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ABSTRACT

This paper presents an alternative to the traditional
approaches to optimizing a stochastic response surface
subject to constraints. It focuses on the stochastic
nature of the response surface and the implications for
the subsequent optimization. This research presents a
three step process to evaluate stochastic response
surfaces subject to constraints. Step 1 |uses
experimental design to estimate the response surface
and covariance matrix. Step 2 samples the objective
function of the linear program (i.e., response surface)
and identifies the associated extreme points. Step 3
presents a method to identify the optimal extreme point
and present that information to a decision maker.

1 INTRODUCTION

To focus the discussion, consider the hypothetical
problem of allocating a fixed budget to purchasing
crews for a mixed fleet of aircraft such as Air Mobility
Command (AMC) heavy transports -- the C-5, C-17,
and C-141. Each type of aircraft has different
characteristics (e.g., material handling requirements,
crew size, parking space, speed, payload and fuel).
Because the planes are reliable, and because of safety
limits on the hours a crew may fly, there are actually
three or more crews per plane. The exact number of
crews per plane (called the crew ratio) which
maximizes cargo throughput for a given scenario can be
analyzed with a mix of simulation and linear
programming.

First, a simulation model would be used to derive
a response surface of throughput as a function of crew
Tatio and other variables. The simulation captures some
of the unpredictable events such as maintenance,
weather delays, variable service times and varying
system capability.  Second, an LP model would
maximize throughput considering the relevant
constraints, e.g., budget for crews, physical constraints
at en route stops, etc. Naive analysis treats the response
surface as a deterministic function, missing the fact that

the coefficients are random variables derived from the
simulation model.

The random, or stochastic, nature of the
coefficients in the response surface is at the core of this
paper. This paper is organized as follows. First, we
present some background to the problem. Next, we
discuss the impact of the stochastic nature of the
response surface in a constrained optimization problem.
Then we develop a practical means to identify the
"true" optimum point. Finally, we conclude the paper
with a summary and offer some recommendations.

2 BACKGROUND

Biles and Swain (1977) present several strategies for
constrained simulation optimization. They fit and
validate a response surface using an n-dimensional
simplex, biradial, or equiradial design. They account
for the variance of the error term, but assume the
"response surfaces are the expected values of the
observed responses.” They do not directly account for
the stochastic nature of the response surface, but use an
iterative method by applying an optimization procedure
and then returning to the simulation model until
stopping criteria are met. Their procedures include
direct search techniques, first-order and second-order
response surface procedures

Myers (1989) concludes that, "Many users of RSM
allow conclusions to be drawn concemning the nature of
a response surface and the location of optimal response
without taking into account the distributional properties
of the estimated attributes of the underlying response
surface.”

Morben (1987), in solving a "real world" problem,
demonstrates a case where using the expected value of
a stochastic objective function leads to an answer that
falls outside a 95% confidence bound found through a
Monte Carlo analysis. This case clearly demonstrates
there is a risk in some situations of using only the
expected value, and it makes the case for incorporating
some form of stochastic analysis.
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Figure 1: Three Step Approach

3 IMPACT OF ESTIMATION ERRORS

Figure 1 shows the overall layout of our three step
approach to optimizing a stochastic response surface
subject to constraints. Step 1 is similar to the
traditional approach which would estimate f in much
the same way. Here, however, we depart. The
traditional approach would take the estimates [3\ and
proceed to solve a single linear programuming problem
whose objective function coefficients are [3\ In this
section we detail the problems which arise from this
approach to the problem.

We viewed the simulation as a black box that
consists of a "Truth Model" plus noise. Simulation
output from a designed experiment allows us to
estimate a response surface that becomes the objective
function of a linear program. The functions:
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defme the optimal value z (or estimated optimal value
z )ofa linear program. Where

z* = ¢Tx true (or known) objective function

2" = ¢Tx estimated objectivc function

X=(X], X2, ..., X ) =vector of decision variables
A= constrmnt mamx

b = right hand side vector.

