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ABSTRACT

This tutorial shows how to build object-oriented simula-
tion models in C++. A set of object classes, called
YANSL, have been written in C++ for network based
simulation. Objects from YANSL are used to create a
network queuing model of the Harbor problem. Models
that use YANSL have the "look and feel" of existing
network simulation languages, but possess the benefits
of an object-oriented design, including the use of
classes, inheritance, encapsulation, polymorphism, run-
time binding, and parameterized typing. These con-
cepts are illustrated through several seemingly difficult
embellishments to the example, which actually extend
the language. Object-oriented simulations provide full
accessibility to the base language, faster executions,
portable models and executables, a multi-vendor imple-
mentation language, and a growing variety of comple-
mentary development tools.

1 INTRODUCTION

The idea of an "object-oriented” simulation has great
intuitive appeal because it is very easy to view the real
world as being composed of objects. In a manufacturing
cell, objects that should come to mind include the ma-
chines, the workers, the parts, the tools, and the con-
veyors. Also, the part routings, the schedule, the work
plan, and other information items could be viewed as
objects.

It is also quite easy to describe existing simulation
languages using object terminology. A simulation lan-
guage or simulation package provides a user with a set
of pre-defined object classes from which the simulation
modeler can create needed objects. For example, a net-
work-based queuing language will typically view a sys-
tem as having entity objects that travel through a net-
work of queue objects, being served by resource objects.
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Using the language (object classes), the modeler would
declare the network by defining the node objects and
their connecting branch objects. The node objects
would be described as queues and activities, with and
without resources, and sinks (where entities leave the
network). Pre-defined entity objects, sometimes called
transactions, can be made to arrive to the network
through source nodes. Most languages permit attributes
that can be altered to be attached to the transactions.
Resource objects and their behavior would need to be
defined. Simulation support objects include the distri-
butions, the global variables, statistical tables and his-
tograms. The modeler creates objects and specifies their
behavior through the parameters available. The inte-
gration of all the objects into a single packages provides
the complete simulation model.

Some simulation packages/languages provide for spe-
cial functionality, such as that needed for manufacturing
simulations. Object classes may be defined for ma-
chines, conveyors, transporters, cranes, robots, and so
forth. These special objects have direct usefulness in
particular situations.  Simulation packages centered
around such objects are directed at specific vertical ap-
plication areas such as AGVs, robotics, FMS, etc.

1.1 Two Critical Weaknesses of Existing Languages

Most simulation languages suffer from two important
weaknesses. Because the languages offer pre-specified
functionality produced in another language (assembly
language, C, FORTRAN, etc.), the user cannot access
the internal function of the language. Instead, a user
must rely on vendor description of the algorithms, pro-
cedures, and data used to implement the concepts. Only
the vendor can make modifications to the internal func-
tionality. Second, users have limited opportunity to ex-
tend an existing language feature. Some simulation
languages allow for certain programming-like expres-
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sions or statements, which are inherently limited. Most
languages allow the insertion of procedural routines
written in other general-purpose programming lan-
guages. However, none of this is fully satisfactory be-
cause, at best, they provide only procedural extension.
For example, it might be easy to write a procedure to
make a complicated computation of an activity time, but
if you wanted to create a different activity, there is in-
sufficient access to existing activity information. Any
procedure written cannot use and change the behavior of
a pre-existing object class and any new object classes
defined by a user in general programming language do
not coexist directly with vendor code. At a more fun-
damental level, the language structure may be inher-
ently awkward for some purposes. For instance, con-
sider the difficulties of modeling a tennis match using a
queuing network language. The new Arena software
(Pegden and Davis 1992) provides a template approach
to representing blocks of Siman statements so that
higher levels of models can be used directly (as can their
graphical representation). However, lower levels still
remain bound to the Siman language.

1.2 A Way to Overcome these Problems

Object-oriented simulation deals directly with the limi-
tation of extensibility by permitting data abstraction as
well as procedural abstraction. Data abstraction means
that new data types with their own behavior can be
added arbitrarily to the programming language. When
the new data type is added, it can assume just as impor-
tant role as implicit data types. For example, a user-de-
fined data type that manages complex numbers can be
as fundamental to a language ("first class") as the im-
plicitly defined integer data type. In the simulation lan-
guage context, a new user-defined robot class can be
added to a language that contains standard resources
without compromising any aspect of the existing simu-
lation language and the robot may be used where a more
complex resource was needed.

