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ABSTRACT

This paper describes many of the issues that arise
when incorporating the distribution of the uncertainty of
the parameters into a medical decision tree. Most
importantly, two different formulations of simulations
of the tree yield two very differently distributed
measures of the value of a tree. One measure is
transaction-based reflecting the perspective of an
individual patient, while the other provides the
distribution of the global average value of the tree.
Additionally, much care must be taken to represent
duplication or other forms of dependence of
distributions properly when calculating the tree average
of stochastic trees. Finally, a practical example of a
decision tree with random variable parameters,
comparing the cost-effectiveness of using a new
imaging agent to existing post-myocardial infarction
testing protocols is presented.

1 INTRODUCTION

Decision analysis consists of a number of
quantitative methods to aid in choosing among
alternative decisions (Raiffa, 1968). Traditional
decision analysis is used to indicate decisions favoring
good outcomes even though there is risk surrounding
the decision. Sometimes the risk is objective as in
gambles with known odds, such as tossing dice or
playing a lottery. More often though, the risk is
subjective, based on limited data and uncertain theories.
With further study and interpretation of new
information, risk assessments can always be refined.
Furthermore, the value of each possible outcome of a
decision, whether measured in costs and benefits or
utility, is usually variable.  Traditional sensitivity
analysis has simply varied parameters over a reasonable
range of their possible values.

As the number of treatment options and policy
choices have exploded and the cost of conducting
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research has skyrocketed, the "best" treatment for all
clinical situations cannot be determined by conducting
randomized controlled trials. Therefore, traditional
decision analysis, in combination with sensitivity
analysis, has become a standard methodology for using
existing data and expert opinion to examine
effectiveness and cost-effectiveness issues in health
care. See Weinstein and Stason (1977) and Sox, et al.
(1988) for discussion of the methodology and
Udvarhelyi et al. (1992) for a bibliography and
evaluation of the use of cost-effectiveness analyses in
the medical literature. Beck and Pauker (1983)
extended medical decision tree methodology to
consider discrete-time Markov process-based models;
which is helpful when the timing of a treatment is a
critical variable. Recently, Hazen (1992) has defined
stochastic trees as a technique for solving continuous-
time Markov cycle trees. However, there are still no
widely accepted techniques for incorporating variability
in the estimates of the parameters of a decision tree.
Section 2 of this paper contrasts traditional decision
analysis with simulation and other methods to evaluate
decision trees when the uncertainty of the parameters is
incorporated into the model. Section 3 describes other
issues and controversies that must be addressed when
undertaking a medical decision analysis. An example
analyzing choices of testing protocols for patients
following a heart attack is presented in Section 4.

2 DECISION ANALYSIS METHODOLOGIES
2.1 A Classic Decision Tree

A decision tree is composed of nodes containing
estimates of outcome measures connected by
probabilistic branches. According to Sox et al. (1988)
creating a decision tree involves formulating a decision
problem, assigning probabilities and measuring
outcomes. Subsequently, the decision analysis involves
calculating the expected value of each alternative,
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choosing the alternative with the highest expected
value, and using sensitivity analysis to examine the
conclusions. Figure 1 shows a much simplified tree for
the costs after coronary angiography for patients after
myocardial infarction, as depicted by the SMLTREE
decision analysis package (Hollenberg 1989). Similar
trees for other strategies (e.g., treadmill testing) must be
built and evaluated in order to compare treatment
protocols. For a more complete decision analysis of
patient management strategies following myocardial
infarction see Dittus et al. (1987, 1988).
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Figure 1: A Simple Decision Tree

A major shortcoming of this technique is the inability
to model the variability inherent in the costs or utilities
of various outcomes or to quantify the uncertainty in
the subjective estimation of branching probabilities.
For instance in the example in Figure 1, $20000 is used
as an estimate of the cost of bypass surgery, but it
actually varies between $16000 and $26000. Similarly,
various studies have found operative mortality from
more than 4% to under 1%, thus there is uncertainty in
our knowledge. Traditional sensitivity analysis deals
with this by systematically varying one or two
parameters (branch probability or outcome measure).
However, when there is uncertainty in the estimates of
many parameters, it becomes difficult to conduct and
interpret sensitivity analyses. Thus other approaches
for including uncertainty will be examined.

