Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

QUEST - QUEUEING EVENT SIMULATION TOOL

Samir K. Mahajan
Scott K. Brewer
Christopher D. Bien

Deneb Robotics, Incorporated
Auburn Hills, Michigan 48321-4687, U.S.A.

ABSTRACT

QUEST (QUeueing Event Simulation Tool) is a 3D
graphics simulation tool used to analyze and visualize
complex manufacturing and material handling systems.
QUEST provides a complete solution for all aspects of
manufacturing planning from the evaluation of
strategies and plant floor layout to the programming of
automation equipment. This simulation technology can
be applied to flexible manufacturing systems (FMS).
Just-In-Time (JIT), business re-engineering, team labor,
cost, and a host of other issues facing manufacturing.
Covered in this presentation will be the unique features
of QUEST and two tutorials to illustrate its scope.

1 QUEST - AN OVERVIEW
1.1 Simulation

QUEST is a hybrid discrete event simulation tool, which
enables both object oriented, as well as simulation
language approaches to modeling. With this powerful
feature, QUEST not only takes advantage of the ease of
use and rapid model developing capabilities of object
oriented modeling, but also provides the depth and
extendibility of language-based behavior modeling.
QUEST sessions may be either animated (i.e., model
building), or non-animated (i.e.. when collecting
statistical results). Other options available within the
simulation mode include warm up times, multiple
random seeds, animation toggling, statistics toggling,
strip charts, and status highlighting.

1.2 Visualization

QUEST is a three-dimensional modeling tool, which
interactively combines the simulation and animation

269

paradigms found in discrete event simulation tools. This
allows simulation characteristics, such as conveyor
lengths, distances between resources, and widget
characteristics to be automatically defined through
model geometry and layout.

Realistic visual representations of virtually any
system can be achieved with QUEST's true three-
dimensional modeling and fast rendering capabilities.
Compared to the quality of existing two-dimensional
animation, the three-dimensional visualization of
QUEST facilitates both perspective and orthographic
projections. The use of high performance graphics
allows interactive navigation through the model for
rapid user comprehension during model construction,
and appreciation by audiences that are not simulation
experts.

In industry today, two-dimensional animation is
more prevalent than three-dimensional modeling. This
phenomenon can be attributed primarily to the limited
number of commercially available, fully functional,
three-dimensional discrete event packages and the
feasibility of purchasing advanced hardware. As the cost
for computer workstations continues to decrease, while
their computational speed improves, three-dimensional
tools are becoming more accessible for simulating
manufacturing, material handling and other real world
systems.

2. QUEST MENU SYSTEM

QUEST's patented* three-tier menu system provides a
mouse-driven interface through which every command
1s no more than two mouse clicks away. There are seven
main components of the QUEST menu system, they are
referred to as contexts. Through use of these menus and
QUEST's intelligent popup system, object-oriented
model construction and interrogation is possible. The
direct object manipulation approach offered by the

270 Mahajan, Brewer, and Bien

Figure 1 : A Sample QUEST Layout

menus in combination with interactive visualization
results in rapid model building and prototyping.

2.1 CAD Context

Allows users to create and store three-dimensional
visual representations of objects, such as widgets,
workecells, transports, etc. The CAD system is an casy (o
use, sclf-sufficient package that provides an interface
with other CAD systems through production proven,
direct data translators;

-IGES

-DXF

-VDA

-CATIA

-WAVEFRONT

2.2 Model Context

QUEST provides a built-in library containing a rich sct
of production resources that are the fundamental
building blocks of manufacturing processes. In addition.
the library is user extendible to accomodate for specific
modeling tasks. QUEST enables users to define resource
characteristics and the interrelationships among them. It
also allows the user to define widgets, representing the
material or parts that flow through the system.

Figure 2 : Model Page Layout

2.3 Run Context

Permits uscrs to execute simulations, procure statistic
collection control and data set management, utilize
cvent tracing for debugging, examine single run
statistics, and create graphs and charts illustrating
statistical results.

2.2.4 Statistics Context
Provides a facility for comparing different simulation

runs and creating graphs to illustrate the results. The
functions automatically label and title the graphs being

QUEST - Queueing Event Simulation Tool 271

created. Other functions are provided that allow the user
to customize graph construction and manipulation on a
quantity-to-quantity basis.