1.3 Purpose of this Paper

The purpose of this paper is to illustrate object-oriented
simulation using the C++ language (this paper is a
modification of the one from last year's conference, see
Joines, Powell, and Roberts 1992). C++ is an object-
oriented extension to the C programming language
(Lippman 1991). We will use C++ to illustrate the
"extensive/intensive" nature of object-oriented simula-
tion (OOS) within the framework of the popular net-
work-based simulation approach.

2 YET ANOTHER NETWORK SIMULATION
LANGUAGE (YANSL)

In order to illustrate the importance of object-oriented
simulation, we begin by describing a network queuing
simulation package of roughly the power of a GPSS
(Schriber 1991), SLAM (Pritsker 1986), SIMAN
(Pegden, Shannon, and Sadowski 1990), or INSIGHT
(Roberts 1983), but without the "bells and whistles."
Users familiar with any of these languages should rec-
ognize, however, that what we present is a very power-
ful alternative. For convenience, we call this language
YANSL (Joines, Powell, and Roberts 1992).

2.1 Basic Concepts and Objects in YANSL

When modeling with YANSL, the modeler views the
model as a network of elemental queuing processes
(graphical symbols could be used). Building the simu-
lation model requires the modeler to select from the pre-
defined set of node types and integrate these into a net-
work. The network is constructed about a set of entities
which are called transactions that flow through the net-
work. The transaction has exactly the same interpreta-
tion it has in the other simulation languages. The
transactions are routed through the network according
to some logic that represents the system being modeled.
Transactions may require resources to serve them at ac-
tivities and thus may need to queue to await resource
availability. Resources may be fixed or mobile in
YANSL, and one or more resources may be required at
an activity. Unlike some network languages, resources
in YANSL are active entities, like transactions, and may
be used to model a wide variety of real-world items
(notice this feature is, in fact, more powerful than some
existing languages). Although you may regard YANSL
as pale in comparison with existing simulation lan-
guages, we will demonstrate how easily a knowledge-
able user can extend its power and functionality.

2.2 The Harbor Problem

Ships on the ocean enter and leave a harbor (the inter-
ested reader can contrast this example with the TV In-
spection problem considered in Joines, Powell, and
Roberts 1992). Within the harbor, they dock at berths
where they load and unload cargo. Just as in other net-
work languages, transactions are used to represent the
ships. The resource needed is the berth. There are three
berths. The network is composed of a source node
which describes how the ships arrive, a queue for pos-
sible wait for a berth, the unload/load activity with its
requirement for the berth, and a sink where ships leave
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the harbor. Transactions branch from the source to the
berth queue, are served at the unload/load activity, and
branch to the sink. The data used in the simulation are
the interarrival time of ships, which is exponentially
distributed with a mean interarrival time of 5.8 minutes,
and the service time (unload/load), which is exponen-
tially distributed with a mean of 5.0 minutes.

2.3 The YANSL Model

The YANSL network has all the graphical and intuitive
appeal of any network based simulation language. A
graphical user interface could be built to provide
"convenient" modeling with error checking and on-line
help offered to the user. Whatever the modeling system
used, the ultimate computer readable representation of
the model would appear as follows:

/******************************

*oxx Simple Tanker Problem
*****A'*************************/

#include "simulation.h"

main()

{

// SIMULATION INFORMATION
Simulation tankerSimulation(l);

// DISTRIBUTIONS
Exponential interarrival( 5.8 ),
unloadLoadTime( 5 );

// RESOURCES
Resource< PRIORITY > berth([ 3 ];

ResourceSelection< ORDER > berthList;
berthList.addResource( berth, 3 );

// NETWORK NODES

/** Ships Arrive **/
Source< Transaction, DETERMINISTIC >
tankerSource( interarrival, 0.0, 480 );
// Begin at 0.0 and end at 480.0

/** Wait for a Berth **/
Queue< FIFO > berthingQueue;
/** Load/Unload **/
Activity< DETERMINISTIC >
unloadLoad( unloadLoadTime );
unloadLoad.addRequirement ( berthList );
berthingQueue.addActivity( unloadLoad );

