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ABSTRACT

A GPSS/H model was developed to simulate the flow
of patients through a hospital's critical care units,
including the operating room, post anesthesia recovery
unit, surgical intensive care unit, intermediate surgical
care unit, coronary care unit, intermediate coronary
care unit, telemetry unit, medical intensive care unit,
and ventilator unit. The primary objective of
developing the model was to assist hospital clinical and
administrative staff in determining critical care bed
requirements. This paper describes previous research
on the development of bed-sizing models, the design of
the critical care simulation model, validation and use of
the model, and a critique of the model's application,
with implications for future research.

1 INTRODUCTION

The objective of this study was to design and
implement a simulation model of a large, tertiary care
community hospital's surgical suite and critical care
area, for the purpose of assisting hospital management
in determining critical care bed requirements. The high
cost of building, equipping, and staffing critical care
beds requires increased attention to the bed planning
process. Simulation is an especially attractive
methodology for use in this area, because of the
complex nature of patient flows through the critical care
area. Specifically, both random and scheduled arrivals
of different types of patients (case types) to multiple
units with limited capacities must be modeled.

The objective of any hospital bed planning model is
to help determine the number of beds required to meet a
given level of demand in the most cost effective
manner. That is, a bed level must be determined which
can accommodate projected demand without incurring
the unnecessary costs associated with excess capacity.
Unfortunately, the highly variable nature of the daily
census in critical care units (due to the random nature
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of arrivals to the critical care area) means that planning
for a bed level which meets demand during periods of
peak utilization will result in unused beds a large
portion of the time (i.e., low average occupancy).
Therefore, a good bed planning model must factor in
the variable nature of critical care demand, and provide
information on the tradeoff between maintaining a high
average occupancy and incurring adverse occurrences,
such as turnaways, due to lack of available beds.

In the past, simple frequency distributions
(Blumberg, 1961; Dufour, 1974; Newell, 1962; Pike,
Proctor, and Wyllie, 1963) and less simple
mathematical models (including queuing models and
Markov chains; e.g., Bithell, 1969; Cooper and
Corcoran, 1974; Esogbue and Singh, 1976; Kao, 1972
and 1974; Navarro (1970); Shonick and Jackson, 1973;
Staff and Vagholkar, 1971; Thomas, 1968; Weiss,
Cohen, and Hershey, 1982) have been used to help
determine hospital bed requirements. While these
models do consider the issue of census varability in
bed planning, they are all constrained by one or more
of three major simplifying assumptions, which
significantly diminishes their utility in today's complex
health care environment.

The first major problem with most previous models
is the inclusion of only one unit (bed section)--i.e., the
relationship between multiple units is not considered.
Not only should the progressive movement of patients
among units be considered (i.e., the movement of
patients due to the progression of their treatment), but
the movement of patients across units should also be
modeled (i.e., movement due to limited bed
availability).  Consideration of this latter type of
movement is especially important for making the best
use of limited, costly critical care resources. Rather
than plan for a bed level that accommodates workload
during peak periods, a more cost-effective use of
critical care beds is to consider the capacity in other,
similar units as a source of alternative beds during peak
times. Thus, a bed planning model should consider



patient movement across critical care units during
periods of especially heavy demand.

The second major problem with previous models,
which is related to the first problem, is their failure to
realistically model hospital policies in the event that a
patient arrives to find all beds full in the desired unit.
Most models consider only the option of tuming
patients away. However, few hospitals are willing to
incur turnaways, due to the implications for quality
care, as well as the potential loss of clients and
revenues. In actuality, most hospitals follow a complex
set of decision rules for locating a bed, before resorting
to sending patients to another facility. These rules are
necessary for efficient resource utilization; and a bed
planning model which includes these rules can be used
to investigate their effects on bed utilization.