¢ = true surface coefficients underlying the
metamodel

€ = ¢ + € estimated coefficients of objective
function (resgonse surface),

with &~ N(0,62XTX)1)

where X is the design matrix used to estimate the
response surface. Smce we assume there is no bias in
the estimation of €, we can obtain 2" (the "true”

optimum) if we run the LP with the expected value of
the objective function coefficients:

2= LP(E(& A, b)) A3)

In general, ¥ is not equal to the expected value of the

linear program with respect to the objective function
coefficients. Thatis,

z —LP(cAb) LP(E(cAb));é
E(LP (&Ab))=E (2% @)

Further, as the standard error in the estimates of the
ﬁgefﬁ%iirlts increases, the bias in 2+ and the variance of
Z ,0%(z ), increases.

The objective function of a linear programming
maximization problem is a piecewise linear convex
function of the objective function coefficients, c.
Looking at this in one dimension for simplicity, as in
Figure 2, consider z as a function of the coefficient Cj-
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The slope of each piecewise linear segment, oy is
simply the value of the decision variable x; in the basis
that applies in region k. As the curve indicates,
decreasing values of ¢; are accompanied by decreasing
slopes, i.e. the variable x; is basic at a lower value, if it
is basic at all. If c; is small enough the ith variable
becomes nonbasic and further reductions in c; have no
effect. So too, increasing c; eventually loses its effect
when x; can be increased no further.

Assume the true objective function value of ¢; ,
call it cjy, lies in the kth piecewise linear interval.
Then,

for cj2cy wehave z(cp) 2 ayc; +2(0)
for ¢j<cj wehave z(c;) 2 agc; +2(0)

due to the convexity of z with respect to ¢;. Therefore,
E(z(c;)) 2E(oc; + z(0)) = z(E(cy)) = z(ci), 1llustrates
the point made in equation 4. Figure 2 also illustrates
the point that the bias, which is proportional to the
shaded area, will also be proportional to the variance in
the coefficients. A tight distribution will seldom
produce estimates that cross into adjacent piecewise
linear segments. The opposite is true of wildly varying
estimates of the objective function coefficients.

f[ci]

x.
1

not basic
here

—N

4

¢

noise added to the problem illustrates its effect on the
solutions. We investigated many different types of
problems. A variety of problems are described in
Harvey (1992). The results presented here are from a
linear program with four variables and three constraints,
where the coefficients of the objective function are 15,
17, 18, and 20.

Either positive or zero bias in the estimate of the
mean was present in all linear programming problems
analyzed as in Harvey (1992). Also, as the noise level
increased in a given problem the bias increased in a
roughly linear trend; here the bias is the mean estimated
optimum minus the true optimum,

Bias= E(2)-2" ®)
Figures 3 and 4 illustrate a typical case where the

standard error = g(objective function coefficients), the
sample size is 1000.
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Figure 3: Basis Inflation

The bias increases as the standard error increases, a
bias of 20 equates to 10% of z*, 40 to 20% of z*. The
standard deviation of 2 follows a similar trend as shown
in the Figure 4.
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Figure 2: Noise Impact & Bias

With these observations in mind, we performed
experiments to illustrate the bias identified in Equation
4. The computer program samples from a "Truth
Model" with noise, generates a response surface, and
then uses it as the objective function of the linear
program. Solving the LP for the estimated optimal
value and the estimated optimal extreme point, these
are then compared to the true optimal extreme point
and its objective function value. Varying the amount of

1

2

3

Standard Error
Figure 4: o(z*) Inflation

Hence, one can expect as o(parameter estimates)
incteases' n/c\;i. only does the bias increase, but the
variance in z_ increases.

Figures 5 and 6 take a different view of the
problem. In these figures we plot the objective function
values on the vertical axis for 8000 samples of the
objective function coefficients, and then sort them in
descending order within each extreme point. That is,
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Figure 6: Indicated z* vs. Actual * = 3.25

for a particular sample of ¢ we record the objective
function value, its chosen extreme point, and the "true”
optimal extreme point. The objective function values
are then collected and ordered by extreme point.

For any given extreme point the distribution of
values are approximately normal. Consider that for a
given extreme point (i.e. fixed values of the x;'s),

z*=cCyxy +CXp +C3X3+...+ CpXp . ©6)

When examining a particular extreme point the ¢; may
no longer be normally distributed, since we have a
restricted sample of the original ¢; values. By Central
Limit Theorem arguments, the summation in equation 6
will produce a curve resembling a cumulative normal
distribution at each extreme point.

