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ABSTRACT

The weed seedling population in a field must be scouted
or sampled to choose the most appropriate
postemergence control treatment. The cost-effectiveness
of a scouting plan must be evaluated to confidently
recommend its use. We conducted simulation
experiments to evaluate scouting plans for use with a
microcomputer postemergence weed control decision
model for soybeans. The following were simulated: the
process of scouting, use of the decision model with the
scouting information, and the resulting profit from the
decision model’s recommendation. Simulations were
based on data from 14 North Carolina soybean fields.
While scouting is recognized as valuable for determining
if control is required, our results highlight the value of
scouting for choosing among treatments when the need
for control is obvious. Our results also indicate that the
scouting plan recommended for use with the decision
model is cost-effective. However, some risk averse
decision makers may wish to scout more intensively.
Use of simulation to evaluate weed scouting plans is
currently constrained by the lack of data on the cost of
scouting and the distribution of weeds within fields.

1 INTRODUCTION

This paper describes simulation experiments to evaluate
scouting plans for use with a decision model for
postemergence weed control in soybeans. Use of
postemergence herbicides in place of preemergence, soil-
applied treatments is being encouraged as a strategy to
reduce the risk of contamination of groundwater and
surface water. Preemergence treatments are applied to
the soil before weeds emerge while postemergence
treatments are applied to emerged weed seedlings.
Consequently, the population may be observed before
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postemergence treatment to determine if fields, or
portions of fields, may be left untreated and to match
treatment to the mix of weeds present.  Since
postemergence treatments are applied to emerged weeds
rather than the soil, less chemical may reach the soil.
Overall herbicide use may be reduced as well because
many of the new postemergence chemicals are very
active and adequate control may be achieved with small
amounts.

Microcomputer decision software is available for on-
farm help in choosing postemergence weed control for
some crops and more models are being developed
(Mortensen and Coble, 1991). To use most of these
decision models, the density of each weed species
present in a field must be estimated by "scouting” or
sampling the weed population. Since counting and
identifying weeds can be time consuming and expensive,
just a small portion of the field is examined. The
procedure used to obtain these density estimates will
influence their accuracy and, ultimately, the quality of
the recommendation generated by the decision model
(Ives and Moon, 1987). A robust, cost-effective
procedure or scouting plan for obtaining these density
estimates is needed.

A scouting plan outlines how to collect information
about a pest population in a field in order to make a
control decision (Ives and Moon, 1987; Southwood,
1976). When weed density by species must be estimated
to choose a postemergence weed control strategy, the
scouting plan specifies the size and shape of the quadrats
(sample units) in which weeds are to be identified and
counted, the number of quadrats to be examined
(sampling intensity) and the method for selecting the
location of the quadrats within the field (sampling
strategy).

A scouting plan is designed to achieve a balance
between the cost of scouting and the value of the
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information obtained (Ives and Moon, 1987; Southwood,
1976). The information is valuable from the perspective
of preventing mistakes in selecting the most appropriate
control treatment and thereby preventing unnecessary
herbicide use or yield loss. The scouting plan should
specify the most cost-effective method of collecting the
required information and the amount of information that
should be collected. Just enough information should be
collected so that the cost of collecting any additional
information would exceed the value of that information.
The optimal design for a scouting plan is influenced by
the cost of scouting, the sensitivity of the
recommendation to the scouting information, and the
characteristic spatial distribution of the pest (Ives and
Moon, 1987; Southwood, 1976).

Our objectives for this paper are to 1) discuss the
advantages of using simulation to design weed scouting
plans, 2) summarize our simulation experiments for
evaluating weed scouting plans for a particular
postemergence weed control decision model, and 3)
highlight some challenges in evaluating weed scouting
plans with simulation.