2.2 Incorporating Uncertainty

When data exist, information about variability should
not be ignored as in a decision tree that uses only point
estimates of the tree parameters. Even when data are
sparse, a domain expert should be able to estimate a
range and most likely value (mode) which is at least as
good as the estimate of the mean. Much recent work

done on input modeling for discrete event simulation is
also applicable to modeling decision tree parameters.
Vincent and Law (1991), Kelton et al. (1990) and
Avramidis and Wilson (1989) offer techniques for
choosing  appropriate  distributional forms and
appropriate parameters when data are available.
DeBrota et al. (1989a, 1989b) provide an approach to
visual interactive fitting when data are scant and
gathering additional data is too expensive or otherwise
infeasible.

Whenever possible, a random sample of each input
process should be gathered. When enough data can be
obtained appropriate statistical distributions can be fit.
However, just a good representation of the prominent
features of existing data and expert opinion is often
sufficient for a valid model. Klein and Baris (1991)
describe many of the relevant considerations for
selecting suitable distributions to represent sources of
uncertainty in a large-scale systems analysis.

2.3 Analyzing trees with random parameters

Assuming that it is desirable to model the uncertainty
in the parameters of a decision tree, there is still no
generally accepted method to analyze the resulting tree.
Most commonly, logical networks (of which trees are a
special case) with variability would be analyzed by
simulation. A general tool for this type of simulation,
SLN, was introduced by Roberts and Klein (1984a) and
applications of the methodology were described in
Roberts and Klein (1984b). However, this type of
simulation can be very time consuming, both in
building and debugging the model and in computer time
to execute sufficient observations to distinguish
alternatives. Doubilet et al. (1985) described using
Monte Carlo simulation to do what they call
"probabilistic sensitivity analysis”" and Hollenberg
(1989) has added a few distribution choices to the
SMLTREE software to perform what he calls "Second
order Monte Carlo analyses". Other approaches have
been taken by Katz and Hui (1989) and Willard and
Critchfield (1986). However, none of these techniques
perform both 1) the averaging out of a stochastic tree by
sampling from all distributions and averaging the
sampled values and 2) repeatedly following a
transaction along a random path from the tree root to a
leaf.

Eisenhut et al. (1991) developed an algorithm that
uses up to four moments of all the input parameter
distributions to compute exactly (to the limits of
machine accuracy) the moments of the averaged-out
value for a binary tree. Using these computed
moments, an approximation to the distribution of that
averaged-out value can be obtained. The analytical



1052 Dittus and Klein

solution is limited to binary trees (that is, trees in which
each node has at most two children); but each non
binary node in any non binary tree can be converted
into an equivalent sequence of binary nodes by an
appropriate conditioning analysis (Doubilet et al. 1985).

While developing software to obtain the distribution
of the averaged-out value of a tree analytically, it
became obvious that this distribution is very different
from the distribution obtained by usual Monte Carlo
simulation. However, it was discovered that a tree can
be simulated by two different methods. The method
that directly parallels the analytical method has each
observation representing the averaged-out value of the
tree obtained by taking all branches in appropriate
proportions. The usual transaction-based Monte Carlo
simulation procedure focuses on the outcome of a
single individual as he advances through a given
realization of the tree along a single path from the root
node to a leaf node. Each path is randomly selected
according to the branching probability distributions.
Both methods yield the same expected overall outcome,
but the variance of the transaction-based distribution
generally will be much larger, and it will usually be
multi-modal.  Both simulation methods and the
analytical technique are available in the TreeModeler
software (Dittus et al. 1990, Klein and Dittus 1991).
Interpretations of these different distributions will be
given in section 3.3. Finally, by combining two trees
into a "super tree", the distribution of the difference
between a pair of trees can be computed using either
the transaction-based or tree average method.

A final technique for analyzing decision trees is with
spreadsheet models. Palisade Corporation (1990) has
created a series of add-in functions called @RISK
which can be used with Microsoft Excel or Lotus 123.
It provides over thirty distribution functions that can be
substituted for the values in any spreadsheet cell.
Additionally, there are statistical functions that allow
for correlation between cells, a simulation command
that systematically evaluates the distribution functions
and several procedures for viewing the results. With
@RISK a skilled spreadsheet programmer should be
able to obtain either transaction-based or a tree-average
view of a decision tree entered into a spreadsheet.

3 MEDICAL DECISION MAKING ISSUES
3.1 Outcome Measures

Decisions  frequently require two or more
simultaneous outcome measures on a tree. In medical
decisions, the length and quality of life and direct
health care costs are commonly used measures of
relevant clinical outcomes and resource utilization

needed to calculate a cost-effectiveness measure.
Keeney and Raiffa (1976) offers a good discussion of
multi-criterion decision issues.