Note that even in choosing an incorrect extreme

. . . Ak

point (and hence, an inferior strategy), Z can be mucll
higher than even the "true" optimal extreme point z .

When o = 2.25 (as in Figure 5), visits to the "true"
optimal extreme point occur about 14% of the time, and
about 98% of the solutions are "close” to the "true"
optimal extreme point. When 6 = 3.25 (as in Figure 6)
visits to the "true” optimal extreme point occur about
7% of the time, and about 92% of the solutions are
"close" to the "true” optimal extreme point.

When o = 4.25 (figure not shown) visits to the
"true” optimal extreme point occur about 6% of the
time, and about 91% of the solutions are "close" to the
"true” optimal extreme point.

The two principal problems then are the bias in the
estimate of the optimal value and the difficulty in
identifying the correct or optimal strategy (extreme
point). Other techniques must be investigated to put
this information into practical application.
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4 SAMPLING EXTREME POINTS

We can obtain limited information about the true
solution from a single realization of the process. The
estimated extreme point may lead to a highly biased
solution compared to the true extreme point. Step two
shows how to obtain the true extreme point using two
methods. The first method samples the generated
objective function (in a Monte Carlo fashion) using the
variance-covariance matrix from the regression analysis
and catalogs the extreme points visited. The second
method samples the generated objective function
through a design and catalogs the extreme points
visited.

As a starting hypothesis, this research assumes that
given an initial response surface, its associated
variance-covariance matrix, and a large enough sample,
we will capture the extreme point corresponding to the
optimal solution.

In investigating the Monte Carlo approach we
generated samples of the objective function in various
specified sizes. We chose these sizes to correspond to
the sample sizes required in the experimental design
alternative so we can compare the success rate for each
level of effort. Each sample objective function inserted
into the linear programming problem either yields the
true extreme point or not. Obviously the success rate
improves as the sample size grows. Repetitively
generating these samples enables us to estimate the
percentage of times the true solution is captured in a
sample of a given size. We generated all samples from
the (sampled) multivariate normal distribution
describing the response surface (objective function).
Table 1 shows the results of the Monte Carlo sampling.

Table 1: Monte Carlo Samples

Standard 25 1125 225]325]4.25
Error
N =49

% miss "true” 12 40 58 123 18.6
N=74

% miss "true” 1.0 22 43 779 125

N =100

% miss "true” .8 1.8 26 52 100
N =200

% miss "true” 1.0 18 26 52 100
N =300

% miss "true” .8 1.3 1.5 23 37
N =500

% miss "true"” .5 .9 13 19 3.1

An advantage to Monte Carlo sampling is that if
the analyst has the time and resources, and wants to be
conservative, the size of Monte Carlo samples could be
increased indefinitely. While Monte Carlo sampling is
the least efficient of the options presented here, if the
analyst is willing to take enough samples it could be the
most effective in sampling the "true” optimal extreme
point.

We chose an experimental design as an alternative
to the Monte Carlo approach. We investigated the
application of a Box-Behnken design from Box and
Draper (1987) to the space of ¢. The goal is to capture
that true extreme point by systematically investigating
the region around our best estimate of the objective
function coefficient, ¢,

First we used a modified (only one sample at the
zero level) Box-Behnken design. This procedure
proved somewhat effective. The sampling was done by
varying the estimated objective function coefficients by
a percentage of their estimated standard deviation
(called standard deviation multiplier) in a method
prescribed by the design. This approach was reasonable
because we used an orthogonal design to sample the
original "Black Box Simulation” to estimate the
response surface, as a result, there are no off-diagonal
elements in the variance-covariance matrix. A more
complicated method may be suggested if off-diagonal
elements were present, but it seems an initial
orthogonal design is a reasonable approach. Tests using
a single Box-Behnken design showed limited success.
It appears this single design is inadequate to sample the
"true” extreme point.

