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ABSTRACT

We consider the problem of sensitivity analysis for re-
placement problems in maintenance theory. In partic-
ular, we apply the technique of perturbation analysis
to derive estimators for the gradient of a cost perfor-
mance measure with respect to replacement parame-
ters for a variation of a problem in L'Ecuyer (1990).

1 INTRODUCTION

We consider a replacement problem which arises in
maintenance/reliability theory for the following sys-
tem of components with random lifetimes:

the system comprises V identical components;

[

the components are independent of each other;

component service times are random variables
with increasing (non-decreasing) failure rates
and identically distributed p.d.f. f and c.d.f. F;

replacements are made immediately upon failure
and possibly preventively;

replacements are instantaneous.

The following cost parameters define the problem:
¢; = cost incurred for an intervention,
¢cr = cost per component replaced,

where ¢; can be thought as a fixed cost per interven-
tion, cg as a per-unit replacement cost, and often (but
not always) ¢c; >> cr. The problem is to determine a
preventive maintenance policy to minimize the long-
run average cost. We will use the term replacement
epoch to refer to an epoch in which intervention for
replacement occurs. A maintenance policy will gov-
ern the timing of replacement epochs and the number
of components replaced at a particular epoch.
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We will consider a performance measure given by

J = llmﬂ [_/n» Ln = Ln/n,
n:C\.
L, = Zgi. gi = cr + crh,
=1
R; = # components replaced at
the ith replacement epoch,
n = # replacement epochs.

We note that the usual time-average performance
measure can also be handled by expressing it as
Ln(T) ~

T ~(L_nn)( )

where n(T) is the number of replacement epochs over
[0,7] and T'(n) is the nth replacement epoch. For
the gradient estimation problem, the chain rule can
be applied to the two terms, resulting in two separate
gradients which can be estimated.

We will assume that the distribution for the tenta-
tive service time of each component (i.e., how long
the component would be left in service if there were
not simultaneous replacements) contains a control-
lable parameter ;. For example, 6, could be the
maximum amount of time a component is allowed to
remain in the system. Furthermore, we will consider
simultaneous replacements done under the following
(not necessarily optimal) class of threshold policies
parameterized by 65:

n

T(n)

(w) Whenever a component fails, all components
older than age 8, are replaced.

For example, the replacement of tools in a flexible
manufacturing system often follows a maintenance
policy of this type, since each intervention often in-
volves a major interruption of the system. Thus,
the optimal setting of the parameters #; and 6, are
of primary importance. Gradient estimates can be
very useful in determining these settings (see, e.g.,
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Fu 1994), and the goal of this paper is to provide an
unbiased estimator for d.J/df, 6 = (6;,62) under pol-
icy . A slightly different version of this problem was
presented in L’Ecuyer (1990) as an open problem for
gradient estimation procedures. There, 8; was taken
as another threshold parameter characterizing the fol-
lowing policy:

(7') Whenever a component fails or reaches age 61,
all components older than age 6, are replaced.

Our problem subsumes this by taking 6; as an upper
bound on the service time of a component, except
that by using this modeling device we cannot then
distinguish between interventions costs due to 0, re-
placements versus those due to failures.

Aside from finite difference estimates, there are
chiefly two techniques available to estimate the gradi-
ent: the likelihood ratio (also known as the score func-
tion) method and perturbation analysis. As noted
by L’Ecuyer (1990), the likelihood ratio method is
often ill-equipped to handle threshold types of pa-
rameters, although Rubinstein (1992) proposes one
way to overcome some inherent difficulties. On the
other hand, perturbation analysis can often be ap-
plied to these types of problems; some examples in-
clude Gong (1988), Wardi et al. (1991), Caramanis
and Liberopolous (1992), and Fu (1993). In this pa-
per, we apply the technique of smoothed perturbation
analysis (SPA) to derive gradient estimators for the
finite-horizon replacement problem described above.
We then simplify the estimators for the long-run per-
formance measure.

