be
allocated as living or dead based upon the probability of
surviving each passing interval. If, however, multiple
outcome variables are to be considered, a simple
allocation cannot be made. Rather, individuals with
exactly the same risk factors must be combined with
individuals of like characteristics and considered as a
group. When multiple risk factors for multiple outcomes
are considered, this model quickly grows in complexity.
The Weinstein model makes the simplifying assumption
that risk factors have a fixed effect, regardless of disease
duration. This assumption imposes substantial limitations
in considering a condition such as diabetic retinopathy,
where the annual risk of retinopathy increases with
longer duration of disease.
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1.4 The MISCAN Approach

Habbema and co-workers (1983), in their attempt to
evaluate the effects of screening and treating chronic
diseases such as cervical cancer, realized that simulations
based on Markov processes lacked the sophistication to
handle complicated situations which often occur in real
life mass screening programs. To account for
interrelations between factors and complex person level
variables, Habbema developed MISCAN, a model based
on the Monte Carlo simulation of individual life
histories, to perform a "micro-simulation" of a cohort of
individuals. Parkin (1985; 1986) used a similar approach
to model cervical cancer screening programs in a single
community instead of a cohort.

While these models begin to address the
complexity found in chronic eye disease, they are still
limited with regard to modeling multiple morbidity
outcomes prior to death as well as taking into account
the need to consider two eyes.

2. THE PROPHET SIMULATION SYSTEM

To address some of the limitations listed above we
developed a computer program, PROPHET
(PROspective Population Health Event Tabulation) to
model chronic eye disease. The program was originally
written in VMS Pascal and runs on a Digital Equipment
Corporation VAX machine using the VMS Operating
System. It has subsequently been ported to Sun and
Sun-compatible workstations using the SunOS operating
system and the Metaware Pascal compiler (Metaware
Inc., Santa Cruz, CA).

PROPHET is similar to the Weinstein policy
model in that it follows a cohort of individuals through
a series of state transitions based on their underlying risk
factors. While the Weinstein model deals with groups of
patients in aggregate and assigns them to different
outcomes in a deterministic manner, PROPHET uses the
micro-simulation technique employed by MISCAN to
model each patient as a separate individual. This allows
for multiple outcome variables to be considered, along
with the incorporation of duration-dependant risk factors.

PROPHET further differs from the Weinstein
model in that the epidemiology and natural history of the
underlying disease process is simulated as well as the
effects of screening and treatment. Thus, the life
expectancy and likelihood of ophthalmic complications
change based upon age, duration of diabetes, level of
retinopathy, and previous treatment.

In the PROPHET system, the course of a
chronic irreversible disease is modeled as a multiple
re-entry Markov process that is solved probabilistically

rather than through the solution of closed-ended
equations. The length of the time interval used in the
model can be chosen according to the rate at which a
particular disease is likely to progress.

2.1 Components of Model

All the individuals in the population being simulated start
in one state, usually an undiseased or normal state,
relative to the condition being studied. All members of
the population can start at the same age (e. g., newborn)
or the initial age distribution of the population can be
specified. While alive, this population remains at risk of
moving from the initial state to two other types of states.
(1) A disease state is a condition which is not normal but
which does not necessarily entail an increased risk of
morbidity that would impact on quality of life. It may,
however, be a prerequisite for progressing to a more
advanced state of disease. It also has the potential of
being screened for and treated if possible, which may
have implications for progression to more serious
conditions. (2) A sink state is a condition which results
in a reduction in quality of life sufficient to warrant a
change in lifestyle.

2.2 Simulation Technique

A random number generator is used to determine
whether a person will progress from one state to another.
For each state that a person is at three things must be
determined: (1) the set of states that any individual could
possibly progress to from that state; (2) of those states,
which ones have not already been reached; and (3) the
probability of progressing to those states. For each state
to which a person could possibly progress, a random
number between zero and one is generated and compared
to the probability of progressing to that state. If the
random number is less than that probability, then the
person progresses to that disease. This process is
repeated at predetermined intervals, usually monthly or
annually.

This process is the same for disease states as
well as sink states with one exception. The probability of
progressing to a sink state is multiplied by a treatment
factor before being compared to the random number. A
treatment factor of one indicates that no treatment has
been done or that it had no effect and a value of zero
eliminates the possibility of progressing to the sink state.
Values between zero and one lower the probability of
progression to the sink state indicating the value of
treatment.

There are three other special purpose states. A
treatment state is used to indicate if a person has
received a particular treatment. A death state is a sink
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state that overrides all others and eliminate the individual
from future cycles of simulation. A screening state
describes various parameters associated with particular
screening methods.

A list of probabilistic equations is shown in
Appendix C which indicate the various factors which are
combined to determine an event.