Early work in the medical decision analysis field
measured outcomes in terms of the effects on
intermediate variables, such as the cost per degree of
blood pressure lowering.  Subsequently, analyses
extended the outcomes to include the number of lives
saved, translating the intermediate variables into a
specific clinical outcome of direct importance to the
individual, e.g. survival. Length of survival was clearly
important and so the relevant -cost-effectiveness
measure to compare alternative strategies of care later
became cost per year of life saved. Finally, to include
the important consideration of the quality of life, years
of life saved can be adjusted to reflect the quality of
life, e.g. the use of quality adjusted life years. The
quality adjustments are usually utilities. Of paramount
importance is that none of these outcome measures are
known with certainty and empirical studies explicitly
describe the probabilistic nature of these outcomes.
Thus a model that can directly reflect these
uncertainties may provide a better understanding of the
clinical implications of alternative decisions. Similarly,
costs will vary by patient, usually widely. A model that
can reflect the variation in costs can provide a better
overall understanding of the cost implications of
alternative decisions.

3.2 Dependence and Duplication

It is important to note that medical decision trees
often have repeated or similar subtrees. For instance, a
patient undergoing coronary angiography will have the
same procedure-related risk regardless of what tests
may have preceded it. When random variables are used
in trees, then in any one iteration of a simulation of the
tree, these must be represented as duplicates and not
merely independent replications from a common
distribution. This kind of duplication may even occur
across trees and it's important to handle it properly
especially when doing a pairwise comparison to find
the distribution of the difference between to trees.
Subtrees, with duplicated nodes and distributions, as
well as pairwise comparisons are handled explicitly in
TreeModeler. @RISK has facilities to include
correlation coefficients, so it should be able to represent
duplication as well as less complete dependence. More
experience using this tool is needed.

3.3 Interpreting Simulation Results

The usual Monte Carlo simulation procedure is
transaction based. It expands on the traditional
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technique of risk analysis, which describes the
cumulative probabilities of each possible outcome.
Groups of transaction-based observations can be
averaged, and the distribution of those averages should
correspond to the expected outcome value for that size
of group.

The distribution that results from averaging out a tree
with random variable parameters, as with the Eisenhut
et al. (1991) algorithm, corresponds to the global
(population) distribution of the outcome measure of the
process being modeled. The procedure to simulate this
measure is to sample from every distribution in the tree,
making sure duplicate variables are only sampled once
per iteration. Then on each iteration a traditional
averaging out is done for the tree with the sampled
values. The averaged-out value corresponds to the
expected cost or reward for the entire relevant
population of patients or clients (more generally called
transactions) as they experience the process represented
by the tree.

4 EXAMPLE: POST-MI MANAGEMENT

Over the last six years at Regenstrief Institute, a
number of decision analysis models have been built to
compare strategies for the management of patients
following an asymptomatic myocardial infarction (heart
attack without complications). Since only certain
subgroups of these patients appear to benefit from
interventions such as coronary artery by-pass surgery,
the problem becomes one of finding the most effective
and/or cost-effective way to identify these subgroups.
Early spreadsheet models of this problem are described
in detail in Dittus et al. (1987, 1988).

4.1 Input Data

Four kinds of data are needed to parameterize these
models.  First, patient subgroups are defined by
combinations of functional status, the presence or
absence of ischemia, and the number of occluded
vessels (coronary anatomy). Data from a synthesis of
several years of the medical literature are used to
calculate the true prevalence of each subgroup.
Angiography is a gold standard for determining
coronary anatomy and functional status is measured by
the left ventricular ejection fraction. Ischemia is
somewhat more subjective, but measured by a test such
as exercise thallium scintigraphy.

Second, sensitivities and specificities of each test
must be converted to conditional probabilities. For
instance, what is the chance of a positive treadmill test
for a patient with ischemia, 2-vessel disease and good
function? While overall sensitivities are reasonably
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well known, their allocation among the subgroups is
somewhat subjective so it is important for the model to
reflect the uncertainty here.

Information about the probabilities of survival, and
second infarctions for medical and surgical treatment is
obtainable from the literature. Operative mortality and
mortality data for testing procedures such as
angiography are also widely available. Adapting these
for each subgroup is again somewhat subjective, though
less so than for sensitivity data.