Finally, it is very difficult to model the effects of
different types of patients using previously developed
mathematical models. As hospitals become
increasingly specialized and routinely face decisions
regarding the addition, expansion, or elimination of
particular clinical programs, the ability to model the
unique workload contributions of particular patient
types increases in importance. Different patient types
are not only admitted to a hospital at different rates, but
are also admitted through different mechanisms (i.e.,
emergency versus scheduled arrivals), and follow
different flow patterns through hospital units.

Simulation models can readily incorporate each of
the above three requirements (i.e., multiple units, bed
location policies, and case types). A number of
simulation models have been developed for the surgical
suite and critical care areas (Clipson and Wehrer, 1973;
Cohen, Hershey, and Weiss, 1980; Fetter and
Thompson, 1969; Kwak, Kuzdrall, and Schmitz, 1975;
Williams, 1983; Zilm and Hollis, 1983). However,
none of them appears to satisfactorily address the
complex relationships in today's critical care
environment.  Previous simulation models of the
surgical suite and critical care area have one or more of
the following limitations:

(1) Limited number of units (generally only two);

(2) Limited number of patient flow patterns through
the units;

(3) Limited number of bed location policies (generally
only one;

(4) Limited arrival processes (e.g., either random or
through a simplified scheduling system); or

(5) Simplified or no modeling of different case-types.

The study described herein was an attempt to
improve upon previous simulation models by building a
model that addresseses the above limitations, and,
hence, is more representative of the complex critical
care environment which exists in most hospitals today,
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including the study hospital. The remainder of this
paper describes the model design, findings from use of
the model, and conclusion, including a brief description
of subsequent research. The focus of the discussion is
on those aspects of the model that represent
improvements over previous studies of the critical care
area. The model was written in GPSS/H (Henriksen
and Crain, 1989).

2 MODEL DESIGN

The simulation model is designed to represent the
arrival of patients to, and their flows through, nine
different units in the study hospital: (1) surgical suite
(OR); (2) post anesthesia recovery unit (PARU); (3)
surgical intensive care unit (SICU); (4) intermediate
surgical care unit (ISCU); (5) coronary care unit
(CCU); (6) intermediate coronary care unit; (7)
telemetry unit; (8) medical intensive care unit (MICU);
and (9) ventilator unit. All of these units, with the
exception of the OR, are considered part of the critical
care area. The OR was included in the model because
it is a major source of admissions to the SICU.

The major components of modeling patient flows
through the above unmits include the OR scheduling
system, delineation of patient flow patterns, definition
of input distributions, and designation of case types.
The inclusion of all of these components meets the
objective of designing a comprehensive critical care
model.

2.1 OR Scheduling System

The simulation model includes both random and
scheduled arrivals. While the majority of arrivals to
the critical care area occurs randomly, arrivals to the
surgical intensive care unit are primarily scheduled
through the OR. Thus, the OR becomes an important
component of any critical care planning model.
Because of the complex organization of most ORs,
some time will be spent addressing the manner in which
the study hospital's OR was modeled relatively easily
using GPSS/H.

The surgical scheduling system employed at the
study hospital is a block scheduling system, in which an
operating room(s) is reserved for a certain time period
(e.g., morning, afternoon, entire day), on certain days
of the week, for a given surgical specialty or surgeon.
A simulation of a block scheduling system must
generate cases from a particular specialty (or surgeon)
on the appropriate day of the week, at the appropriate
time, and in the appropriate operating rooms. In
addition, the model must stop generating cases when
the block time has ended.
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GPSS/H "matrices” and "transactions” can be used to
define the block schedule. The block start and stop
times can be identified for each specialty in a GPSS/H
matrix of days of the week and operating rooms. The
GPSS/H transaction is the unit of traffic that moves
along the paths, or "blocks,” of the simulation model.
The OR module uses transactions to initiate each day's
block schedule. The OR component of the model is
repeated every seven days, at which time a transaction
is sent to initiate the following steps:

(1) Generate one transaction for each day of the week.
Each transaction "waits" until midnight arrives for
its day of the week.