2.3 Initial Conditions

Before the simulation can begin, the program must be
given a number of items of information. This
information is used to form a structure known as a
network. Each state is called a node in the network and
a directed path between two nodes is used to illustrate
the possibility of progressing from one state to another.
The information required by the program is divided into
two sets, one which describes each node, and one which
describes the paths between the nodes. These two data
sets are described in Appendix A and B, respectively.

Additionally, some information is gathered
interactively from the user before each execution of the
program. This includes information about the names of
input and output files as well as other runtime
parameters. These variables are also described at the end
of Appendix B.

2.4 Mortality

At the beginning of each cycle, before any
determinations are made concerning disease progression,
the individual enters the lifetable module. The probability
of death is compared to a random number as with
disease progression and a death results in removal from
the simulation. The probability of death can be specified
in several ways. In the absence of information, U.S. life
tables are used to determine the age-specific probability
of death (U.S. DHHS, 1984). In addition, if a certain
state carries with it a relative risk of death above the
average population, that risk can be applied to the life
table probability. If desired, the life table probability can
be overridden with a specified probability which is
constant for all ages. Since the relative risk approach
may tend to overestimate mortality at older ages when
mortality is high anyway, and since a constant risk may
underestimate mortality at older ages for the same
reason, these two values can be used together and an
average of the two probabilities used. Since adjustments
to the life table probability are specific to a particular
state, if a person is at more than one state the maximum
probability of death for those states is taken.

2.4 Screening

The presence of many chronic conditions can only be
determined by a physical examination and/or diagnostic
tests. Hence, it is important to keep track not only of
disease progression but also of whether the progression
is detected by the person and/or their caregiver. At the
beginning of each cycle the program determines if a
screening visit is being performed during the interval.
This is based on the specified screening frequency for
each state. If an individual is at more than one state that
person will be screened based on the state with the most
frequent screening visits. It may also be desirable to
delay screening for a specific amount of time based on
the knowledge that the disease only progresses after a
period of latency. In some cases, it may also be
necessary to specify that a certain proportion of the
population may never be screened and will never have
disease detected.

In some cases, it is possible that the screening
test will yield a false negative result. In this case the
screening test will fail to detect the presence of disease.
Thus, disease progression is detected in a given interval
if a screening visit is performed and the visit resulted in
the detection of disease. The false negative rate is
specified in terms of the sensitivity of the test, that is,
the probability of detecting disease when it, in fact, is
present.

Conversely, it is possible that the screening test
will yield a false positive result which can lead to
unnecessary tests and even treatment. The false positive
rate is specified in terms of the specificity of the test,
that is, the probability of detecting disease when it, in
fact, is not present.

To make the implementation of features dealing
with sensitivity and specificity more appropriate we have
also added the ability to perform confirmatory screening
tests based on the results of the initial test. Commonly,
these tests have better sensitivity and/or specificity and
are more costly to perform. Thus, we can simulate the
real life situation of incurring extra costs as a result of
the deficiencies in the screening method used.

2.5 Treatment

If a person has a treatable disease a number of conditions
must be fulfilled before the treatment can take place.
First, the disease must be known. As noted
above, a screening visit must take place and the disease
diagnosed before the disease can be known. Second, the
person cannot already have reached a sink state with
regard to that disease. Third, the person must have a
screening visit in an interval in which they are eligible
for treatment. Thus, a person who progresses to a
disease between screening Vvisits cannot be treated until
the screening visit at which the disease is detected,
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provided, of course, that they are still eligible for
treatment (i.e., they have not reached a sink state in the
meantime). Fourth, the person must accept the treatment.
There may be a proportion of the population who will
refuse treatment even if they are eligible in all other
respects. This can be applied in one of two ways. The
program can identify that segment of the population
which will never receive treatment for as long as they
are eligible. Alternatively, at each visit a proportion of
those eligible for treatment will not receive treatment but
will remain eligible for treatment at subsequent visits.
Fifth, the person cannot already have been treated for the
disease.

If the person satisfies all of the conditions they
receive a "treatment factor" which will provide some
protection against subsequent progression to a sink state.
The factor is derived from the probability of successful
treatment as determined in treatment trials. If the
treatment 1s applied to both organs in a two-organ system
(e.g., eyes, ears, lungs, kidneys, etc .) a correlation
factor can also be specified which determines the
probability of successful treatment in one organ given the
result of the treatment in the other. From this the
probability of a successful treatment in at least one of the
organs, which then becomes the treatment factor, can be
calculated (Appendix C).

2.6 Costs

If a person has a screening visit during a given time
interval the cost of that visit is computed. If the cost of
a screening visit is different depending on the state, the
maximum cost of any screening visit that a person can
have is used. If more than one visit occurs during a time
interval the charge is applied the appropriate number of
times. The total charges for each person in the
simulation are added together to get a total screening
cost.