/** Ships Leave **/
Sink finish;

// NETWORK BRANCHES .
tankerSource.addBranch( berthingQueue );
unloadLoad.addBranch(finish);

// RESOURCE SERVICES )
berth[ 0 ].addQueue( berthingQueue );
berth[ 1 ].addQueue( berthingQueue );

berth[ 2 ].addQueue( berthingQueue );

// RUN the simulation
tankerSimulation.run();
}

The previous model has the properties of any network
simulation language. There is an almost one-to-one
correspondence to the entities describing the problem.
No more information is needed than necessary (compare
this input with other simulation languages). The state-
ments are readable and follow a relatively simple for-
mat. The pre-defined object classes grant the user wide
flexibility.

While the "statements" in YANSL are very similar to
those in SIMAN, SLAM, or INSIGHT, it is all legiti-
mate C++ code -- which will be discussed in detail later.
Also, this model runs in less than half the time a SI-
MAN model runs on the same machine! But the real
advantage of YANSL is its extensibility.

2.4 The Objects and their Specification

Lets take a closer look at the YANSL "statements." The
model is enclosed in a recognizable C framework,
namely having a #include statement that includes all
that the simulation requires, a main () function header,
and {} which enclose the block of code (YANSL state-
ments). This framework is left only to reveal it is C++
code, as even these could be eliminated by the C pre-
processor commands that would take a Begin and End
and StartSimulation for the conventional C to-
kens. Also, the more clever programmer could accept
other more intuitive information and convert it to the
YANSL format.

The YANSL simulation consists basically of two
types of statements. The first is the declaration of ob-
jects in the model and the second is function calls to
structure the model. The same division of statements
occurs in existing simulation languages. The only order
requirement for statements is that an object must be de-
clared before it is used. Thus, we decided to order the
statements by declaring first the general information
needed (like the distributions) and then we specified the
network entities (resources, nodes, and branches).

2.4.1 Object Declarations

The objects in YANSL are declared in a form consistent
with C and C++ . The object class is specified first,
then the objects are named. Initialization of specific
objects are done in parentheses. For instance,

Exponential interarrival( 5.8 ),
S )

unloadLoadTime (
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creates two exponential distributions whose names are
interarrival and unloadLoadTime and whose
initialization parameters are given in parenthesis. It is
important to note that the mean unload/load time is
specified as an integer 5, but in fact it is assumed to be
floating point.  This illustrates a simple case of
"overloading." Here, initialization of the interarrival
object can take either an integer or a floating point pa-
rameter. In object-oriented terminology, exponential
objects are initialized by either an integer or floating
point object.

Some object declarations appear more complex be-
cause the object class is also parameterized by informa-
tion in <>. In object-oriented terminology, these are
called "parameterized types." A parameterized type is
used when the class itself needs some information. This
parameterization should not be confused with initializa-
tion of objects where the object needs some information.
As an example, consider

Activity< DETERMINISTIC >
unloadLoad( unloadLoadTime );

where the Activity class needs some branching
method class called DETERMINISTIC, while the object
unloadLoad is initialized with a reference to the un-
loadLoadTime object. Notice that a class will be
parameterized with another class (and possibly objects),
while an object is parameterized with another object.

Because YANSL is really C++, all the "built-in"
classes from C++ are directly available to the YANSL
user. These include integer, float, char, etc.
Further, in an effort to give our YANSL users a full
range of "nice" basic classes, such classes as String,
List, and dynamic Array with range checking are
also available. Because an object-oriented language
doesn't distinguish any differently between the C++
classes and the ones we have added, use of all these
classes is very similar. In the computer literature, this
property of having user objects treated like built-in ob-
jects means everything is treated as a "first class."

2.4.2 Using the Objects

The other "statements" in YANSL provide direct use of
the objects. These are actual function calls in C++. In
object-oriented terminology, it is called "message pass-
ing." For example,

berth[ 2 ).addQueue( berthingQueue };

the message addQueue with berthingQueue ob-
ject as a parameter is sent to the berth[ 2 ] object.
In C++ terminology the addQueue function in the

berth[ 2 ] object is passed the berthingQueue
object. The purpose of this message/function is for the
berth to know that it is to service the queue of the un-
load/load activity when it is free to choose what to do.