2.5 User Context

Allows user-defined menu buttons and customized
interfaces. Included under the User page are User
buttons and Macro buttons. User buttons allow personal
arrangement of the most frequently used buttons. Macro
buttons allow users to tie Simulation Control Language
(SCL) or Batch Control Language (BCL) programs into
the QUEST menu system for easy accessibility.

2.6 Analysis Context

Provides a host of functions for analyzing the physical
state and the logical construction of a factory model. It
assists the wuser in identifying characteristics of
simulations, such as resource and widget characteristics,
X-Y-Z distances between components, as well as logic
considerations like buffer disciplines and routing logics.

2.7 System Context

The System context offers necessary functions in the
areas of data files, user-configuration, utilities, and
other system issues. It gives the user the ability to define
system attributes including model view characteristics
(i.e., lighting, floor grid, floor and background color,
hard copy printouts and annotations). A menu-driven
UNIX file interface is also available. including
configuration files, project data management, and user
configuration.

3 PROGRAMMING CAPABILITIES
3.1 Simulation Control Language (SCL)

The Simulation Control Language (SCL) is a high level
procedural language for satisfying unique modeling
requirements necessary for studying specific systems.
SCL is embedded in a simulation model by associating
modular procedural programs with specific resource
entities to govern the behavior of that resource. These
distributed logics are triggered by specific events
occurring during the simulation. Examples of SCL logic
triggers are routing, processing, queueing, and so on.
Through SCL, users can develop custom heuristics and
decision policies. Advanced applications can utilize
SCL's UNIX file and socket interfaces to connect in
real-time to other programs in a network.

3.2 Batch Control Language (BCL)

The Batch Control Language (BCL) is a powerful
communication, command, and control system for
accessing and operating QUEST. Furthermore, the BCL
system may be accessed from either inside or outside the
QUEST menu system:

Inside the QUEST menu system, BCL offers
alternatives to the point and click approach through
Macro buttons and text commands. 'SET' commands,
for instance, can be used to set resource and widget
characteristics, logic options, world views and
simulation run parameters. Another form of context
commands are INQUIRE commands. These can be
executed to receive statistical results on resources and
widgets.

Outside the QUEST menu system, BCL performs
in two different modes; stream and socket. In both cases,
the QUEST window appears without menus. The stream
mode allows a text file to be used as input and can direct
output to an output file. For example:

quest -b <batch file >output file

Under the stream mode, any UNIX stream may be
directed to QUEST. The socket mode allows any
external program, residing on any machine in a TCP/IP
network, to invoke and communicate with QUEST
through a socket, using BCL commands and return
codes. In this way, user applications may systematically
conduct experiments and optimize simulation
parameters.

4 QUEST - Special Features

Under the QUEST model building section, standard
resources include buffers, conveyors, and workcells.
Workecells conduct processes that operate on widgets,
possibly transforming them into a new type of widget.
Buffers store widgets according to a variety of removal
and queueing logics. Conveyors transport widgets from
one location to the other. Some of the unique features
that QUEST offers to the user include:

4.1 Power and Free Systems

This is suitable for any system consisting of tracks and
carricrs, such as mono-rail systems and synchronous
indexing types of machinery. The system contains
physically based features such as dog-delays, merge, and
clearances.

272 Mahajan, Brewer, and Bien

4.2 Automatic Guided Vehicle (AGY)

The AGV system in QUEST is comprised of various
AGVs, a network of control points and paths, and global
AGYV controllers. The controllers are responsible for
dispatching idle AGVs in response to requests to
transport widgets.

4.3 Automatic Storage and Retricval Systems
(AS/RS)

The AS/RS is comprised of aisles, racks, and bins.
Arrival and departure stations govern the storage and
retrieval of widgets from these locations.

4.4 Labor

Labor in QUEST is explicitly modeled with a Labor
Resource which service workcell's processes. Labor can
be shared among several workcells, and labor teams can
be made to work together. Statistics such as move time,
idle time, and utilization are collected.

4.5 Reports

Delivary (29.71%)

Residence Time

Figure 3 : Multiple Graphs

Graphs, bar charts, pie charts, dynamically interactive
strip charts, and custom read/write ASCII file bascd
reports can be created through QUEST. These reports

plot useful statistics covering resource utilization,
widget throughput time, average buffer length, etc.
Reports can also be written to data files which can be
printed in report form without additional manipulation
from the user.