The cost of each screening episode can be
specified as a constant cost or it can be a function of the
screening coverage. Often, even though the actual cost
of the test is constant, efforts to increase coverage will
result in a proportionate increase in the cost per
screening test. We can also specify that a certain
proportion of the population will never be screened by
using this feature.

If a person is treated for a disease during a time
interval the cost associated with that treatment is
computed and added to the total treatment cost for the
whole simulation.

2.8 Benefits

Benefits are computed by determining if treatment was

effective in preventing or putting off progression to a
sink state. Since a sink state can be thought of as a loss
of quality of life, effective treatment can be said to save
quality of life. Each year that a person spends in a sink
state is known as a “person-year of quality of life lost"
(PYQLL) and each year in which treatment is preventing
a person from progressing to a sink state is known as a
"person year of quality of life saved" (PYQLS). PYQLL
is determined by adding up all the years that each person
spends in a given sink state. In order to compute PYQLS
we must first compute the "person-years of quality of
life that would have been lost had it not been for
treatment” (PYQWL). The likelihood of progressing to
a sink state in a given interval depends both on the
probability of progression and on the effectiveness of
treatment. If we use just the probability of progression
without taking into account treatment we can see what
would have happened without treatment. Each year in
which we can determine that a person would have
progressed to a sink state had they not received treatment
we add a year to the PYQWL. PYQLS, then, is the
difference, PYQWL minus PYQLL. This quantity can be
determined for each disease, treatment and sink of
interest.

2.9 Cost-Effectiveness Analysis

In order to compare the costs of screening and treating
a disease with its benefits we need to know the cost of a
PYQLL. This can be the cost of a year of disability, the
cost of hospital care or any other cost associated with
loss of quality of life. Since these costs are often
associated with loss of earnings, three costs can be
specified, one for each age group 0-18, 18-64, and 65 +.
We can then turn this around to say that a PYQLS
results in the savings of the cost of a PYQLL and is thus
a benefit. Each year the cost of screening and treatment
for that year is subtracted from the savings resulting
from the total PYQLS for that year. This is the net
benefit. The net benefits from each year are then added
up to get the total benefit. Net benefits are expressed in
terms of their present value. This analysis is performed
as suggested by Weinstein and Stason (1977; 1986) to
adjust for the relative value of dollars spent now, as
compared with benefits to be regained in the future.
Bradford (1983) has suggested that the appropriate
discount rate for a government investment must consider
not only preference for money, but the reduction in
private capital caused by an increase in government
spending. Most analyses using the PROPHET modeling
system employ a discount rate of 5%, which is
commonly used in similar analyses (Weinstein and
Stason, 1982; Doubilet, Mcneil, and Weinstein, 1985).
As seen below, however, this rate can be varied to
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assess its impact on the model’s predictions.
2.10 Sensitivity Analysis

Having established appropriate values for costs, benefits,
and net benefit, we can look at the effect of changing
certain parameters on these values. If desired, the user
can specify a range of values for any parameter in the
Network Node Definition file or any probability in the
Network Path Definition file. The simulation is then run
for specific increments within the range, the size of the
increments determined by the number of times the
simulation is run. With this information one can then
analyze the effect of varying a particular parameter on
outcomes of interest, for example, PYQLS, Costs, and
Present Value.

2.11 Variance Analysis

Since the simulation is based on random number
generation and each simulation starts with a different
random number seed (except for sensitivity analysis,
where the seed is held constant and the same sequence of
random numbers i1s generated for all simulations within
a single run) the results from a series of individual runs
will be different. Comparing results from these runs we
can determine the variance introduced by random
variation in the random number generator. Clearly,
increasing the size of the population simulated and doing
more simulations will lower the variance. However,
available computer resources may limit this ability so it
is desirable to determine the variance given limitations
on computer resources.

It is also apparent that there could be substantial
vaniance introduced by variation in the individual
parameters used due to epidemiologic uncertainty. To
determine the effect of sample variation in the
parameters we can specify a variance for each parameter
and each time the simulation is run values for the
parameters are chosen from a normal distribution with
the given mean and variance. Multiple runs done in this
fashion will indicate the effect of sample variation on the
results of the simulation.

3. CONCLUSION

The PROPHET simulation system is a flexible yet
powerful program for modeling the progression of
multiple clinical and economic outcomes within the
course of a chronic irreversible disease. Its application to
the ocular complications of Type I diabetes has been
described elsewhere (Javitt, Canner, and Sommer, 1989;
Javitt, Canner, and Frank, et al., 1990). Although it was

specifically designed to model chronic eye disease it may
also be useful for modeling other human organ systems
which come in pairs, such as lungs, kidneys, limbs, etc.
Thus, for example, this model could also be employed to
examine the effects of kidney disease secondary to
diabetes. The paired-organ feature, however, can also be
bypassed for more general chronic conditions.
Additionally, this system would be useful to model any
disease which has secondary clinical morbidity which
presents before the primary morbidity or mortality of the
disease have been manifest. For example, the disease
AIDS has as part of its clinical spectrum many non-fatal
events which have significant clinical and economic
significance well in advance of the premature mortality
common in those with AIDS.

