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ABSTRACT

Discrete-event simulation output processes are sel-
dom composed of independent and identically dis-
tributed random variables, but should be analyzed
with statistical methods because they are stochastic.
This tutorial presents the ideas underlying some of
the methods that have been developed for statisti-
cal analysis of output processes. References to rele-
vant work in the simulation literature and to standard
textbooks on the subject are provided for those who
are interested in deeper treatments of these methods
than can be given in the space allotted here.

1 INTRODUCTION

Simulation is an approach to systems modeling in
which the analyst hopes to obtain approximate an-
swers to relevant questions about complex models
rather than exact answers to questions about models
with analytical solutions (such as those provided by
queueing theory) that are rougher approximations to
the system under study. Because the approach taken
in simulation is to model the important components
of a system as closely as possible using realistic struc-
tural assumptions and probability distributions for
the important inputs, the outputs from a simulation
model are generally sequences of random variables
that have unknown probability distributions.

In one view, simulation can be seen as an attempt
to estimate some parameters of the unknown output
distributions, such as expected values, medians, or
95th percentiles. Thus, the analysis of simulation out-
put is necessarily statistical, meaning that the simu-
lation analyst must recognize the need to obtain ac-
curate point estimates of the output measures of in-
terest, as well as some measures of the precisions of
these estimates. The precisions of estimates obtained
from simulation models are usually given in the form
of confidence intervals around the point estimates.
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This tutorial is an overview of the ideas underlying
some of the methods that have been developed for sta-
tistical analysis of simulation output processes. These
processes usually require specialized techniques for
analysis because they have characteristics that pre-
clude the direct use of statistical methods that have
been developed for independent and identically dis-
tributed (IID) random variables. It is assumed that
the reader is familiar with basic statistical analysis of
IID random variables, and is looking to this tutorial
for an overview of what makes the analysis of simu-
lation output different from basic statistical analysis.

Those interested in further treatment of the meth-
ods discussed here should consult one or more of
the standard textbooks on discrete-event simulation,
such as Banks and Carson (1984), Bratley, Fox,
and Schrage (1987), Fishman (1978a, 1973), Kleijnen
(1987, 1975, 1974), Law and Kelton (1991), or Lewis
and Orav (1989); one or more of the survey works on
simulation output analysis, such as Banks, Carson,
and Goldsman (1990), Kleijnen (1982), Law (1983),
Law and Kelton (1984, 1982), and Welch (1983);
or the fine tutorials on simulation output analysis
published in previous editions of the Proceedings of
the Winter Simulation Conference, such as Goldsman
(1992), or Seila (1990b).

2 TWO SYSTEM TYPES

There are two types of systems that call for differ-
ent approaches for measuring the precisions of es-
timates obtained from the simulation models. In a
terminating system the model has specific “start-up”
and “shut-down” times. For example, a bank that
opens at 9 A.M. and closes at 3 P.M. would typi-
cally be modeled as a terminating system. A steady-
state system is one in which the model has no specific
start-up or shut-down times. For example, a factory
that operates twenty-four hours a day, seven days a
week would typically be modeled as a steady-state
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system. In terminating systems, the simulation an-
alyst is often interested in estimating parameters of
the distributions of the outputs obtained for the pe-
riod of time between start-up and shut-down, such
as the mean time spent by customers inside the bank
each day. In steady-state systems, the simulation an-
alyst is often interested in estimating one or more
steady-state parameters of the model. That is, the
analyst assumes that if the model is in operation long
enough, each output process will reach a state of sta-
tistical equilibrium, where the observations appear to
fluctuate randomly according to some fixed but un-
known distribution about which the analyst wishes
to learn. If so, the output process will exhibit sta-
tionarity, meaning that certain characteristics of the
underlying probability distribution (e.g., the mean,
variance, and the fixed-lag correlations) will be in-
variant to the passage of simulated time. These two
types of systems call for different methods of output
analysis, as described below.

2.1 Terminating Systems

Suppose that the operation of a bank is to be sim-
ulated with a simple model where customers arrive
to the bank, wait on line to be served if necessary,
complete their transaction and then leave the bank.
The analyst has set up the simulation model with the
assumed interarrival time and service time probabil-
ity distributions, and is now ready to run the model
to estimate the mean time spent by customers (their
“delay”) inside the bank each day.