Finally, cost data were obtained both from local
institutions and national Medicare data. The Medicare
data samples are large enough to fit cost distributions.
The models only look at short term results; so alive, die
and second infarction are the only relevant health states
to which an effectiveness measure (utility) needs to be
assigned.

4.2 Alternative Modecls

At the time of the published spreadsheet models, the
effect of functional status on medical and surgical
survival rates had not been determined. So, when its
effect on survival was quantified, we were compelled to
add functional status to our subgroup classifications.
Then the TreeModeler software reached a state where it
could be used to incorporate some of the knowledge we
had about the distributions of the model parameters.
However, the cost-effectiveness of the various
strategies were different enough that knowing the
distributions did not change the recommendations,
merely increased the certainty that they were correct.

Shortly thereafter, imaging agents which produce
clearer pictures and thus better sensitivity and
specificity than thallium scans have become available.
For presentation purposes and to verify the
TreeModeler results, an SMLTREE version of the
model was created. Most recently, the model has been
put back into a spreadsheet form and @RISK functions
are being used to include uncertainty. This should
make it easier to maintain when new information
becomes available and to adapt when new testing
strategies and treatment alternatives become available.

4.3 Output Distributions

Some of the input data in the current model is too
preliminary to report results here. However, examples
of the types of distributions available and their
interpretations will be presented for the simplified tree
in Figure 1. The averaged out value is $10,678, but
unless the variability on the input parameters is
modeled, there is no way to know how likely it is to be
less costly than an alternative procedure with an
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averaged out value of $11,000. After adding
appropriate variability to the inputs and evaluating with
TreeModeler, histograms representing distributions of
costs for the three types of analyses described above
were produced. The distribution of the averaged out
value as displayed in Figure 2 corresponds to a
confidence interval on the long term average cost of the
angiography strategy for the population modeled. It
would be most useful for a national health policy
maker.

9.0 9.5 10.0 10.5 .o 1.5 12.0 15
Figure 2: The Tree Average Distribution

Figure 3 is the distribution of costs for a particular
person. With this strategy, all patients are charged for
an angiography, some may have bypass surgery and
some may have a second infarction or other cardiac
event. For a particular patient a different outcome
measure, such as life years, may be more important, but
knowing the risk of a cost exceeding $25,000 may also
influence the decision.

Figure 3: Distribution for any one Transaction

Finally, Figure 4 is the distribution of the average
cost per patient of groups of 50 patients. For a hospital
that sees 50 such patients per month, this distribution
and those for alternative strategies, can be invaluable to
the administration for planning, budgeting and setting
policy.

Figure 4: Distribution of Groups of 50

4.4 Future Enhancements

Percutaneous transluminal coronary angioplasty
(PTCA) has become such a common treatment
alternative (Ryan et al. 1988), that a credible model of
coronary care must include strategies in which PTCA is
used for appropriate patient subgroups. Thus, work to
determine appropriate input data for a model including
this treatment option is underway. Also, chemical
stressing as an alternative to exercise testing for patients
unable to exercise is being examined. Finally, because
of the wealth of data and the financial magnitude of the
question, this clinical problem remains an excellent
vehicle for comparing the different tools available to
analyze trees with random variable parameters.

5 CONCLUSION

Many decision analysis packages restrict random
variables to only branches or only clinical outcome or
cost expressions, although uncertainty is often inherent
in both. Furthermore, many packages only allow
outcomes to be assigned at terminal (leaf) nodes so
obtaining a distribution for a cost that is really the cost
of three or more procedures can be burdensome. SLN,
TreeModeler, and a spreadsheet with @RISK all allow
distributions on any number of branching probabilities
and/or node costs or utilities, so they are more suitable
for evaluating trees with random variable parameters.

Traditional decision analysis uses probability point
estimates to represent the uncertainty of a future event.
Uncertainty is often disquieting for a decision maker
because it usually means there is a chance of a bad
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outcome. Moreover, even the best decision can result
in a bad outcome. However, by quantifying the
uncertainty surrounding a decision, it is possible to have
the highest expected outcome value, minimize the
chance of the worst outcome, or maximize the chance
of the best outcome. Now, decision analysis can go
further. By representing the uncertainty as a
distribution ~ and  simultaneously  incorporating
uncertainty in the assessment of outcomes or costs, the
decision maker has access to the likelihoods for the
whole range of outcomes for each alternative. Thus
decisions can be made based on all available
information and judgments can be made as to what
additional information would reduce the risk of a
decision.
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