The second modification to the standard Box-
Behnken design was to double the length of the design
by sampling at each design point twice. For every
identical pair of design points different standard
deviation multipliers were used. In effect, a three-level
design was transformed into a pseudo five-level design.
It is not a true five-level design because each design
point has only three levels. It is really the same design
run twice with two different standard deviation
multipliers. Results with the double Box-Behnken
design are superior to sampling in a Monte Carlo
fashion 49 times (see Table 2). Results over a broad
range of problems indicate this design is superior, but
not dramatically, to an equivalent number of Monte
Carlo samples. In general, either case fails to give
confidence in the results.

The next modification includes adding a third
Box-Behnken design to the previous two designs and
sampling it at a different standard deviation--this is a
pseudo seven-level design. In essence, this is
equivalent to sampling from three consecutive designs.
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Table 2: Box-Behnken Samples

Table 3: 5-Level Box-Behnken Type Design

Standard Error | 25 | 1.25 [ 2.25]3.25] 425

Standard Error | 25 | 1.25 ] 2.25 | 3.25 | 4.25

Standard Dev 2.5

Standard Dev 2.5

(Single) Single

% Miss "true" .2 .8 11.5 327 41.6 % Miss "true” .5 1.8 21 53 11.2
Standard Dev 1.5, 3.0 Standard Dev 1.5, 3.0

(Double) Double

% Miss "true” .25 0.0 165 9.1 203

% Miss "true” .2 3 1.0 26 6.8

Standard Dev .5, 1.75, 3.0 Standard Dev 1.5, 275 4.0
(Triple) Triple ,
% Miss "true” 0.1 0.2 0.8 5.0 10.6 % Miss "true" 0 0 0 .5 2.2

The triple Box-Behnken design had good results,
but required more samples. In this case, the triple Box-
Behnken design (with four decision variables) required
74 design points. This can be compared to Table 1 with
the Monte Carlo experiment of sample 74.

Again there is an advantage to the design over the
equivalent number of Monte Carlo samples. The main
advantage to a Monte Carlo approach is that the number
of samples can be arbitrarily increased to achieve the
confidence desired, this may be desirable if a higher
confidence in the solution in needed than is possible
with this design. To this point, each design was an
improvement over an equivalent number of Monte
Carlo samples, but no design gave a high success rate at
higher noise levels.

In an effort to improve the success rate with
higher levels of noise we investigated another type of
modification to the basic Box-Behnken design. In this
case, we modified the basic structure at each design
point. Instead of sampling at the design points using a
three-level approach of 1, -1, or 0, this new design was
a true five-level design where each design point was
sampled with some combination of 1, -1, .5, -.5, or 0.
This modification doubles the length of the design and
at each design point alternatively samples from either 1
or .5.

The single modified 5-level Box-Behnken design
has 49 design points, the same number as the double
Box-Behnken design presented in table 2. The 5-level
design has a higher success rate in sampling the "true”
optimal extreme point than either the double Box-
Behnken design, or an equivalent number of Monte
Carlo samples. The 5-level Box-Behnken design
represents an improvement when sampling at higher
noise levels, but the errors could still be considered
significant, see Table 3.

A further modification attempts to decrease the
errors in sampling the "true” optimal extreme point by
doubling the design and choosing a different standard
deviation multiplier for the second half of the design.
This modification is analogous to the change creating
the double Box-Behnken design. This design creates a
pseudo nine-level design. Table 3 contains the results
of 1000 replications of this design.

The double modified 5-level Box-Behnken design
gave excellent results. This design gave the best results
for methods with about 97 samples, and it is
competitive with a Monte Carlo method of 200
samples.

In the next modification another modified 5-level
design is added and sampled at a different standard
deviation. This pseudo 13-level design (four variables)
has 145 design points. The results in Table 3 show the
results are excellent.

The triple S-level Box-Behnken design was
superior to all other designs and even superior to 500
Monte Carlo samples. This design provides excellent
sampling in a relatively efficient manner. The main
drawback is that it requires 145 samples with only four
variables.