4.6 Activity Based Costing (ABC)

QUEST provides all cost attributes necessary to conduct
explicit cost analysis for calculating and studying
associated production costs. Cost attributes may be
customized to reflect the cost attributes for specific
models (i.e., overhead, breakdown and repair, labor,
materials, etc.).

4.7 Push and Pull Production Methodology

In QUEST, an explicit model for request information
flow can be represented through Push and Pull
production methodologies. These methods can be
integrated to support the delicate balance of push and
pull methods found in many manufacturing systems.

4.8 External Communication

Through the Simulation Control Language (SCL) and
the Batch Control Language (BCL), QUEST can send
and receive values to communicate with any external
process or machine. For example, BCL can be invoked
to open UNIX sockets to run multiple copies of QUEST
on different workstations. With this functionality, users
can simultaneously conduct design of experiments
(DOE), such as hill climbing algorithms to optimize
parameters between model runs.

4.9 Integrated Simulation and Animation

With QUEST, total interactive visualization of
simulation and geometric models allow execution
through incremental compilation. Also, the user has the
flexibility to debug, test, analyze statistics, experiment
with multiple runs, and interactively validate models
without recompiling or waiting for the entire program
scenario to finish.

S TUTORIALS

This next section will illustrate the steps needed to
create two demonstrations through QUEST.

QUEST - Queueing Event Simulation Tool 273

Figure 4: Tutorial Layout
From left to right : source, buffer, two workcells & sink

5.1 Demonstration 1 - Basic Model

In this demonstration, a simple simulation for two
different types of raw materials passing through a work
station is created. The raw material will travel to either
of two workcells depending on its class and the
workcell's requirements.

The first step is to create two different classes of
widgets which represent raw materials (refer to figure
5.1).

Figure 4.1 : Widget Creation

Both widgets will be made according to the table
shown; Widget 2 will be given a different class color
(i.e., chocolate) so that it can be easily distinguished.

Next, a source to produce the widgets will be
created (refer to figure 5.2).

The push source will begin creating widgets at
time zero and will make up to 1,000,000 widgets. The
Inter-Arrival-Time (IAT) for the source can be changed
to any built-in distribution or may be user-defined. This
model's (IAT) is an exponential distribution with a
mean of ten seconds. The source's widget fractions
should also be changed so that the source creates

widgets at a ratio of 1:1. QUEST will automatically
normalize this ratio into a probability of 0.5 for each.

Figure 4.2 : Source Creation

A buffer with one input and two outputs is created next
(refer to figure 5.3).

Figure 4.3 : Buffer Creation

The input for the buffer will be the source and the
output will be the two workeells. It will have an infinite
capacity and will stack widgets in the Z-axis. The buffer
is used so that if either of the workcells are busy, the
widgets will 'wait' in the buffer. This prevents the source
from being 'blocked' and inhibited from creating
widgets. The buffer's removal logic will be changed to
‘required widgets'. This allows the workcell to take the
widget class it requires.

Next we will create two workceells (refer to figure
5.4).

Both of the push production workcells will have
one process; the second of the workcells will have two
sub-processes. Cycle times for the workcells (on a
sub-process basis) may be changed to any built-in or
user-defined distribution. This model uses a normal
distribution for Workcell_1 with a mean of fifteen
seconds and standard deviation of two seconds.
Workcell_2 uses a constant value of ten seconds for

274 Mahajan, Brewer, and Bien

sub-process one and a uniform distribution between five
and ten seconds for sub-process two. Next, we will set
the required widgets for each workceell.

Figure 4.4 : Workcell Creation

Since the workcells have only one process, the
process logic will not need to be changed. If therc had
been multiple processes, the process logic could have
been set through built-in procedures, or through SCL.

A push production type sink that will accept the
finished product of both workcells will now be created
(refer to Figure 5.5). This sink will have two inputs, one
from each of the two workcells. Finally. all the resources
need to be connected together in a logical fashion (i.c.,
the source's output and the buffer's input should be
connected, etc.).

Figure 4.5 : Sink Creation

The simulation is run for 1000 seconds. Run statistics,
such as resource utilization and widget throughput
times, can be viewed during or after the completion of
the simulation.

5.2 Demonstration 2 - With SCL

The objective of this tutorial is to demonstrate the user's
ability to control a model through SCL logic. This
model uscs the first modcl as the basis. but adds
additional complexity: both workcells will begin
processing at the same time.