2 THE ESTIMATOR

The technique of smoothed perturbation analysis
(SPA) often works for cases where the technique of
infinitesimal perturbation analysis (IPA) fails. For
our derivative estimation problem, IPA gives zero for
both parameters, which is obviously incorrect, so we
apply SPA. The intuitive idea behind SPA is that
by conditioning on certain sample path quantities, it
may be possible to “smooth” the performance mea-
sure such that a sample path derivative will then be
unbiased; see, e.g., Gong and Ho (1987), Glasserman
(1991), Ho and Cao (1991). Here, we will derive our
estimators using the ideas introduced in Fu and Hu
(1992). In particular, the main ideas are the follow-

ing:
o Identify critical “events” with respect to the per-
formance measure and parameter of interest;

e Select conditioning quantities to allow a calcu-
lation/estimation of the expected rate of change

of these critical events due to a perturbation and
the resulting effect on the performance measure;

o Construct a degenerative nominal path (DNP)
and a perturbed path (PP) to represent the ef-
fect, and find efficient ways to estimate DNP and
PP from the original sample path.

Before we begin the analysis, let us describe how
the actual simulation would take place, which intu-
itively is simple enough, but does not fall as natu-
rally under the usual Generalized Semi-Markov Pro-
cess (GSMP) framework as most queueing systems.
As in the GSMP framework, we assign clocks, but in-
stead of associating each event with a clock, we asso-
ciate with each component a clock, Cj, j=1,..,N,
which tentatively will give the time until the next
replacement, with the allowance of “preemptive” re-
placements due to our policy. Let ¥; ~ F(f) i.i.d.

INITIALIZE: (assume all components new)

Cj:=Y; ~F(6,), j=1,..,N.

TIMING MECHANISM:

Next replacement epoch occurs at 7 from the present,
where 7 = minje(;,. N} C; (ties broken arbitrarily).
REPLACE:

e the component generating the epoch, ie,
arg min;e;
e any other component with age > 6.

UPDATE CLOCKS:

e For each replaced component, generate new clock
time
C; ~F.

o For each non-replaced component, Cj := C; — 7.

At each intervention epoch, on the sample path for
each component, one of the following “events” occurs:

a = forced intervention replacement,
v = early preventive replacement,
¢ = null event, i.e., no replacement.

It is clear that v can only occur for one component in
conjunction with a occurring at another component.
Thus, o generates the replacement epoch, at which
time either 7 or ¢ occurs at each of the other com-
ponents. It is the interaction of these events among
components as a function of §; and 6, which deter-
mines the gradient estimator.
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We define
ej(t) = event at component j at epoch t,
Y;(t) = service time of component j
in service at epoch ¢
vi(t) = age of component j
in service at epoch t,
n;j(t) = residual service time of component j
in service at epoch t,
t; = the ith replacement epoch,
Ti+1 = tiy1 —1t;, time between the

tth and (7 + 1)st replacement epoch.

Note that the “service time” is not really the true
service time, since early replacement can occur ac-
cording to 8.

Intuitively, the estimator is the sum of the following
types of terms:

(EXCHANGE RATE); (EfP(“ - if””“)) (1)

The first term is a probability rate of exchange of crit-
ical events conditioned at the ith replacement epoch,
whereas the second term is the expected effect of this
exchange. For example, in our system, one exchange
we will consider is from v to ¢ at a component: the
immediate effect is a reduction in cost of ¢g, but there
are further effects, since in the former case, a compo-
nent is replaced and in the latter, an old one is left
in. The latter case is the PP sample path (under
a certain limit) and the former is the DN P sample
path (under a certain limit).

To shorten notation a bit, we introduce the super-
scripted “i” to indicate quantities at the ith replace-
ment epoch ¢ (assume right continuity). We will use
the subscript “*” to indicate the index of the com-
ponent which generates the next replacement epoch,
eg., vi indicates the age of the service time at ¢; of the
component which will generate the (i + 1)st replace-
ment epoch, and e;"'l indicates the event occurring
at component j at time ¢j4;. We also introduce

& = max{f, — u]’: : e;“ = v}(0 if empty),
n = min{min(ﬂg,in) - I/;: : e;‘H = @, in - VJ’: : ej-'“ =

Figure 1 depicts the three possible situations for a
component j # *. In the first situation, an early re-
placement () occurs at t;11, because the component
has already exceeded 6, by that epoch, whereas in the
second and third situations, the component is still too
young (¢). The difference between the second and
third situations comes in their service times; in the

third situation, the component will fail before it ever
reaches 05, whereas in the second situation, there is
a possibility that early replacement will occur before
failure. The quantity &; is taken over components in
the first situation, whereas 7; is taken over all com-
ponents. Essentially, & is the time from ¢; that a
component last exceeded the threshold 6, (reached
the “qualification” age for early replacement) prior
to t;4+1, whereas 7); is the time from ¢; that a com-
ponent is first scheduled to either exceed 6 or fail
following the replacement epoch t;4;. We will use a
subscripted “—" to indicate the index of the compo-
nent corresponding to ¢; (if any) and “+” to indicate
the index of the component corresponding to 7;; from
the definitions, there will always be a “+” component
but not necessarily a “—” component. It is also pos-
sible that the same component be both the “+" and
“=" if it corresponds to the first situation of Figure 1.
Under our conditioning, &; and 7; will provide lower
and upper bounds, respectively, for the random vari-
able 1,41, the time to the next replacement epoch
given by
Tl =Y — vl

The quantities used in the conditioning arguments
are depicted in Figure 2.