(2) At the start of the day, the individual transaction
splits off into as many transactions as there are
specialties.

(3) Each specialty transaction splits off into as many
transactions as there are operating rooms. Note
that all transactions thus far generated in the OR
module can be characterized by day of the week,
specialty, and operating room (this information is
stored with each transaction).

(4) Each operating room transaction uses its
information on day of the week and operating
room number to obtain data from the
corresponding matrix on start times for the
specialty. The transaction then waits till the block
start time for its specialty, day of the week, and
operating room.

(5) Upon arrival of the start time, the case type, case
time, and flow pattern of the specialty's first case
is determined (see next section), and the
transaction is sent through the OR. (Note the
transaction has now become a patient that will
move through the model.)

(6) After the patient's case time has passed, the
transaction uses its information on day of the week
and operating room number to obtain data from
the corresponding matrix on block stop times for
the specialty. If the time of day when the patient
leaves the operating room does not exceed the
block stop time for the specialty, the patient splits
off another transaction, which becomes the next
patient through the room. Otherwise, the patient
is the last patient through the room for the day
(unless an emergency arrives).

2.2 Delineation of Patient Flow Patterns

Depending on a patient's case type (described
below), he/she has a certain probability of following
any one of a number of possible flow patterns through
the above units as his/her treatment progresses. These
flow patterns, which are presented in Table 1, were

defined from interviews with clinical personnel in the
study hospital. Surgery patients from the OR are
assigned a flow pattern as they leave the OR, based on
a pre-determined distribution of flow pattterns for each
surgical specialty (see discussion of case types below).
The flow patterns of other patients are determined as
they leave each critical care unit, based on the historical
percentage of patients discharged from one given unit
to another.

In addition to these appropriate flow patterns,
patients may follow alternative flow patterns in the
event that a bed is not available in the desired unit.
These alternative flow patterns were defined by clinical
staff members, and consist of either "accommodations”
(i.e., entering another critical care unit) or "bumping”
(i.e., finding a patient in the desired unit who is
sufficiently stable to be transferred to the next lower
level of care, to free up a bed for the incoming patient).
The steps followed in locating a bed depend on the type
of critical care bed required. For some units, the
availability of a bed in another unit (an accommodation)
is checked before bumping is considered; in others,
bumping is considered first; and in some, only
accommodations are tried. In the event a patient is
accommodated on an alternative unit, the model
continues to check for bed availability in the originally
desired unit, and will transfer the patient to that unit if
a bed becomes available.

The concept of bumping requires the establishment
of criteria for determining whether or not a patient is
sufficiently "stable" for transfer to the next lower level
of care, to free up a bed for an incoming patient. These
criteria are defined as a proportion of a patient's
"desired” length of stay. (In actuality, of course, the
criteria for making such a determination are clinical;
but since clinical criteria could not be incorporated into
the model, length of stay was used as an alternative.)
The "desired" length of stay refers to the time the
patient would likely spend in the unit if there was no
need for the bed by another, incoming patient, and is
determined by sampling from a historical distribution of
length of stay.

Interviews with physicians determined that as a general
rule, patients who have reached 80 percent of their
"desired” length of stay in a critical care unit are
probably sufficiently stable for transfer. Thus, in the
event that a bed in a given unit is needed for an
incoming patient, and the steps for "bumping" are
initiated, the model checks to see if there are any
patients in the unit who have reached or exceeded 80
percent of their desired length of stay. If so, one of
those patients is transferred to his/her next level of care
(if a bed is available), and the incoming patient is
admitted to the vacated bed. If no patients are eligible



for bumping, the model proceeds to the next step for
finding an available bed, or turns the patient away.

2.3 Definition of Input Distributions

The two major types of input distributions included
in the model are:

(1) Length of stay distributions (one for each critical
care unit, by flow pattern); and

(2) Interarrival time distributions of direct admissions
(one for each critical care unit and for emergency
admissions to the OR).