Notice the "encapsulation” of functionality. The re-
source class obviously has the ability to accept informa-
tion about what a resource is to do when it is available.
All this is contained in the resource class. Suppose you
want some different functionality of resource behavior.
Now all the changes would be confined to the code in
the resource class.

The YANSL functions are used to specify the func-
tioning of the objects in the simulation. The add-
Queue specifies what queues the resources serve, the
addBranch specifies how transactions branch from
the departure nodes, the addActivity associates the
activity with the queue, and the addRequirement
specifies the resource requirements at the activities. Fi-
nally, the tankerSimulation.run causes the
simulation execution to begin.

2.5 Running the Simulation

The prior model is compiled under a C++ compiler (a
compiler should be AT&T version 3.0 compatible),
linked with the YANSL simulation library, and exe-
cuted. Currently, the YANSL simulation library has
been compiled under Borland C++ 3.1 (Borland 1992).
C++ is strongly typed, so error checking is very good.

Also, the simulation is easily linked into other C++
libraries which may be used for graphics and statistical
analysis. In a sense, YANSL has the same relationship
to C++ that GASP IV (Pritsker 1974) has to FOR-
TRAN. The major difference is that whereas GASP was
a set of FORTRAN functions that the model builder
called, YANSL is a set of both the functions and their
data organized about simulation objects (rather than
simulation functions).  As such, YANSL is more like
SLAM, but fully compatible with the entire C++ lan-
guage, rather than simply permitting general procedures

to be "inserted" into a specific simulation structure like
SLAM.

3 CLASSES AND THEIR USE

The class concept is fundamental to object-oriented
software. The classes provide a "pattern" for creating
objects. An example is the following Exponential class:

#ifndef EXPON_H
#define EXPON_H

#include "random.h"
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/* expon.h contains Class Exponential. This
class describes an inverse transformation
generator for Exponential variables. */

?lass Exponential: public Random

public:
Exponential (double, unsigned int=0, long=0);
Exponential ( int, unsigned int=0, long=0 );
virtual double sample();
void setMu(double initMu) {mu = initMu;}
double getMu() { return mu; )}

private:
double mu;

}i

#endif

The class definition determines the properties of an ob-
ject.

3.1 Class Properties

Properties of classes, namely their data objects and func-
tions, are generally grouped into "public” and "private"
sections (C++ also permits another grouping called pro-
tected). The public properties can be accessed from
outside the object. The private properties are informa-
tion kept strictly locked within an object and are avail-
able only to object functions. For example, the double
object mu is private and cannot be directly obtained.
However, a public function called getMu does return
the value of mu. Making a property private restricts un-
authorized use and encapsulates the object.

3.2 Inheritance

The Exponential class was not defined "from scratch."
For instance, it doesn't say anything about its use of
random numbers or from where the random numbers
come. Because the random number generator estab-
lishes the source of randomness for all random proc-
esses, it is defined in its own class. Hence, the Expo-
nential class is derived from the Random class so the
Exponential class has access to all the public properties
of the Random class without having to re-code them.
This use of prior classes is called "inheritance." In fact,
this inheritance makes the Exponential class a "kind of"
Random class. In object-oriented terminology this is a
"is-a" relationship.

The other major kind of relationships between two
classes is the "has-a." In the case of the Exponential,
the Exponential has a double object called mu. A has-a
relationship is not the result of inheritance.

3.3 Run-time Binding

The sample () function is specified as a virtual func-
tion in Exponential because we don't want to write a
specific function for each class that obtains a sample
from the variate generator. Therefore, the sample func-
tion will, at run-time, decide from which random variate
to sample. This binding the variate to the sample at
run-time is also called "delayed" or "run-time" binding.
Run-time binding may extract a small run-time penalty,
but makes this entire specification of sampling from
variates much easier to write, maintain, and use.

3.4 Construction and Initialization of Objects

When an object from a class is needed, there needs to be
a way to construct and initialize it. The function that
does this is called a "constructor” and C++ will provide
one if it isn't included in the class definition. In the
case of the Exponential class, there are two constructors.
One takes a double and the other takes an integer. No-
tice that some of the arguments have specified defaults,
so the user doesn't have to specify all the potential fea-
tures of an Exponential object (these additional argu-
ments pertain to the control of the random number
stream). Within the constructors (details not shown),
space is allocated for the object and parameters are as-
signed.