A good procedure begins with running the simula-
tion model for a full day’s operation, keeping track
of each customer’s delay so that D;, the mean de-
lay for the first day’s customers, can be determined
as the arithmetic average of the delays of all cus-
tomers on the first day. This single value is the
sole recorded output from the simulation of the first
day’s bank operation. The analyst then runs the sim-
ulation model for several more days, recording the
mean delay for each day. After running the model
for n days, the analyst obtains an output sequence
{D1,D,,...,D,}. The elements of this output se-
quence are independent because independent pseudo-
random numbers were used as inputs for each day’s
simulated operation. The elements of the output se-
quence are identically distributed because the model
was unchanged from day to dayj; it is only because of
the use of different pseudorandom numbers that dif-
ferent mean delays were obtained for each day. Thus,
the output sequence {D;, D, ..., D, } is amenable to
analysis by statistical methods developed for IID ran-
dom variables.

A point estimate for the daily mean customer delay
in the bank is

D= iD.‘/n,
i=1

with the precision of this estimate given by the half-
width of the 100(1 — a)% confidence interval

\/Var(D)

D :f: tl_a/z(n et 1)__11,—’
where ¢ _5/2(n—1) is the 100(1—a/2)th percentile of
Student’s t distribution with n—1 degrees of freedom,
and n 0 D)2
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This method, called the method of independent
replications, is easily generalized. Instead of using the
mean customer delay on day 7 as the output D; in the
ith replication of the model, the analyst could have
recorded the 95th percentile each day, or the daily me-
dian customer delay (50th percentile). It is generally
agreed that the method of independent replications
is best for analyzing data obtained from terminating
simulations because we can ensure that the output
random variables are IID by using independent pseu-
dorandom numbers as inputs for as many replications
of an otherwise identical simulation model as we need
to achieve any precision that is desired.

See Heidelberger and Lewis (1984), Iglehart (1976),
Law (1980), and Seila (1982a, 1982b) for more infor-

mation on terminating systems and percentile esti-
mation.

2.2 Steady-State Systems

Now suppose that an analyst is simulating the factory
mentioned above that operates twenty-four hours per
day, seven days per week, and is interested in the
time-weighted average number of parts in the system
each day. Parts enter the factory, are transformed
in some manner by the manufacturing process, and
then leave the system. The simulation model is a
representation of the manufacturing process.

The analyst codes the model to begin simulated
time at midnight (denoted as time t; = 0.0) of the
first day, at which time the initial number of parts in
the system is counted and denoted as N, (to), where
the subscript “1” on N indicates the first day of sim-
ulated time. Throughout the first day, every time a
part enters or leaves the system the number of parts in
the system is counted and recorded as N, (¢;), where ¢;
is the time of the ith event (an arrival to or departure
from the system). Denote by e, the number of arrival
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and departure events occurring on day 1. In essence,
what has been recorded is the continuous-time pro-
cess for number in system on the first day (N, (t), for
0 <t < 24), because this function changes only at
times ¢1,?5,...,%.,. The first element of the output
sequence to be analyzed is found as

1 24

ﬂ 0 Nl (t)dta

i Ny(tj-1)[t; —ti-1]/24

Jj=1
+Ni1(te,)[24 - te,]/24,

n

Il

which is the time-weighted average number of parts
in the system on the first day of simulated time.

The analyst then sets N2(0.0) = N;(24.0), and
records the number in system at each of the e; event
times that the function N;(t) changes to obtain Y3,
the time-weighted average number of parts in system
on the second day, in a manner analogous to that in
which Y; was obtained. This is continued until the
sequence of observations {Y1,Y3,...,Y,} is obtained.

The elements of the sequence {Y3,Y3,...,Y,} are
not IID. Simulations of manufacturing systems typ-
ically need time to “warm up” before they reach
steady-state, so the initial observations are unlikely
to be distributed in a manner identical to the latter
observations. This problem—initialization bias—is a
consideration in virtually every simulation that re-
quires steady-state output. The usual solution for
the problem of initialization bias is to let the system
warm up and then discard the initial observations,
which are said to have come from the initial tran-
sient part of the simulation; the problem in practice
is to decide how many initial observations to truncate
in order to prevent the initial transient from affecting
the output analysis adversely.

The problem of initialization bias and its poten-
tial remedies are discussed by Chance and Schruben
(1992), Fishman (1972), Gafarian, Ancker, and
Morisaku (1978), Heidelberger and Welch (1983),
Kelton (1987, 1989), Kelton and Law (1983),
Schruben (1982, 1981), Schruben, Singh, and Tier-
ney (1983), and Wilson and Pritsker (1978a, 1978b).