As presented in Fu and Hu (1992), both right-hand
and left-hand gradient estimators are available in gen-
eral. For our problem, we will consider only the right-
hand gradient, since it can be shown that the two are
equal in expectation. A summary of analysis is as
follows:

Afy > 0:

e accumulated perturbations may cause an inter-
vention to occur relatively earlier such that no
event occurs (¢) for a component where there
was an early preventive intervention (v) before;
e.g., if component j was originally in the first
situation of Figure 1, perturbations could cause
t;+1 to occur earlier (relative to j) such that the
timing at j becomes that of the second situation;

e conversely, accumulated perturbations may
cause an intervention to occur relatively later
such that

7} (a) an early preventive replacement (4) occurs
for a component where there was no event
(¢) before, preempting the original replace-
ment epoch, e.g., going from the second sit-
uation in Figure 1 to the first; or

(b) another component generates the replace-
ment epoch («), arising from the first or
third situation shown in Figure 1;
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Figure 2: Quantities Used in Conditioning.

o the increase in 6 may cause an early preventive
intervention () to be eliminated at a compo-
nent.

The possibilities discussed above translate into the
following five cases to consider:

eX[6r] = v, [0 + AG)] = ¢;
e [01] = ¢, €7 B + A1) = 7, Y] > 6y,
e 0] = 7. e [+ A0 = 0, Y > 0,
e 01 = 6,4 161+ A = 0, Y < 6
e*1[65] = 7,4 6 + Ab] = ¢

where [-] is used to indicate the dependence on the
parameter value under consideration. For example,
the last expression means that for the nominal value
of the parameter 0,, there was an early preventive
replacement (v) at the component “—” at the (i+1)st
replacement epoch, whereas with perturbation Afs,
there was no such replacement ().

At each replacement epoch ¢;, we condition on basi-
cally everything except the actual value Y}, which de-
termines ?;41 through 741, the distribution of which
we wish to derive. In particular, at ¢;, we condition
on

{vi, e, j=1,. N} {Y},j # =}, I{Y] > 62},

Jrvy

(where I is the indicator function) i.e., we condition
on the age of the component generating the next re-
placement epoch, the ages and residual service times
of all other components, and all the events at ;4.
Then, the only random variable left is the residual
service time of the component generating the next
replacement epoch, 7;4;, whose conditional distribu-
tion, given &; < 741 < 7;, we now derive:

P(rig1 < 2|V} > Vi, & < mig1 < i)
= P -vi<ez|lV}>vi&<Yi-vi<n)

P(vi 4 & <Y} < vi+ min(z,m))
P(i+& <Yi<vi+m)

Thus, the conditional distribution is

0 _ if z <&
— F(v,+z)-F(v,+€: .
Fr(=) = F(::+:;))—F((u:+e.)) f&<e<n s
1 ifz>mn
with conditional density
HORED) s ,
fo(z)= { Forn-Fogy L&Sesm
0 otherwise
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where for notational brevity, we take 1 = r;4;.
We first consider the easier Afy > 0 case, for which
the condition e*'[8,] = v, ¢'*1[0; + Afs] = ¢ trans-

lates into the probability (see Figure 2)
P < 6y + Ay, vt > 6,)
=PVl 4+ 7 <0y 4 Ao, vl + 7> 0,),
for which the appropriate rate is given by

P(V1+TS92+A9'_>|Vi+T>03)

lim
8620 A6,
flri+82—vt) ) _
= F(vid+n)-F(vi+82—vl) if& <0y —vi <y
0 otherwise

Now, we consider the four A#; cases. Unlike the
case just considered, where only the type of event was
affected, and not the actual timing of replacement
epochs, here there can be “propagation” of perturba-
tions, because 6; actually affects the interevent times,
as well as the type of events. A perturbation in 6;
is propagated throughout the timing of the system
according to the following rules:

PROPAGATION RULES:

1 =1 1—1
ary 41Tt dv)t

— T —
o = gt A =
dT, dT} .o i
3 — 8. i A
* = if e =
e reset all d€ = 0 at regenerative point

(when e ;ﬁ qS Yk

where dT’/d01 is a variable introduced to track the
(relative) perturbatlons in timing at component j (at
epoch t;") The first rule implements the propagation
of a perturbation generated in the service time which
generates the ith replacement epoch. The second rule
implements the propagation of the generating compo-
nent to all other components which are also replaced
at the ith replacement epoch. The last rule is imple-
mented because at a regenerative point, the second
rule implies that every component will get the same
perturbation, and hence all differences are 0; for our
purposes the difference is all that matters, so without
loss of generality, we can reset all counters to 0.
We first define

dé? dTi  dY} <dT" dy? )
6, (d01 * 30, ) a6,
where we define I; = 0 for the first two Af); cases, and

I, = 1 for the last two Af; cases, with A&j defined
as the corresponding finite perturbation. Thus, this

indicator function corresponds to the first and third
situations in Figure 1 when there is the possibility of a
switch in the component which generates the (i+1)th
replacement epoch.

We translate the possibilities for A#; discussed
above into the following four probabilities:

o) =7, o + A6 = ¢
P(V. 47— A8 <Ol + 7> 05,
AL > 0);
eF101] = ¢, e 01 + A0 ] =7.Y] > 62 :
P+ 71— A8 > 0a|vh +7 < 05,
A8 < 0,Y] > 62);
e8] =7, e 0+ A =0, Y] > 0
Py + 71— A8, > 0:|vy + 7 < 6,
A8 < 0,Y] > 8a);
eF10)] = ¢, e 8 + A0] =0, Y] <6y :
P(L 47— A8 > O2|V + 7 < 65,
A8, < 0,Y] < 6).

For the first case, we have

Pl 4+ 17— AL < Bo|vl + 7> 62, ASL > 0)
mm
26, —0 Af,y
_ fWi+62—vh) dét.
T F(i+n) - F(i+6.—vi)db,

. : ds? .
if (§ < 02— vl <y, g5 < 0) and 0 otherwise.
For the second case, we have given )4’_ > 0,:

. P 41— A8 < Galvi 47> 0:,A8, <0)
lim
A9, —0 Afy

_ FVi+ 8, —vi) (_ﬁ
T FWitm) - Fi+0;—vi) \ do

if (§; <602 — l/i_ <, % >0, )4’, > f5); 0 otherwise.

For the third case, we can further subdivide the
cases based on I{Y} > 6,}, because when Y} > 65,
the expected contribution due to the change turns out
to be zero by symmetry. Thus, we can just consider
the case Y,f < #,, which must be added into the con-
ditional distribution for 7,4, yielding the conditional
rate, given Y} > 5, Y/ < 6,:

PV + 71— A8, < 0:vh + 7> 0,, A8}, <0)

Al@lln—l‘o A91
fi +6y —vi) < dé
T P - Fri+0:—vi) \ doy
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if (6 < 0y — 0% < Th',zﬁ'- > 0,YL > 05, Y < 6s);
= + @, +

0 otherwise.

For the fourth case, we again can further subdi-
vide the cases based on I{Y! > 65}, because this
time when Y? < 65, the expected contribution due to
the change turns out to be zero by symmetry. Thus,
we can just consider the case Y! > 6, which must
be added into the conditional distribution for 744,
yielding the conditional rate, given Y} < 65, Y} > 0a:

P(I/_i*_ 47— Acﬁ_ < 03|u§, +7> 03,A6f,, < 0)

ALI,HJ»O AGy
B v+ 0y — V) (_d61>
T F(i4m) - Fvi+6,—vi)\ do

(6 < 62— v <mi gt > 0.Y] < 62, Y > 0);
0 otherwise.