We look forward to applying this model to other
chronic diseases as the appropriate epidemiologic and
treatment data become available.
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Appendix A: List of Variables Required for
PROPHET Node Definition

The following variable are included for each state:

Variable Name Variable Definition
ID Unique number for node

NAME Node description

STYPE Node type: DISEASE, SINK,
TREATMENT, DEATH,
SCREENING

The following variables are included if STYPE is
DISEASE:

REFNODE ID of reference node:
INITSCREEN ID of initial screening method
NUMDELAYPT Number of ordered pairs that
make up the screening delay
function as specified below
PDELAY Proportion of people who will
experience the following
screening delay
SCREENDELAY Number of months from onset



SCREENINTER

RR

The following variables
TREATMENT:

TRTD
TRTS
PEFF
PCORR

PCOVER

TRTPRICE
UNNEC _STATE

UNNEC PROB

SIDEFF_STATE

SIDEFF_PROB
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of disease to screening
Number of months between
screening visits

Relative risk of death for this
node

are included if STYPE is

ID of DISEASE node being
treated

ID of SINK node that being
treated will prevent
Treatment efficacy, expressed
as a probability

Correlation (Range -1:1)
between treatment outcomes
in a two organ system (always
1 if one organ)

Treatment Coverage:
Percentage of population who
will accept treatment

Cost of treatment

ID of state that patient will
proceed to if treatment is
performed unnecessarily
Probability of proceeding to
UNNEC STAT if treatment is
performed unnecessarily

ID of state that patient will
proceed to if treatment causes
adverse side effects
Probability of proceeding to
SIDEFF STATE if treatment
causes adverse side effects

The following variables are included if STYPE is SINK:

REFNODE

RR

COST PYQLL(3)

The following variables

ID of DISEASE node that led
to progression to this node
Relative Risk of death for this
node

Cost of a Person-Year of
Quality of Life Lost: used to
establish benefit of saving a
PersonYear of Quality of
Life. Three values can be
specified for age groups 0-18,
18-64, and 65+

are included if STYPE is

SCREENING:

NUMCOVPT

COVERAGE

COST
SENS
SPEC
CONFIRM
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Number of ordered pairs that
make up the coverage-cost
function as specified below
Proportion of people who will
be screened at the given cost
Cost of a screening visit
Sensitivity of screening exam
Specificity of screening exam
ID of SCREENING node to
use to confirm screening
result

The following variable is the same regardless of the

state:

DISC RATE

Discount rate for discounting
net benefits in future years

The following variables are not in the node definition file
but are input at the beginning of each run:

TIMEUNITS

MAXTIME
MAXSIM

Number of time intervals per
year

Number of years to run
Number of simulations to run

Appendix B: Structure of Network Path Definition

File

The following set of variables is repeated for each path:

Variable Name
STARTNODE
ENDNODE
P

TIME

VARIANCE (Opt.)

Variable Description

Starting node of path

Ending node of path

Annual probability of
transition across path
Number of years since arrival
at REFNODE to which the
probability is to be applied.
This can be single time point
or a range.

The variance associated with
the probability specified. This
can be used to run a series of
models to determine the
variance associated with the
input parameters
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These variables are stored in a three-dimensional array
whose elements are the probabilities (P) and whose
indices are STARTNODE, ENDNODE, and TIME.

The time index is arranged in single year increments so
if TIME is specified as a range, each year in the range
is given an element in the array.

Appendix C: Probabilistic Equations
Pr{ One person-year of sight saved during interval i} =

Pr{ (Having PDR at i-1) AND (NOT Progressing from
PDR to blindness) AND (Treatment performed) AND
(Treatment effective) } =

Pr{ PDR ati-1} * Pr{ NOT progressing } * Pr{ Treated
} * Pr{ Effective }

where

Pr{ PDR at i }= { (Having PDR at i-1) OR ( (Having
BDR at i-1) AND (Progressing from BDR to PDR) ) } =
Pr{ PDR at i-1} + Pr{ BDR at i-1 } * Pr { Progressing
)

Pr (BDR ati } ={ (Having BDR at i-1) OR ( (Having
IDDM at i-1) AND (Progressing from IDDM to BDR)
) 1=

Pr{ BDR at i-1) + Pr{ IDDM at i-l } * Pr { Progressing
!

Pr{ NOT progressing from PDR to blindness }= 1-Pr{
Progressing}

Pr{ Progressing from IDDM to BDR }
=P[IDDM,BD