Even if the random variables in the latter portion
of the sequence {Yl,Yz,...,Y,,} are identically dis-
tributed, these variables are not likely to be inde-
pendent, which is called the problem of autocorrela-
tion in the data. The average number of parts in the
system on one day is apt to be correlated with the
average number of parts in the system on the pre-
vious day(s) because the system is not re-initialized
each day. While the practice of not re-initializing is

in general the most realistic thing to do for model-
ing purposes, the autocorrelation in the data imposes
additional difficulties for output analysis. However,
several remedies have been suggested in the simula-
tion literature for the problem of autocorrelation in
the data.

3 STEADY-STATE ANALYSIS

Much effort has been expended on research into the
problem of how best to deal with the problem of au-
tocorrelation in data obtained from simulations op-
erating in steady-state. No single method has gained
widespread acceptance within the simulation commu-
nity for use on all models, and research into these
methods is ongoing. Some of the better known meth-
ods are described briefly below.

3.1 Independent Replications With Trunca-
tion

This method is similar to the method of independent
replications for terminating systems. In the indepen-
dent replications with truncation method, the steady-
state system is run several times starting from the
same initial conditions, but using independent pseu-
dorandom numbers for each replication. Usually the
analyst makes pilot runs and uses one of the methods
mentioned above to determine approximately when
the initial transient effect can be ignored, truncates
the output up to that point, and then uses the re-
maining elements in the output sequence for analy-
sis. This method has been viewed by some in the past
as too wasteful of computer time, but it is becoming
more viable as the cost of computing continues to
plummet. The advantage of this technique is that in-
dependent observations are sure to be obtained; the
disadvantage is the “wasting” of more observations
than does any of the alternative one-long-run meth-
ods, for which the analyst generates a large number
of observations with only one initialization of the sys-
tem. Using a one-long-run method makes it necessary
to truncate only one set of initial values to mitigate
the effects of intitialization bias, but then forces the
analyst to deal with the problem of autocorrelation
in the remainder of the output sequence. See Whitt
(1991, 1989) for further discussion of these issues.

3.2 Batch Means Method

The batch means method is a one-long-run attempt
to deal with autocorrelation in the data by combin-
ing adjacent autocorrelated observations in the out-
put sequence into (nearly) uncorrelated batches. The
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mean of each batch is calculated and the collection of
these means is then treated as a sequence of IID ob-
servations. Assume that the observations generated
during the initial transient period have been trun-
cated and the observations have been renumbered so
that the output sequence {Y7,Y3,...,Y,} is observed
while the simulation model is operating in steady-
state. The sequence is divided into m batches of k
consecutive observations, where n = mk. The mean
of batch i is

1 ik
X.'ZE Z YJ

J=14(i—-1)k

for 2 = 1,...,m and the overall sample mean of the
output sequence is

- 1 & 1o
X=—) Xi=-—- Y;,

while a 100(1 — a)% confidence interval for the mean
is

- Var(X)
X + tl_a/g(m - I)T,

where t;_,/2(m—1) is the 100(1—a/2)th percentile of
Student’s t distribution with m—1 degrees of freedom,
and

See Fishman (1978a), Law (1977), Schmeiser
(1982), and Schmeiser and Kang (1981) for more in-
formation on the batch means method.

3.3 Advanced Steady-State Techniques

Several other methods have been proposed for anal-
ysis of steady-state output processes. Proper use of
these methods relies on the validity of different as-
sumptions than made so far here about the output
processes, and requires a higher degree of statistical
sophistication on the part of the reader than has been
assumed here. These methods are not recommended
for novice analysts, but are mentioned briefly here for
informational purposes.

Regenerative Method. The regenerative
method calls for identifying random times at which
the output process regenerates (begins anew proba-
bilistically). The observations between regeneration
points can be used to obtain independent random
variables, which can then be analyzed in a man-
ner similar to one of those given above. The in-
terested reader should consult Crane and Iglehart

(1975), Crane and Lemoine (1977), Fishman (1977),
and Iglehart (1978).

Spectral Analysis Method. The spectral anal-
ysis method of estimating the variance of the sample
mean of an output process relies on the estimation of
the spectral density function of the process. The spec-
tral density function of a process is the Fourier trans-
form of the autocorrelation function of the process,
and can be used to form a confidence interval on the
mean of the process. This frequency-domain, time-
series technique is discussed further in Duket and
Pritsker (1978), and Heidelberger and Welch (1981a,
1981b).