These distributions were all defined using historical
data from the study hospital, collected from manual
logs maintained in the critical care units. Many
hospitals maintain the necessary data in their
admission/discharge/transfer systems, or in a PC-based
information system in the critical care area, making
data collection much easier. Subsequent analyses of
similar data from other hospitals have shown the length
of stay distributions to closely follow the lognormal
distribution, and the interarrival time distributions to
follow the exponential distribution (Lowery, 1991).
The use of theoretical distributions can ease model
design and data collection.

2.4 Designation of Case Types

The study hospital was especially interested in
investigating the effects of increases in surgery
workload, by various case types. Consequently, case
type categories were identified for all surgical
procedures requiring a critical care bed following
surgery.  The department heads of the surgical
specialties were asked to identify groups of surgical
procedures in which the cases are clinically similar, as
well as homgeneous with respect to their case time in
the OR and their use of post-operative resources (i.e.,
flow patterns and length of stay in each cntical care
unit). Using these general criteria, the surgeons had
little difficulty forming categories, as most surgeons
already tend to think of their cases in terms of general
case types.

After the categories of cases were identified by the
surgeons, they were asked to assign each case type to
one of the patient flow patterns presented in Table 1.
In the event that different patients within a given case
type could follow different flow patterns, depending on
the severity of the case, the surgeons were asked to
estimate the percentage distribution of patients by flow
pattern.

Finally the surgeons were shown a list of all of the
procedures (defined by the ICD-9-CM classification
scheme) performed in their respective specialties during
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a recent time period, and they were asked to map each
procedure to the appropriate case type. Table 2
presents an excerpt from the list of case types and
corresponding flow patterns and procedures for
Neurosurgery, as an example of the result of the
surgeons' efforts.

The hospital's actual frequency of procedures
performed during a recent time period was used as the
basis for determining each specialty’s percentage
distribution of case types and, in turn, distribution of
flow patterns. The simulation model samples from this
distribution to determine the flow pattern of each case
sent through the OR for a given specialty. To simplify
data collection, average case times for a given specialty
were used to determine case time in the OR. However,
the case type definitions and historical data on
individual case times could have been used to identify
an average case time per case type, if desired.

3 FINDINGS

The model inputs of interest to hospital management
were critical care workload (consisting of both
scheduled and random arrivals) and the number of beds
in each critical care unit. To help determine bed
requirements for the future, the values for workload
were increased (by decreasing the interarrival times of
the random arrivals, and increasing the hours of OR
time for the scheduled arrivals), and the bed levels in
each of the critical care units were varied. The effect of
these changes on the outputs of interest were then
analyzed. The outputs, or performance measures, of
primary interest were the utilization rates of each of the
critical care units, the number of emergency turnaways
due to lack of available beds, number of patients
bumped from units to accommodate incoming patients,
and number of patients accommodated on alternative
units.

The model was validated by comparing model
predictions against actual hospital performance. The
only performance measures for which actual hospital
data were readily available were utilization rates and
turnaways; hence, the validation included only these
data. Hospital data on utilization rates, by critical care
unit, and turnaways for a six month period were
compared against model data from six months of
simulation, following a three month warmup period. A
two-sample t-test was used for comparing the mean of
the monthly hospital data with the mean of the monthly
model data. For all of the comparisons, the means of
the two sample populations were not significantly
different at p > = .30. That is, the hypothesis that the
means of the two populations are the same could not be
rejected for the performance measures tested. The
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Table 1: Patient Flow Patterns