Having completed the derivation of the event ex-
change rate term in Equation (1), we now turn to the
change in the performance measure due to the event
exchange. We need to construct two sample paths
which represent the limit in which the exchange oc-
curs, one in which the events “just miss” exchang-
ing and the other in which the events “just make”
exchanging. The paths are identical to the nominal
(original) path up to the ith replacement epoch with
the following changes at the (i + 1)st replacement
epoch (where we represent the newly constructed
paths with a tilde representation), corresponding to
each of the four previous cases:

Case 1. Ujt! = vi+¢l, ifelt' =9,
1)}""1 = 0, ifj:*ore§+1=‘y,j¢—,
PP1: p*t = 4,
DNP1: p'*t = o,
A
Case 2. "' = wi+nf, ifelt' =¢,j#+
17]’:“ = 0, ifj:*ore;"'l:'y.
PP2: it! = o,
DNP2: oit' = 6,
o - BN = tems
Case 3. D;+1 = u}+n§, ife§+1=¢>,j#+,
yrt o= 0, if j =% or ej*! = 4,
PP3: il = o,
DNP3: oit' = 0,
o = gBN = e

Case 4. i*1 = vi+qi, ifeitt =9¢,j#+,
Dj’f"'l = 0, ifj:*orej-“:‘y,
PP4: iFt = 0,
DNP4: iitt = o,
gfft = gPTPY = +er;

Case 5 is identical to Case 1. We note further that
for Cases 3 and 4, no additional work need be done,
because other than the cost difference at ¢,4;, the
two paths PP and DN P are identical; finally, Case
2 is similar to the negative of Case 1, except that the
upper bound 7; is used instead of the lower bound &;.

Defining the indicator function to be 0 if the index
“-" does not exist, our final estimators are given by
the following:

dL - : déi
2= ; < Oy—1t < i, ——
a0, Zizll{g’ < 0=l <0i o= > 0}
fvi+6,—0h) dét.

- - _— = ( [PPLi) _ [DNPI()
XF(Vi+ni)—F(V:+92—u1)d01( n n )

- : ds! , .
~ Y M < v <o < 0¥ > 02,6 = 6)
1

i=1

fi+6:.—04) A8\ (zppagy _ DN
“Forem - Forr s ) (- I )

z . dé: y : y
+) T{& < —vh < i, EY‘ <0,Y] >0, = 4,Yi <)

i=1

fWi+60,-vi) (d&i) CR

“Fitn)-Fitl—vy) \db ) n

u : dét : :
=D & < 0o—vh < 5pE < 0] <02, Y7 > 02}
1

i=1

fWi+6,—vy) (ﬁ CR )
F(vid4mn)—Fi+0,—vi)\do) n’

dl, < ;
0, = D OME < 0—vE <)

“ i=1

f(Vi + 0, —vt)
F(vi+n)— F(vi+ 62— Vi)

(EfPl(i) _ E£NP1(£)> .
(3)
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3 SPECIAL CASES

The obvious way to estimate (L, P} — [PNP(D) 5 ¢4
simulate from the (i+1)st replacement epoch to the
nth replacement epoch for each of the two paths, take
the difference, and add the appropriate (g,-’:ﬁ —gﬂ‘\{P)
term. It is clear that this could potentially entail a
substantial number of sub-simulations, and probably
not computationally practical. For the cases of N=2
and 6,=0, we can derive efficient estimators, which
we discuss in this section.

If 6,=0, then all components would always be si-
multaneously replaced, so in essence the system acts
as a single component with the distribution being
the minimum of all service times. It should be clear
that for our performance measure the derivative with
respect to #; is 0, and our estimator will also give
this, since every replacement époch is a regenerative
point and hence dé;/df, = 0 always. Although the
derivative with respect to #; is non-zero, since ev-
ery replacement epoch is regenerative, the quantity
(I—,fp(i') — LI,)NP(”) always corresponds to a regener-
ative starting point, and hence can be very efficiently
estimated using the sample path itself without need
for additional simulation.

For 6, # 0, we also have simplification for N=2 and
large n, because the term (Efpm — [—,fNP“)) will no
longer depend on various ages at t;, simply because
there won’t be any other components besides the two
involved in the potential event exchange.

Case 1:
vi*t =0, PP1: *'=9¢,, DNP1: it =0,
Case 2:
pi*t=0, PPl: #}'=0, DNPLl: iif' =6,

1.e, taking “+” as component 1, DN P1 is the path
starting with ages (0,0) (regenerative point), whereas
PP1is the path starting with ages (0, 62), and DN P2
and PP2 simply correspond to the reverse of this.
Recall that if the “—" needed for the first and fourth
cases are missing, then there is no contribution for
that replacement epoch. When there are only two
components, the “—” component - if it exists — will
correspond to the “+4” component, which is simply
the component other than the “*” component, and
we also have & = 6, — vf, 7, = Y! —v}. In addi-
tion, the first condition in the indicator functions will
automatically be satisfied. These results simplify the
estimators given by Equations (2) and (3).
Furthermore, for large n, we get the following sim-
plification by using the construction for DN P and
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state