Although, not used in Exponential, C++ permits user
specified destructors. A destructor will clean-up any
object responsibilities (like collecting statistics) and
deallocate the space.

3.5 Polymorphism

The Exponential class has two constructors so users may
specify either floating point or integer arguments for the
mean interarrival time. Although it is not necessary in
this case (C++ will make the right conversions), it does
illustrate the use of polymorphism -- where the same
property applies to different objects. Thus, the Expo-
nential object is appropriately specified, regardless of
whether an integer or double is given. This encapsula-
tion of the data makes the addition of new types for pa-
rameters very easy and localized.

4 EMBELLISHMENTS TO HARBOR MODEL

To illustrate the broader use of an object-oriented simu-
lation language, we present several embellishments to
the Harbor problem (the reader is referred to the paper
in last year's conference that considered floating re-
sources, transaction attributes, assignment nodes, queue
ranking, dependent service times, and grouped transac-
tions within the context of TV inspect and repair prob-
lem). Although the embellishments may appear very
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complicated, they are handled easily and provide direct
extensions to YANSL modeling capabilities.

4.1 More Flexible Resources

Some resources can service more than one queue and
choose their next service. Further, transactions can con-
tinue use of their resources, producing activities that are
required for some resources and chosen by others. Sup-
pose now that ships entering the harbor must be pulled
by a tug. The tug brings the ship from the ocean into
the harbor and then to the dock where the ship berths.
Also, when a ship finishes unload/load and is ready to
leave, a tug must be summoned before the ship deberths
and is pulled out into the ocean. Thus the ships now
experience two queues which wait for the tug: wait to
berth, wait to leave the berth. The tug becomes a new
resource. Now this tug must serve at two new activities,
the berthing activity and the deberthing activity. These
two new activities also require the berth (as does the
unload/load activity). The revised model is given be-
low:

main ()

{

// SIMULATION INFORMATION
Simulation harborSimulation(1);

// DISTRIBUTIONS

Exponential interarrival( 4.5 ),
deberthTime( 8.5 ),
berthTime( 8.5 ),
unloadLoadTime( 5 );

// RESOURCES

Resource< PRIORITY > berth[ 3 ], tugboat;
berthListl;

3 )

ResourceSelection< ORDER >
berthListl.addResource( berth,

ResourceSelection< BUFFER > berthList2;
berthList2.addResource( berth, 3 );

// NETWORK NODES
/** Ship Arrive **/
Source< Transaction, DETERMINISTIC >
tankerSource( interarrival, 0.0,
// Begin at 0.0 and end at 480.0

480 );

/** Berthing **/
Queue< FIFO > berthingQueue;
Activity< DETERMINISTIC >
berthing( berthTime );
berthing.addRequirement ( tugboat );
berthing.addRequirement ( berthListl );
berthingQueue.addActivity( berthing );
/** Unload/Load **/
Activity< DETERMINISTIC >
unloadLoad( unloadLoadTime );
unloadLoad.addRequirement ( berthList2 );
/** DeBerthing **/
Queue< FIFO > deBerthQueue;
CapturedActivity< DETERMINISTIC >

deberthing( deberthTime );
deberthing.addRequirement (
berthList2 , CAPTURE );
deberthing.addRequirement( tugboat );
deBerthQueue.addActivity( deberthing );
/** Ships Leave **/
Sink finish;

// NETWORK BRANCHES

tankerSource.addBranch( berthingQueue );
berthing.addBranch( unloadLoad ) ;
unloadLoad.addBranch( deBerthQueue );
deberthing.addBranch( finish );

// RESOURCE SERVICES

berth[ 0 ].addQueue( berthingQueue
berth[ 1 ].addQueue( berthingQueue
berth[ 2 ].addQueue( berthingQueue
tugboat .addQueue ( deBerthQueue );
tugboat .addQueue ( berthingQueue );

// RUN the simulation
harborSimulation.run();