Surgery Patients

From the OR Direct Admits

Medical
Patients

Cardiology
Patients

1) ->ISCU->Floor
2) ->SICU->ISCU- > Floor
3) ->SICU->Floor

1) OR->PARU->Floor

2) OR->PARU->ISCU- >Floor
3) OR->SICU->ISCU- > Floor
4) OR->SICU- > Floor

1) ->CCU->ICCU- > Floor
2) ->CCU->Telem- > Floor
3) ->CCU->Floor

4) ->ICCU->Floor

5) - > Telem- > Floor

1) - >MICU- > Floor
2) ->MICU-> Vent- > Floor

Unit Abbreviations

OR: Operating Room

PARU: Post Anesthesia Recovery Unit
ISCU: Intermediate Surgical Care Unit
SICU: Surgical Intensive Care Unit

CCU: Coronary Care Unit

ICCU: Intermediate Coronary Care Unit
Telem: Telemetry Unit

MICU: Medical Intensive Care Unit
Vent: Ventilator Unit

statistical tests provided no evidence of model
inadequacy.

As mentioned above, the study hospital was
interested in investigating the effects of workload
projections on the performance measures of interest,
under different bed levels in the various units.
Specifically, the hospital identified the following
approximate, projected increases (over 1989 workload),
based on planned increases in clinical staff and

implementation of new clinical programs:

1991 1995
CCU 4.0 % 12.5 %
ICCU 6.5 % 155 %
MICU 8.0 % 18.5 %
SICU: Thoracic 6.5 % 15.0 %
SICU: Neuro 125 % 31.5 %
SICU: Periph Vasc 21.0 % 47.0 %

They were also interested in seeing the effects of a
change in the flow pattern of carotid endarterectomy
patients (Neurosurgery) from OR --> SICU to OR -->
PARU --> ISCU.

The above increases in workload were investigated
under a number of different bed level configurations,
including additional beds in the SICU, MICU, and
ISCU, as well as the construction of a 4 bed Ventilator
Unit (in an effort to move long-staying ventilator-
dependent patients out of the MICU). Data on
predicted hospital performance were obtained from six-
month simulation runs, following a three-month
warmup period for each run. Hospital staff reviewed
model predictions for the average occupancy of each
unit and the number of turnaways under alternative bed

level configurations. The objective of the reviews was
to identify which configuration(s) resulted in an
acceptable tradeoff between maintaining a high average
occupancy and incurring turnaways.

Unfortunately, it was difficult for the hospital staff
to reach a conclusion, because an acceptable level of
turnaways was never explicitly stated. Nevertheless,
the output did provide information which helped
hospital staff better understand the occupancy-turnaway
tradeoff, which, in turn, could help them make an
informed decision regarding critical care bed
requirements. At the completion of the funding period,
a final decision on the number and types of beds to add
had not been made.

4 CONCLUSION

The simulation model described herein represents a
more complex and, hence, more realistic, critical care
environment than previous models of the critical care
area. While features of the model's design can be used
elsewhere by individuals interested in modeling the
critical care area of a hospital, the application of the
model suffers from limitations in the following three
areas: (1) validation of predictions; (2) analysis of
model output; and (3) general applicability of the
model. As with many studies, this one was limited in
duration and resources, thus leaving room for
improvement. Subsequent research studies have
addressed, or are in the process of addressing, each of
the three limitations, as described briefly below.

4.1 Model Validation
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Table 2: Definition of Neurosurgery Case Types and Patient Flow Patterns

Distribution of ICD-9-CM
Case Type Flow Patterns Flow Patterns Procedures Codes
1. Lumbar PACU- > Floor 1.00 Removal FB spinal canal 3.01
Laminectomy Spinal canal explor NEC 3.09
Excis spinal cord lesion 3.40
IV disc excis/ destruct 80.50
Spin canal struct op NEC 3.90
2. Craniotomy SICU->ISCU- > Floor .20 Other craniotomy 1.24
SICU- > Floor .80 Other craniectomy 1.25
Incise cerebral meninges 1.31
Other brain incision 1.39
Ex cereb meningeal lesion 1.51
Other brain excision 1.59
Elevate skull FX fragment 2.02
Ventriculostomy 2.20
Trigeminal nerv division 4.02
Loc exc bone lesion NEC 77.69
Cranial puncture NEC 1.09
Cranial osteoplasty NEC 2.06
Decompress trigem root 4.41
Part excis pituitary NOS 7.63
3. Aneurysm SICU->ISCU- > Floor .45 Intracran vessel excis 38.61
SICU- > Floor .55 Head/neck vessel excis 38.62
Clipping of aneurysm 39.51
4. Endarterectomy SICU->ISCU- > Floor .05 Endarterectomy NOS 38.10
SICU-> Floor .95 Head neck endarter NEC 38.12