2 THE ADVANTAGES OF SIMULATION
EXPERIMENTS FOR EVALUATING WEED
SCOUTING PLANS

Currently, most weed scouting is intuitive and
unstructured. In contrast, there are numerous examples
of insect scouting plans in use which have been evaluated
in simulation experiments or analytically derived from a
statistical description of the insect’s characteristic spatial
distribution. Unfortunately, weed scouting involves
problems which are not encountered with insects. Insect
control decisions are usually a choice between one or
two potential treatments for control of a single species.
The spatial distribution of the insect may be fairly
consistent and easy to describe. Postemergence weed
control decisions commonly involve choosing among
many potential treatments for control of a mix of weed
species. The spatial distribution of these mixed weed
populations may be difficult to characterize (Wiles et al.,
1992a). The complexities preclude analytical and
statistical approaches to designing scouting plans but can
be readily included in a simulation.

Simulation has several advantages over testing weed
scouting plans in actual fields. In the field, there is a
limited period of time during which plans can be tested
in a single field if the weeds are to be controlled. With
simulation, the field is always available; candidate
scouting plans do not have to be identified before going
to the field and results with one plan can guide

development of additional plans. In addition, there is
more complete information about simulated fields than
real fields. The information obtained according to
different plans can be compared against "perfect
knowledge” of the weed population rather than just the
information obtained using other scouting plans. The
profit and/or yield with the recommendation from each
scouting plan can be simulated and compared. A real
field may be treated only once.

3 SIMULATION EXPERIMENTS TO EVALUATE
SCOUTING PLANS FOR HERB DECISIONS

HERB is a commercially available decision model for
postemergence weed control in soybeans (Wilkerson,
Modena, and Coble, 1991). To use the program, the
average density of each weed species present in the field
must be estimated. A scouting plan for obtaining these
estimates is outlined in the user’s guide for the model
(Wilkerson, Modena, and Coble, 1988). The quadrat
size is 100 square feet. The sampling intensity is one
randomly selected quadrat per acre with a minimum of
ten quadrats observed in any field. The weed seedlings
within a quadrat should be identified and counted by
species. We evaluated this recommended scouting plan
and variations of it in our simulation experiments.

A realistic model of the spatial distribution of weeds
within a field is needed to accurately simulate the
information obtained by scouting and the yield loss from
uncontrolled weeds. The weed populations in our
simulation experiments were based on extensive sampling
of the populations in 14 North Carolina soybean fields
(Wiles et al., 1992a). An empirical joint distribution for
quadrat counts by species was constructed from the field
observations (Law and Kelton, 1982). This empirical
joint distribution was assumed to accurately represent the
composition and distribution of the population in the
field.

Each simulation tested a plan in a specified field and
involved four steps (Figure 1): 1) identifying the optimal
action for the field (OPTACT), 2) scouting, 3)
generating the HERB recommendation based on the
scouting information (SCTACT), and 4) evaluating the
quality of the generated recommendation. The optimal
decision (OPTACT, step 1) is the treatment that would
be recommended with "perfect knowledge" of the weed
population. For this step, a model of treatment efficacy
in response to environmental conditions and the yield
loss from remaining weeds was constructed using the
logic of HERB. The use of all treatments in a field was
simulated using this model and the treatment which
maximized profit was selected as OPTACT. Scouting
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(step 2) was simulated by sampling with replacement
from the empirical joint distribution constructed for that
field (Efron, 1982). The number of samples drawn
varied with the sampling intensity of the scouting plan.
The average density of each species in the sample was
calculated and these densities were used to generate a
recommendation with the decision model (SCTACT,

step 3).

Identify the Optimal
Control Treatment
for the Fleid
(OPTACT)

}

Scout
the Field

Use HERB and the Scouting
Information to Generate a Recommendation
(SCTACT)

L

SCTACT = OPTACT?