Another interesting consideration is the number of
extreme points visited with different sampling
techniques. If one sampling method provided high
accuracy, but required more extreme points to be
sampled, then it might not be the best design to employ.
Fortunately, no design greatly increased the number of
extreme points sampled. Table 4 illustrates the total
unique extreme points sampled for 200 Monte Carlo
samples and two 5-Level designs -- results are typical
of all sampling options.
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Table 4: Total Unique Extreme Points

[“Standard Error [ 25 1125225 [3.25[425

200 Monte Carlo

#unique ext. points 3 4 6 8 9

Double 5-level Box- 1.5, 2.5
Bebnken Type

# unique ext. points 2 3 5 8 8

Triple S-level Box- 1.5, 275 ,4.0
Behnken Type

# unique ext. points 2 4 5 7 8

5 Screening Extreme Points

In this research, only the objective function is
stochastic and therefore only optimality, and not

feasibility, is an issue. Using previously recorded
solutions we can evaluate new samples to decide
whether the linear program needs to be solved. The
optimality condition, for a maximization problem, in
the general case is:

¢-gpBlaco )

where

= estimated objective function

p = estimated coefficients of the basic
variables

B-! = basis inverse

A = constraint matrix

A
C
A
C

As new extreme points are sampled their corresponding
basis inverses are stored and used to screen new
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Figure 6: Sample Case Histogram Comparison
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objective function samples. For every new sample of
the objective function we cycle through Equation 7
until we satisfy the optimality condition. If the
optimality condition is never satisfied we then solve the
linear program to identify a new basis. Using this
scheme we solve a linear program only once for each
unique extreme point sampled. The improved
efficiency will vary from problem to problem and will
also depend on the number of objective function
samples, but improvement can be measured in orders of
magnitude. Applying this technique greatly increases
the practicality and efficiency of the technique. Using
this screening procedure makes a strong case for using
the triple 5-level Box-Behnken design approach with a
large number of samples.

6 SELECTING THE OPTIMAL EXTREME POINT

After identifying the feasible extreme points, we no
longer need the linear program, and the decision
variable settings at any extreme point are used as input
to the simulation to estimate z*. Once we select a set
of decision variable settings, we move to Step 3 in the
solution process and the problem becomes selecting the
"best" option.

Law and Kelton (1991) present ranking and
selection procedures that offer an alternative to the
brute force method (independently sampling extreme
points) presented above. This ranking and selection
procedure was used to analyze the extreme points
sampled by the double Box-Behnken type design when
the standard error equals 3.25.

After performing a ranking and selection
procedure we plot histograms using all simulation
samples from the best m alternatives. The histogram
can the aid the decision maker by visually representing
the possible realizations of the process at given settings.
Two important advantages are: avoiding risk by
choosing the smallest variance, and illustrating nearly
equivalent alternatives and allowing the decision maker
to consider factors not captured by the model. A visual
representation presents the decision maker with a
broader knowledge base from which to make a
decision. The histogram is a way to aid the decision
maker. In this example, all the actual variances are
equal, but the true strength of this method is when the
variances are different.  Figure 6 illustrates the
histograms of the top four alternatives -- dotted vertical
lines represent the estimated mean for each alternative.
An alternative to presenting a histogram of the data is
to plot the normal probability curve defined by the
estimated mean and variance. At this point the choice
is up to the decision maker.

7 CONCLUSIONS AND RECOMMENDATIONS

The results of this research clearly lead to the
conclusion that some kind of variance reduction
techniques applied to the simulation would greatly
benefit the analyst. If the analyst chooses to use the
traditional method of solving this kind of problem (with
only one realization of the process) variance reduction
procedures appear to be critical if he hopes to have any
confidence in the solution. If the analyst chooses to
follow the approach recommended in this research
variance reduction will play a key role in minimizing
the number of extreme points sampled and aiding in the
comparison between competing extreme points.

Please refer to Law and Kelton (1991) for
explanation of how to apply variance reduction
techniques. Some techniques that may be appropriate
here are: multiple replications, common random
numbers, antithetic random numbers, and control
variates.

This paper offers an alternative method to the
traditional approach of estimating a response surface
and then using it as the objective function of a linear
program. On the average the traditional approach will
overestimate the true mean response, and it is unlikely
we will choose the "true" optimal extreme point.
Variance in the estimates of the response surface
coefficients can lead to large variance in the estimation
of z* and a low probability of choosing the correct
optimal extreme point EP". By using the screening
procedure this general procedure may become practical
for general application.
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