The statistical validation of the critical care
simulation model, as described in the previous section,
actually represents an improvement over much
published work on simulation in health care, in which
formal validations are rarely conducted, or, if they are,
the specific results of the statistical analyses are rarely
presented. Nevertheless, the validation in this study
can be criticized for its limited comparison between
actual and model of the vanability in the census, by
only comparing the average monthly occupancies,
rather than the average daily occupancies. In addition,
the limited simulation run length of six months might
pose a problem if it is not a representative sample of
months.

Subsequent research on a similar, albeit simpler,
critical care simulation model included the validation of
the model in four different hospitals, comparing the
hospitals' average daily census (ADC) figures with
those predicted by the model (Lowery, 1991). The
validation consisted of comparing the hospitals' ADC

for a three month period with that predicted by the
model over a two-year simulation run (after a three-
month warmup). Every third daily observation was
used, to adjust for autocorrelation in the data. Actual
and model ADC in three critical care units (CCU,
MICU, and SICU), across four hospitals, were
compared. For all of the comparisons, the P-value was
> .20, suggesting the ADCs of the two sample
populations were not significantly different.

4.2 Analysis of Model Output

The analysis of the model's output for the study
hospital could best be characterized as "informal," in
that an experimental design was not employed to try to
determine which bed level configuration, out of a
number of different alternatives, resulted in the most
desirable predictions of hospital performance. The lack
of an experimental design was primarily due to hospital
staff's uncertainty regarding the range of bed level
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configurations and of the values of the demand
variables which they wished to consider. Without a
limited number of alternatives, the design becomes
extremely complicated, and/or the number of
simulation runs (and the analysis of the output)
becomes unwieldy. Instead, the hospital staff were
satisfied to review output for a few different demand
and bed levels, adjust the input values based on the
results or other new information, and review the new
output.

More systematic and rigorous analyses of model
output employ formal experimental designs. The 1991
study discussed earlier in which a critical care model
was validated in four hospitals used a formal
experimental design. One of the objectives of the latter
study was to identify those input variables that have the
greatest effect on the performance measures of interest.
To achieve this objective, a fractional factorial
experimental design was used to determine the number
of model replications, and the values of the input
variables for each replication. The output from 486
replications of the simulation model was analyzed using
multiple regression, with the input variables as
independent variables, and the performance measures as
dependent variables.

4.3 General Applicability of the Model

The design of the critical care simulation model,
including the numbers and types of units and the patient
flow patterns, is unique to the study hospital. While
other hospitals have similar units and similar patient
flow patterns, the critical care environments across
hospitals are sufficiently different that the results from
applying the model described herein cannot be
generalized to other hospitals. Research is ongoing to
design a comprehensive critical care simulation model
whose validity can be demonstrated for multiple
hospitals (Lowery and Martin, 1991).

The research includes identifying common
components of the patient flow patterns among multiple
critical care units in different hospitals. These common
components will be coded as separate "modules,” such
that a user can build his/her own critical care simulation
model by stringing together as many modules as
necessary, in the appropriate order, to represent a given
hospital. The objective is to enable a person without
knowledge of a simulation language to build a unique
model. In this manner, the technique of simulation can
become an easy-to-use planning tool for the critical care
area in multiple hospitals.
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