Standardized Time Series. The standardized
time series method generalizes the notion of stan-
dardizing normal random variables to standardizing
output processes. The standardized process is then
used to form a confidence interval for the mean of
the process. See Glynn and Iglehart (1990), Golds-
man and Schruben (1990), and Schruben (1983) for
more information.

Autoregressive Method. This method involves
fitting an autoregressive model to the output se-
quence and using the estimated parameters of the
model to estimate the variance of the sample mean.
This variance estimate is then used to form a con-
fidence interval on the mean. This time-domain,
time-series technique is discussed further in Fishman
(1978b), and Schriber and Andrews (1984).

4 SEQUENTIAL METHODS

The methods described above are called fized-
sample-size methods because the simulation is run
until the specified number of observations n is gener-
ated, at which time a confidence interval is obtained
that will have some random amount of precision that
is determined by the half-width. In sequential meth-
ods the precision is specified in advance by placing
an upper bound on the half-width and running the
simulation to obtain whatever random number of ob-
servations is necessary to meet or exceed the specified
precision. The use of sequential methods places ad-
ditional demands on the simulation coding; see Fish-
man (1977), Heidelberger and Welch (1983), Law and
Kelton (1982), and Law and Carson (1979) for more
information.

5 COMPARING SYSTEMS

Arguably, it can be said that the greatest benefits of
simulation come from the ability to compare models
of alternative systems before deciding which actual
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system to put in place. The literature on compar-
ing systems can be divided roughly into two topics:
comparing two systems, and selecting the best subset
(possibly a singleton) from a group of several com-
peting systems. See Chapter 10 of Law and Kelton
(1991) and the references therein for an excellent in-
troduction to these topics.

6 VARIANCE REDUCTION

Simulation experiments are unique in that the source
of randomness can be controlled by the experimenter.
The pseudorandom numbers that drive the models
can sometimes be manipulated in ways that help
to increase the precision of the estimates obtained
from the model by reducing the variance of the esti-
mates, while still maintaining the random character-
istics necessary for a meaningful experiment. These
variance reduction methods can be a powerful method
of gaining more information from a simulation model.

The variance reduction methods using common
random numbers and antithetic variates rely on the
relationship

Var(aX +bY) =
a?Var(X) + b*Var(Y) + 2abCov(X,Y), (1)

where
Var(Z) = E((Z - E[2))?),

Cov(U, V) = E[(U - E[U])(V - E[V])],

and E[-] is the expectation operator.

Common random numbers are typically used for
comparing two or more systems and depend on the
induction of positive correlation between estimates X
and Y obtained from different systems. The simplest
use of antithetic variates depends on the induction of
negative correlation between estimates X and Y ob-
tained from different simulations of the same system.

6.1 Common Random Numbers

Using common random numbers can be as simple as
running two alternative systems with the same pseu-
dorandom inputs in the hope that observed differ-
ences in performances are due to differences in the
systems, and not due to the randomness of the in-
puts. The idea is to compare alternatives under the
same experimental conditions. In comparing two fac-
tory layouts, it seems reasonable to think that a good
way to compare them is to compare the average flow
(sojourn) times for the same jobs going through each

layout.

In a common random numbers scheme, two lay-
outs are simulated with the same n jobs arriv-
ing at the same times to each layout, with the
flow times for jobs going through the first layout
recorded as {X;,X,,...,X5}; and the flow times
for jobs going through the second layout recorded as
{Y1,Ys,...,Y,}. An estimate of the difference be-
tween average flow times for the two layouts is

X-Y= an(x,. - Y;)/n.

The precision of this point estimate depends on
Var(X — Y), which is given by (1) with a = 1 and
b=-1.

The use of common random numbers to gener-
ate the same arrivals to each layout implies that
Cov(X,Y) > 0, which means that Var(X — Y) is
smaller with common random numbers than it would
be if independent pseudorandom numbers were used
to generate independent arrivals to each layout (in
which case Cov(X,Y) = 0). Thus the use of com-
mon random numbers gives a more precise point es-
timate. However, note that if the analyst was not
careful in synchronizing the models—using the same
pseudorandom numbers for the same purpose in each
layout—and inadvertently coded the model so that
Cov(X,Y) < 0, the use of common random numbers
would give a less precise point estimate than would
the use of independent pseudorandom numbers.

6.2 Antithetic Variates

The antithetic variates method of variance reduction
is used to increase the precision of estimates obtained
from a single run of a simulation model. The idea is
to try to obtain pairs of observations on a single mea-
sure from two different runs of a simulation model in
which an observation that is above the true parameter
value in one run is countered with an estimate below
the true parameter value in the second run. Then
the sequence of averages of the pairs of estimates will
have smaller variance than either the sequence of the
first observations or the sequence of the second ob-
servations.