}

The revised model now declares the tugboat as a re-
source. The tug services the deBerthQueue before
the berthingQueue since it uses a PRIORITY deci-
sion (note that the deBerthing is added first). Re-
source selection by ships for berths is given by ORDER
at the berthing activity but once the berth is selected,
that berth stays with the ship until the ship is deberthed
(in the real world, it is the opposite). This association is
accomplished by making sure the same berth is used in
sequential activities through the BUFFER resource se-
lection. Of special note is that the deBerthing activ-
ity is a CapturedActivity, which insures that the
berth is kept even if the transactions must stay in the
queue to wait for a tug. Note that the addRequire-
ment takes both a resource and a type of requirement.
This overloading of the function argument is an exam-
ple of polymorphism applied to user-defined classes.
Therefore, a user of YANSL now may specify a re-
quirement involving several resource alternatives with
the exact same form used to specify a single resource
and new decision rules may be easily included.

4.2 Gating Resources

The previous embellishment took advantage of general
YANSL features. Some embellishments will not. Con-
sider, for instance, a complication in the harbor is that
storms sometimes come up preventing the tugs from
berthing or deberthing ships. The time between storms
and the duration of storms can be simply declared as
follows:

Exponential
Triangular

stormInterOccurance( 0.25 );
stormDuration( 2, 2.5, 4 );
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However the modeling of the storms requires more spe-
cific development. To model the actual storms, we use
the special Storm object class developed for this prob-
lem and gate the tugboat resource by sending a
gateResource message:

Storm minorStorm(
interOccurance, stormDuration );
minorStorm.gateResource( tugboat );

Obviously, a Storm class is rather narrow in application
and specific to the harbor problem. When the storm
comes, it prevents any new service by the tug. An idle
tug is prevented from doing any new service, while a
busy tug will finish its current service and then become
idle. When the storm is over, the idle tug is activated.

4.3 Greater Cooperation among Entities

One of the most difficult modeling problems occurs
when there is a great deal of cooperation among re-
sources and transactions. In the case of the harbor
problem, consider the following configuration of the
berths:

Berth 1 Berth 2 Berth 3
EI Crane 1 Crane 3
Crane 2 Crane 4

In this example, we have added load/unload cranes,
which are modeled by a new set of resources. The
cranes are needed in load/unload activities. However,
their operation is quite complex. Cranes #1 and #3
prefer to serve Berth #2. Crane #1 can "help" with
work on Berth #1 and Crane #3 can help with work on
Berth #3 if there is no work on Berth #2. Crane #2
prefers to service Berth #1, but can help with work on
Berth #2 if there is no work on Berth #1. Also Crane #4
prefers to service Berth #3, but can help with Berth #2 if
there is no work on Berth #3.

This example illustrates how cranes are associated
with berths and how their association may be optional
and temporary. The ResourceSelection provides
a means for the transactions to select among alternative
individual resources. However, it does not allow selec-
tion among teams of resources. In order to specify these
relationships/dependencies among resources, 2 new Re-
sourceTeam class is derived from both Resource-
Base and Requirement (this is an example of mul-
tiple inheritance). The Requirement class which is
also used in the Activity node holds the resource re-

quirements for the team. Recall, these requirements can
be individual resources as well as ResourceSelec-
tion. The ResourceTeam is derived from the ab-
stract class ResourceBase to provide the mechanism
to be a resource. The resource teams for the three berths
and cranes can be simply defined as follows:

ResourceTeam teams([ 3 ];

/** This sets up the first team **/

teams| 0 ].addRequirement( berth( 0 ] );

teams| 0 ].addRequirement( crane[ 1 ],PREEMPT);
teams( 0 ].addRequirement(crane[ 0 ],OPTIONAL);

Since ResourceTeam is derived from Resource-
Base and simply acts as an individual resource, we can
now use ResourceSelection to select among teams
of resources without making any more modifications.
This new class works as if it was an original part of the
YANSL design.

ResourceSelection< ORDER > berthListl;
bertListl.addResource( teams, 3 );

ResourceSelection< BUFFER > berthList2;
bertListl.addResource( teams, 3 );

5 IMPLEMENTATION

The embellishments in Section 4 have employed a num-
ber of features of object oriented simulation. The em-
bellishments reveal no distinction between the base fea-
tures of YANSL and its extensions, illustrating the
"seamless" nature of user additions. In this section, we
want to describe in more detail the actual C++ imple-
mentation of some of these developments.