(0,62) (0,0)

— }
I . 1

n n

—

DNP

PP

Figure 3: Sample Path Used to
Construct DNP and PP

PP depicted in Figure 3 (Case 1):

EPP _ LDNP ~ Effn _ ]__-/'?NP
1 n+n n+n

1
= n+h;gi_;§gi
1 n n+4n
= 0 (ZgﬁZgi)
i=1 i=n

lﬁ+n
_;Z

i=n

n+n

1 n
= n+niz_;gl—n(n+h) ;g‘

1 n o
(o)

Because this quantity is independent of 7, it can be
taken outside the summation in the expressions for
the estimators, and estimated completely indepen-
dently (e.g., “off-line”) from the rest of the estima-
tor, where n and y_"_| g; are the quantities which
need to be estimated. They can be efficiently esti-
mated by simply running one additional (relatively
very short) simulation which starts from the initial
condition with ages (0,6,) and ends when it first hits
the regenerative point of both components being re-
placed. Of course, to get better estimates, this can
be done for multiple replications.

&

Example: For illustrative purposes, we now con-
sider an example for the N = 2 case to see the re-
sulting simplifications from the preceding analysis. If
the components have uniformly distributed lifetimes,
with 6; as the upper bound, then we have the follow-
ing for the hazard-rate-like functions that appear in
the estimators:
fvi+6, - z/f,_) 1

gi

(4)

F(vi+mi) = F(vi+6, —vi) ~ min(Y,6; — vi 4+ vi)
(recall that Y = Y_,’;, if “=" exists, where “+” will
correspond to the component other than “*"), and
the estimators given by Equations (2) and (3) become
the following easy to implement and computationally
efficient estimators:
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dLn — (LPP — [PNP

3, = — cr/n)x
Zl{dél 1 dét
j_ — 6, db;

‘ 1 dé}
I -+ 0, } > 0'7, i+l — '?———t
+ { < 2,7 = ¢} 16, 4o

+Z [I{ doy <0,Y] >0, =7, <6}

; 1 d6+ CR
_1{—<0) < 6.,V >92}] Yi_6,d0 n’
_ n i+1 _
di. op DNP He™ =7, # *}
46, ( cr/n) lz_:l }+ 69

where Y} = min(Y}, 61—vi+vi) and (LPP — LPNP)

is given by Equation (4).

4 CONCLUDING REMARKS

Threshold parameters arise frequently in the opti-
mization of discrete-event systems, so the availability
of gradient estimates is an important area of research.
As noted in the introduction, perturbation analysis is
a gradient estimation technique which has been ap-
plied to a wide variety of these types of problems. We
have shown that it is possible to derive gradient esti-
mates for replacement problems in maintenance the-
ory; however, the estimators we have derived here do
not appear to be computationally efficient except for
the special cases N = 2 or 8 = 0, which are of limited
practical use. The estimation of (LPP(” LfNP(i))
requires in general on the order of one separate sub-
simulation for each replacement epoch, so there might
be on the order of n extra sub-simulations required
per replication, though many of them would be quite
short. For the special cases, this extra simulation is
eliminated. An alternative approach which might be
more successful for this problem is the standard clock
approach (see, e.g., Vakili 1991). Proofs for unbi-
asedness of the gradient estimators derived here have
been omitted, but as is usual for perturbation analy-
sis estimators, the key tool would be the dominated
convergence theorem, which allows the interchange of
derivative (limit) and expectation (integral); such a
proof would proceed along lines similar to the ones in
Fu and Hu (1992), though as we noted already, this
simple system does not satisfy some of the assump-
tions usually given for a GSMP framework.

Finally we note that gradient estimation techniques
from the discrete-event simulation community need
not be restricted to the “traditional” models of oper-
ations research such as queueing, inventory, and re-
liability. Another application to a threshold-like pa-
rameter is considered in Fu and Hu (1993), in which
is derived an efficient unbiased estimator (in contrast
to the problem studied here, requiring only one ex-
tra short simulation per replication) for the gradi-
ent of an American call option price with respect to
its early exercise threshold at an ex-dividend point.
It is then demonstrated how this gradient estimator
can be used to do option pricing for American-style
(where early exercise is possible) options, for which
heretofore the finance community had not considered
Monte Carlo simulation as a viable alternative.
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