In a simple antithetic variates scheme, the sequence
of flow times for jobs going through a factory layout,
{X1,X,,...,X,}, is obtained by using pseudoran-
dom numbers {U;,Us,...,Uy} to generate random
variates that are used for different purposes in the
model (such as interarrival and service times). Then
the same simulation model is run to obtain flow times
{11,Y3,...,Y,} by using the complementary pseudo-
random numbers {1 — U;,1—Us,...,1— Uy} in the
same places that {Uy,Us,...,Un} were used in the



46 Charnes

first run (i.e., the models must be synchronized). An
estimate of the average flow is then obtained as

X ;L Y _ 3 (Xi +Yi)/(2n).

i=1

The precision of this point estimate depends on
Var(2£Y), which is given by (1) with @ = 1, and
1

The use of complementary pseudorandom num-
bers to generate the pairs of observations on the
layout implies that Cov(X,Y) < 0, which means
that Var(24X) is smaller with the antithetic variates
scheme than it would be if independent pseudoran-
dom numbers were used to generate pairs of observa-
tions on the layout (in which case again Cov(X,Y) =
0). Thus the use of antithetic variates gives a more
precise point estimate. Note that here, if the ana-
lyst didn’t synchronize the models, and inadvertently
coded the model so that Cov(-f, ?) > 0, the use of
antithetic variates would give a less precise point es-
timate than would the use of independent pseudoran-
dom numbers.

6.3 Other Variance Reduction Methods

Researchers are continuing to investigate the better
use of both the common random numbers and anti-
thetic variates methods of variance reduction as well
as their combined usage in a single experiment. Other
variance reduction methods include control variates—
taking advantage of correlation between estimates
and other selected random variables to reduce es-
timator variance, indirect estimation—using known
theoretical relations among estimates to reduce es-
timator variance, and conditioning—exploiting some
special property of a model to replace an estimate by
a known parameter value. Interested readers should
begin with Chapter 11 of Law and Kelton (1991),
Nelson (1992, 1987), and Wilson (1984).

7 MULTIVARIATE PROCESSES

The methods described thus far have been concerned
with analyzing single measures of performance, or
univariate output processes, but simulation analysts
will often be concerned with multiple measures of per-
formance, or multivariate output processes. For ex-
ample, an analyst might be interested in estimating
the mean customer delay in a bank for each hour of
the day (e.g., 9:00-9:59AM, 10:00-10:59AM, etc.) or
estimating the mean number of jobs at each of several
workstations in a factory. However, these measures
are almost always correlated.

Analyzing multivariate output processes sometimes
requires that the correlation among the performance
measures be taken into consideration. The preci-
sion for these correlated performance measures can
be given in the form of multi-dimensional confidence
regions. Many of the univariate methods given above
have been generalized to the multivariate case; see
Charnes (1990), Charnes and Kelton (1993, 1988),
Chen and Seila (1987), Seila (1990a, 1990b, 1984),
and Yang and Nelson (1988) for details.

A practical problem with using confidence re-
gions that account for correlation among perfor-
mance measures is that the regions are hard to in-
terpret. The Bonferroni Inequality provides the ba-
sis for one straightforward method of constructing
several univariate confidence intervals simultaneously.
See Charnes and Kelton (1993, 1988) for comparisons
of simultaneous confidence intervals and other confi-
dence regions.

8 CONCLUSION

Simulation experiments must be replicated several
times before the analyst should be willing to believe
that the obtained results are meaningful. Because
simulation output processes are random, statistical
techniques should be used for analysis of the output
data. However, “raw” simulation output processes
are seldom (if ever) IID.

Most of the methods of analysis discussed here in-
volve transforming the raw output processes in some
manner so that statistical techniques developed for
IID random variables can be used to analyze the
transformed processes. These methods are designed
to yield point estimates of performance measures
along with a measure of precision of the point es-
timate. The measure of precision is usually given in
the form of a confidence interval.

This tutorial is intended as a brief overview of the
ideas underlying some of the specialized techniques
that have been developed for analyzing simulation
output processes. Those readers wishing to learn
more about the details of these techniques should
start with one of the standard textbooks listed in
§1. Those interested in digging deeper into the meth-
ods should peruse the references given here for each
method, as well as the references provided in the stan-
dard textbooks.
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