5.1 Template Issues

Parameterized types are used throughout YANSL to
give classes generality. Parameterized types are created
by class templates so that the ultimate specification of a
class is not known until that class is declared in the
model to create the object (both the class and the object
are created). Templates make it easy for a user to spec-
ify a kind of class rather than having a whole bunch of
classes whose similarities are greater than their differ-
ences. For instance, consider the resource selection
class:

template< class RSM >
class
ResourceSelection : public RequirementBase
{
protected:

RSM resSelMeth;

public:
ResourceSelection() {}
virtual void addResource (
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ResourceBase &rptr );
ResourceBase *resourceAvailable();

Yi

The template parameterizes the ResourceSelec-
tion class for any RSM (resource selection method).
Now a new resource selection method can be developed
to work with any resource selection, such as BUFFER:

class
BUFFER :
{
public:
BUFFER () ;
virtual ResourceBase
*resourceAvailable();

public virtual ResourceSelectionMethod

}i

The virtual function permits any class derived from
BUFFER to determine resource availability. Some net-
work simulation languages approach the need for
parameterized classes by having more general node
types, like an "operation”" node, but these general types
cannot, in general, yield specific objects -- only their
subtypes create objects (in C++, such a class would be
"pure virtual class").

5.2 Inheritance and Derived Classes

Inheritance provides a fundamental means of relating
object classes. In the development of the storm activity,
a storm class was needed:

class Storm : public virtual Node
{
public:
Storm( Random& , Random& , double = 0.0);
void executelLeaving( Transaction * );
BOOL executeEntering( Transaction * );

void gateResource (ResourceBase &rptr);

protected:
Random *occVariate;
Random *durvariate;
//

}i

Here, the class Storm is derived from the Node class
since storm "is-a" kind of node and thus inherits all the
properties of the Node class. Because the Storm is a
Node, Storm can do all the things a Node can do,
such as be placed in a network. In contrast, storm "has"
two random data objects corresponding to the occur-
rence and duration of the storm. Recall our discussion
of is-a and has-a in Section 3.2.

5.3 Multiple Inheritance and the Class Hierarchy

In YANSL, node classes are formed in a class
"hierarchy." This hierarchy starts with a broad division

of nodes and specifies more specific nodes lower in the
hierarchy. Nodes lower in the hierarchy inherit the
properties of the nodes above them. A portion of that
hierarchy is given below:

Departure<BM>
Queue<RankM> Source<Tran,BM>

In the hierarchy, nodes are broadly defined as departure
and destination nodes. Departure nodes have branches
connected to them and therefore need a
"BranchingMethod (BM)." Sink and queue nodes can
have transactions branched to them and are therefore
destination nodes. An activity node is both a departure
and a destination node, so it inherits from both the de-
parture and destination node classes. This inheritance
from multiple parents is called "multiple inheritance."
Not all object-oriented languages permit multiple in-
heritance like C++. Portions of the Activity class
are:

template< class BM>
class Activity :
public virtual Departure< BM >,
public virtual Destination
{
public:
Activity( Random& );
int resourcesAvailable();
void addRequirement (
RequirementBase &rsPtr );
virtual void executeLeaving(
Transaction * );
virtual BOOL executeEntering(
Transaction * );
ResourceBase *getResBuffer();

protected:
Random *actVariate;
Requirements requirements;
ResourceBase *bufferStorage;
/7. ..

}i

Multiple inheritance is specified in the header of the
class definition.

5.4 Virtual Functions and Run Time Binding

The executeEntering and executeLeaving are
virtual functions in Departure and Destination classes
that act as place holders, permitting derived nodes spe-
cial functionality as transactions enter and leave. These
functions were especially useful in the CapturedAc-
tivity class (derived from Activity), where the ex-
ecuteEntering was used to capture resources:
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template< class BM >
class CapturedActivity
{

public:

: public Activity< BM >

CapturedActivity( Random& ) ;
void addRequirement ( RequirementBase
&rsPtr, int flag = 0 );
virtual BOOL executeEntering|
Transaction * );
protected:
CapturedRequirments caprequirements;
}i

Therefore, a transaction enters a node using its branch-
ing:

branch.nextNode () ->executeEntering( tptr );

Now, whatever the node, the appropriate executeEn-
tering function is executed, even though it had not
been explicitly identified.