SCL code will be written as follows:

-- GLOBAL DECLARATIONS

VAR

BUFFER_I : RESOURCE
WORK_1 : RESOURCE
WORK_2 : RESOURCE
WID_KHAKI_1 . WIDGET

WID CHOCOLATE_1 : WIDGET

PROCEDURE INITIALIZE()

BEGIN
BUFFER_1 = GET_RESOURCE (‘Buffer_1')
WORK_I = GET_RESOURCE ('Workcell_1')
WORK_2 = GET_RESOURCE ('Workeell_2')

END

PROCEDURE BUFFER_ROUTE_LOGICY()

VAR
i - INTEGER -- incrementer
cur_wid : WIDGET -- current widget
BEGIN

[F (WORK_1->status == idle) AND (WORK_2->status == idle))
THEN

WID_KHAKI_1 = NULL
WID_CHOCOLATE_1 = NULL

FOR 11 = 1 TO cres->num_widgets DO
cur_wid = cres -> widgets[ii]

IF ((WID_KHAKI 1 == NULL) AND
(cur_wid-> class_name == 'Khaki')) THEN
WID_KHAKI 1 =cur_wid
ENDIF

IF ((WID_CHOCOLATE_1 == NULL) AND
(cur_wid-> class_name == 'Chocolate')) THEN
WID_CHOCOLATE 1 = cur_wid
ENDIF

ENDFOR

IF ((WID_KHAKI 1 <>NULL) AND
(WID_CHOCOLATE_1 <> NULL)) THEN
ROUTE(WID_KHAKI_1,1)
ROUTE(WID CHOCOLATE_1.2)
ENDIF
ENDIF
END

The initialized procedure will run before the model
starts its simulation. This initializes the pointers
WORK _1, WORK _2, and BUFFER_1 to resources in
the models. In the buffer route logic, check to see if both
workcells are idle. If they are, check to make sure the
buffer contains at least one widget of each class. This is
done by running through the buffer's contents. If

QUEST - Queueing Event Simulation Tool 275

WID_KHAKI_1 is currently pointing to NULL, and the
current widget is of that class, then the pointer is set to
the current widget. Likewise, the same is done for
WID_CHOCOLATE_1. If there is at least onc widget of
cach type in the buffer and both workeells are idle, then
route the first khaki widget (WID_KHAKI 1) and the
first chocolate widget (WID_CHOCOLATE_1).

In QUEST, this model's buffer route logic will be
called whenever a widget arrives in the buffer and
whenever either of the workcells become idle (and
backfires to the buffer). After the SCL code is assigned
to the buffer's route logic, the code replaces the standard
route logic of the buffer.

The simulation is run for 1000 seconds. Run
statistics, such as resource utilization and widget
throughput times, can be viewed during or after the
completion of the simulation.

6 CONCLUSION

QUEST is endowed with a powerful architecture and
feature set which allows it to address modern
manufacturing problems such as adaptive systems, JIT
planning, business re-engineering, {lexible conveyors,
labor issues, and cost analysis. It also firmly establishes
accurate, three-dimensional physical modeling and
graphics as an essential ingredient in manufacturing
simulation.

QUEST is equipped with production-proven
features and flexibility required for serious simulation
environments involving teamwork, data connectivity,
and distributed computing techniques. For all of its
dynamic functionality and power, QUEST also delivers
ease of use, simplicity, and efficiency required by its
users.

ACKNOWLEDGMENTS

The authors wish to thank Charles E. Fuller for his
contribution to this paper.

AUTHOR BIOGRAPHY

SAMIR K. MAHAJAN completed a summer
internship program at Deneb Robotics. Inc. He is
currently persuing a B.S. in Systems Engineering at the
University of Virginia. Since joining Dencb, hc has
learned the QUEST and IGRIP systems and has
modeled manufacturing and office simulations.

SCOTT K. BREWER is an Applications Engineer

with Deneb Robotics. He received his B.S. degree from
Hope College, his MSOR from Wayne State University,

* U.S. Patent No. 5,179,653

QUEST and IGRIP are trademarks of Deneb Robotics, Inc.

and his MBA from the University of Houston. He is also
a member of the Institute of Industrial Engineers.

CHRISTOPHER D. BIEN is a marketing and sales
representative with Deneb Robotics. He received his
B.A. degree in marketing from Michigan State
University.

© Copyright 1993, Deneb Robotics, Inc.