Calculate the C q 06
of a Mistake:

LOSS =
Proft(OPTACT) - Proft(SCTACT)

Figure 1: Flow Chart of the Steps in a Simulation

The decision analytic concept of loss was our measure
of the quality of the generated recommendation (step 4)
(Anderson, Dillon, and Hardaker, 1977; Gold, 1989).
The loss was calculated as the profit expected with
OPTACT, the optimal treatment, minus the profit
expected with SCTACT. The model constructed for
step 1 was used to determine both profits. Loss reflects
the decision maker’s perspective on the accuracy of
scouting: inaccurate density estimates are a concern only
if the inaccuracy leads to a mistake in choosing the
optimal treatment. If the recommendation based on the
scouting information was the optimal action (SCTACT
= OPTACT), then the loss was $0. If the
recommendation was another treatment (SCTACT +
OPTACT), then the loss was a value greater than $0
with larger values indicating more serious mistakes.

Since environmental conditions influence the control
expected with a herbicide treatment, each plan was
simulated for every combination of a field and six sets of
environmental conditions. Since all the scouting plans
involved random selection of sample units, simulation
of a scouting plan for a field/environmental conditions

combination was replicated. Crop selling price and
herbicide and application costs were not varied in the
simulations. In all, a plan was simulated 6300 times (14
fields x 75 replications x 6 sets of environmental
conditions).

4 RESULTS

Our results for the recommended scouting plan, shown
as box plots (Tukey, 1977) by field, indicate that
scouting according to the recommended plan is cost-
effective (Figure 2). For all fields except 6 and 9, the
median of the distribution of losses was zero. That is,
in at least 50% of the simulations for all fields except 6
and 9, the optimal action was selected based on the
information obtained by scouting (OPTACT =
SCTACT). Further, the optimal action was selected
based on the scouting information in at least 75% of the
simulations for fields 10 and 14. The average loss in
profit with this plan was $7.78 field'. However, the
largest loss was nearly $200 (field 7). Decision makers
vary in their attitude towards risk-taking (Anderson,
Dillon, and Hardaker, 1977). Consequently, some risk
averse decision makers might prefer a more intensive
scouting plan than the recommended plan. Observing
additional quadrats would be insurance against the rare,
but expensive mistakes.
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Figure 2: Box Plots by Field for the Distribution of
Losses Simulated for Scouting According to the
Recommended Plan

Growers are customarily advised to carefully scout
when the population in the field is so low that it is not
obvious whether the benefit from treatment will exceed
the cost. Less emphasis is generally placed on scouting
when the need for comtrol is obvious. In our
simulations, however, scouting was also shown to be
important for matching treatment to the composition of
the population (moderate to high total weed density), not
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just for deciding if control is needed (low total weed
density) (Figure 3). In fact, the most expensive mistake
was the result of choosing an inappropriate treatment.
Choosing the wrong herbicide can be expensive and
scouting may help prevent this type of mistake.
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Figure 3: Box Plots by Total Weed Density for the
Distribution of Losses Simulated for Scouting According
to the Recommended Plan

Besides the recommended scouting plan, we simulated
plans with different sampling intensities (the number of
quadrats observed per acre). Lack of data on the costs
of scouting prevented us from recommending a sampling
intensity based on our simulation results. However,
using a rough cost estimate we can illustrate one
approach for identifying the appropriate sampling
intensity. More intensive scouting is only worthwhile if
the value of the additional information is expected to be
greater than its cost. Loss, as a measure of the quality
of decision making, quantifies the value of scouting.
When additional sampling is valuable, the average or
expected loss should decrease. Increasing the sampling
intensity should be recommended only if the decrease in
loss is greater than the cost of the additional scouting.
Assuming that the average cost of counting and
identifying weeds in a quadrat is $0.40 (G. Oliver and
A. York, Department of Crop Science, North Carolina
State University, personal communication), observation
of two quadrats per acre would be recommended. (Table
1).

Expected loss as a criterion for evaluating sampling
intensity is consistent with a risk neutral attitude of the
decision maker. There are other approaches for
examining the simulation results when the risk attitude of
the decision maker may be a concern. For example, the
cost of scouting may be added to the loss from a
simulation to create a distribution of "total loss.” Then
that distribution may be analyzed by stochastic
dominance techniques (Anderson, Dillon, and Hardaker,

1977) to suggest an optimal sampling intensity consistent
with specified risk attitudes.