5.5 Static and Dynamic Objects

The objects in a YANSL simulation can be either static
or dynamic. The static objects from the Harbor example
are declared within the main() function and are created
at compile time. In contrast to the static objects, dy-
namic objects are created during run time whenever the
simulation logic requires their existence. For example,
the exact number of Transactions traveling through the
network is unknown at compile time, so it is convenient
to create these objects when they enter the network and
destroy them as they exit. In C++, this is accomplished
through the new and delete operators. Transactions,
or any of their derived types, are created in Source
nodes.

template< class T, class BM >
void Source<T, BM>::
executeLeaving (Transaction *t )

{
/1 ... '
Transaction *currentTransaction = new T;

scheduleEvent ( currentTransaction,
interArrivalTime->sample() );

//
}

The type of Transaction actually created is declared at
compile time as a template parameter (o the Source
node. This allows the modeler ultimate flexibility in the
types of Transactions in the network. Transactions as
complex as a passenger ship may exist in the same net-
work as a simple cargo ship. This method is preferred
over existing simulation languages in which all Trans-
actions are required to have the same number of attrib-

utes regardless of their complexity, or lack of complex-
ity. Transactions leave the network though Sink nodes
where their existence is terminated with the delete
operator and the space allocated is reclaimed for future
use. This dynamic construction/destruction process al-
lows as many, or as few, Transactions as needed to ex-
ist, up to the limits of memory.

5.6 Related Embellishments

Many more embellishments are simply parallel applica-
tion of the approaches used in the prior sections. For
example, the embellishments shown in the earlier paper
(Joines, Powell, and Roberts 1992) could be applied
here to the harbor problem including new branching
methods, transaction attributes to distinguish ships,
queue ranking, transaction grouping, etc. These embel-
lishments can be added for a single use or they can be
made a permanent part of YANSL, say YANSL II. In
fact a different kind of simulation language, say for
modeling and simulating logistics systems, might be
created and called LOG-YANSL for those special users.
Perhaps the logistics users would get together and share
extensions and create a more general LOG-YANSL II.
And so it goes! For those of you familiar with some
existing network simulation language, consider the dif-
ficulty of doing the same.

6 CONCLUSIONS

Modeling and simulation in an object-oriented language
possesses many advantages. We have shown how inter-
nal functionality of a language now becomes available
to a user (at the discretion of the class designer). Such
access means that existing behavior can be altered and
new objects with new behavior introduced. The object-
oriented approach provides a consistent means of han-
dling these problems (other general object oriented lan-
guages include Smalltalk (Goldberg and Robson 1989)
and Eiffel (Meyer 1992)). Object-oriented simulation
systems include Smalltalk, Modsim II (Belanger and
Mullarney 1990), and Sim++ (Lomow and Baezner
1991). C++ based simulation packages include Sim++
and Simpack (Fishwick 1992).

The user of a simulation in C++ is granted lots of
speed in compilation and execution. The C language
has been a language of choice by many computer users
and now C++ is beginning to supplant it. With the new
C++ standard (Ellis and Stroustrup 1991), all C++
compilers are expected to accept the same C++ lan-
guage. We can build an executable simulation on one
machine and run it on another, only as long as the op-
erating systems are compatible -- you don't need a C++
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compiler on both machines. Most commercial simula-
tion languages require some proprietary executive.

Because C++ has many vendors, the price of com-
pilers is low, while the environments are excellent. For
example, the Borland package includes a optimizing
compiler, a fully interactive debugger, an object
browser, a profiler, and an integrated environment that
allows you to navigate between a code editor and the
other facilities. Also numerous class libraries for win-
dowing, graphics, and so forth are appearing that are
fully compatible with C++. Graphical user interfaces
for simulation modeling, animation of simulation, and
statistical analysis of simulation results could be offered
by individual vendors. Their interoperability would be
insured by their use of a common means for defining
and using objects.

To take full advantage of object-oriented simulation
will require more skill from the user. However, that
same skill would be required of any powerful simulation
modeling package, but with greater limitations.
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