Table 1. Expected losses simuiated with different sampling intensities.

Value of Cost of
Increase in  Increase in

Sampling Expected  Sampling Sampling
Intenmcy Loss Intensity Intenmity
(quadrats acre™) (§ field"y  ($ field?) ($ field")
1* $7.78 - -
4.19 3.59 2.80
3 2.81 4.97 5.60

*Sampling intensity of scouting plan recommended for use with HERB.

5 SUMMARY,
CHALLENGES

CONCLUSIONS, AND

Concern for the profitability and environmental impacts
of crop production makes avoiding mistakes in herbicide
use imperative. We expect that well-designed scouting
plans will become an important type of tool for making
appropriate weed control decisions, whether or not a
decision model is used. We have demonstrated a
simulation methodology for evaluating weed scouting
plans. This methodology has advantages over testing of
weed scouting plans in actual fields and it may be more
feasible than theoretical development of scouting plans
for mixed populations. However, we need more data
and more sophisticated models of weed distribution
within fields to fully use this methodology.

Meaningful simulation output relies on realistic inputs.
We know little about the costs of weed scouting or the
spatial distribution of weeds within fields. The limited
data indicates that spatial distribution is apparently highly
variable between fields and weed species (Wiles et al.,
1992a). Because of this natural variability, many fields
will have to be studied to characterize weed distribution.
This lack of data is being addressed by several research
groups.

We need a more sophisticated, two dimensional model
of weed distribution within a field. When weed
distribution within a field is described with a statistical
distribution, only scouting plans which use random
selection of the quadrats can be simulated. The
distribution of weeds within fields is best characterized
with a negative binomial distribution; apparently weeds
occur in patches (Marshall, 1988; Wiles et al., 1992a).
In this case, more structured selection of quadrats, such
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as stratified random sampling, may lead to better density
estimates than random sampling (Southwood, 1976). It
may soon be possible to accurately map the weed
population in a field using geostatistical analysis (Johnson
et al., 1991; Halstead, Gross, and Renner, 1990). More
structured selection of quadrats can be simulated if weed
distribution is characterized with a geostatistical map
instead of an empirical joint distribution.

Proposed scouting plans must be evaluated against
actual scouting practices. Currently, a scout may
randomly walk through a field until a patch is observed
and then carefully examine or randomly sample the patch
to estimate its composition. Simulating this type of
scouting will be challenging and a map of the weed
distribution will be needed. Combining simulation and
field experimentation is an alternative. In place of
simulating current scouting practices, we may have
growers or consultants scout an actual field and
recommend treatment. Then the weed population in that
field would be accurately mapped to conduct the usual
simulation of proposed scouting plans along with
simulation of the results of the recommended treatment.
With an estimate of the cost of the actual scouting
practices, the practices may then be compared to the
plans which are only simulated.

The methodology we have outlined should prove useful
in exploring other aspects of weed management decision
making. It may be adapted to scouting for
postemergence decisions in other crops if a decision
model exists or if the usual decision process can be
modeled. Decision models for soil-applied treatments
are being developed and tested (Mortensen and Coble,
1991). These models generate recommendations from
weed seed bank samples which are assumed to
reasonably represent the seed bank in the field. The
methodology may be used to determine the best plan for
sampling the seed bank. Finally, the methodology may
be adapted to evaluate alternative decision models. In
this case, one scouting plan would be used in step 2, but
different models could be substituted in step 3. This
approach has been used to evaluate decision models with
alternative assumptions about the yield loss caused by
weeds (Wiles et al., 1992b) and a decision model which
accounts for the uncertainty of weed density because
density estimates are obtained by scouting (Wiles,
Wilkerson, and Gold, 1992).
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