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ABSTRACT

In this paper we describe a graphical, interactive
technique for modeling univariate simulation input
processes with a distribution family based on Bézier
curves. This family has an open-ended parame-
terization and is capable of accurately represent-
ing an unlimited variety of distributional shapes.
Our input-modeling technique is implemented in a
self-contained, Windows-based software system called
PrIME—PRobabilistic Input Modeling Environment.
Several examples illustrate the application of this
technique.

1 INTRODUCTION

One of the main problems in the design and construc-
tion of large-scale stochastic simulation experiments
is the selection of valid input models—that is, proba-
bility distributions that accurately mimic the behav-
ior of the stochastic input processes driving the sys-
tem. Often the following difficulties arise when us-
ing standard distribution families for simulation in-
put modeling: (a) many real-world input processes
exhibit probabilistic behavior that cannot be rep-
resented faithfully with standard stochastic models;
(b) there are a limited number of parameters avail-
able to control the shape of the fitted distributions;
and (c) the parameters of these distributions are of-
ten difficult to estimate from either sample data or
subjective information (expert opinion). Moreover,
the user has no guarantee of conclusively identifying
an appropriate distribution family using conventional
graphical and statistical goodness-of-fit tests; and the
user generally lacks a unique, well-formulated crite-
rion by which to estimate the parameters of any given
distribution family. The problem of modeling simula-
tion input processes is further complicated if sample
data are not available. In this case, the selection of a
distribution is based arbitrarily on whatever informa-
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tion can be elicited from knowledgeable individuals.

In this paper, we present a flexible, interactive,
graphical methodology for modeling a broad range
of input processes that arise in large-scale simula-
tion studies. We implemented this methodology in
a self-contained, Microsoft-Windows-based software
system called PRIME—PRobabilistic Input Modeling
Environment. PRIME integrates graphical and statis-
tical concepts to form a tool that helps an analyst
select and visualize an appropriate representation of
a random input process using interactive-subjective,
data-driven, and visually-based techniques. We have
exploited the properties of Bézier curves to develop
a flexible univariate distribution family that has an
open-ended parameterization capable of accurately
representing an unlimited number of distributional
shapes.

The remainder of this paper is organized into four
sections. In Section 2 we review the current tech-
niques used for modeling stochastic simulation input
processes. In Section 3 we introduce a methodology
for input modeling with univariate Bézier distribu-
tions, and in Section 4 we describe the implementa-
tion of this methodology in PRIME. In Section 5 we
present some examples to illustrate the application
of this methodology. Finally, in Section 6 we summa-
rize the main contributions of this work. This paper
is based on Flanigan (1993).

2 CONVENTIONAL TECHNIQUES FOR
SIMULATION INPUT MODELING

2.1 Subjective Distribution Estimation

Subjective estimation of a distribution is necessary
when the process to be modeled lacks data. The data
may be nonexistent, as is the case when a new pro-
cess is being introduced, or data may be difficult to
obtain due to cost or time constraints. If data are
not available, then the selection of a distribution and
estimation of its parameters must be based on other
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characteristics of the process.

There are several software packages that can be
used to display and manipulate probability distribu-
tions in the absence of data. The INSIGHT sim-
ulation environment (Roberts 1983) displays stan-
dard distributions given user-specified parameters;
IMSL (1987) can be used to plot standard distribu-
tions; and XCELL+ (Conway et al. 1987) displays the
generalized Lambda distribution. All three software
packages require the user to enter the parameters of
the distribution directly, which presupposes detailed
knowledge of the input process being modeled. Not
one of these packages provides a means to edit the dis-
played distribution—each program must be restarted
if a different parameter set is desired.

VISIFIT (DeBrota et al. 1989) and VIBES
(AbouRizk, Halpin, and Wilson 1991) are designed
for subjective estimation of bounded Johnson (Sg)
distributions and generalized beta distributions re-
spectively. Both programs enable the user to edit
graphically the shape of the density, thus altering the
corresponding distribution parameters, until the fit-
ted density is visually and subjectively acceptable.
VISIFIT and VIBES have the following limitations.
(a) Both programs are specifically tailored to dis-
tribution families that are limited to four parame-
ters. (b) Both programs require complicated numer-
ical methods for parameter estimation. (c¢) The user
must make decisions about the shape of the distri-
bution largely from subjective information—that is,
VISIFIT and VIBES have only limited facilities for
superimposing empirical distributions onto the view-
ing display.

2.2 Data-Driven Distribution Estimation

If data are available, a modeler is confronted with the
problem of selecting a distribution that closely ap-
proximates both the underlying distribution and the
sample data set. A simple distribution-fitting method
is to use the empirical distribution corresponding to
the sample data. The problem with using an empiri-
cal distribution is that its mass points constitute the
entire support of the fitted distribution, and values
that are not contained in the data set cannot be re-
alized (Law and Kelton 1991).

Adding exponential tails to an empirical distribu-
tion is a method for extending the range of realiz-
able values of the fitted distribution (Bratley, Fox and
Schrage 1987). This method overcomes some of the
deficiencies of the empirical distribution in modeling
the tails of the underlying distribution, but it still
requires a lot of information to construct an input
model; and the final fitted distribution may not ad-

equately represent the smoothness properties of un-
derlying distribution.

UniFit II (Vincent and Law 1992) is a software
package that is used to fit data to one of the stan-
dard probability distributions plus the more flexible
Pearson type V and VI families, the Inverse Gaus-
sian distribution, the extreme value distributions, and
the logistic distribution. The program will select the
“best” distribution to represent the data using a (pro-
prietary) set of comparison and fitting schemes. The
only method to tailor, or fine-tune, the chosen distri-
bution is to alter the data set or to reset the bounds
of the fitted distribution.

Swain, Venkatraman and Wilson (1988) developed
FITTRI, a program that attempts to fit data to the
entire Johnson system of distributions—namely the
Sp (bounded), Sy (unbounded), Sp (lognormal) and
Sy (normal) distribution families. FITTRI incor-
porates an extensive battery of fitting algorithms to
estimate the parameters of the best-fitting Johnson
distribution for a given data set. However, because
each Johnson distribution has at most four param-
eters, FITTRI is not guaranteed to obtain a glob-
ally good fit to an arbitrary data set. Moreover, the
parameter-estimation schemes in FITTRI1 are com-
putationally intensive, there are no graphical display
capabilities, and methods to edit the fitted distribu-
tion are ad hoc.

Virtually all of the conventional methods for sim-
ulation input modeling have limited flexibility be-
cause they are based on distribution families with
a fixed number of parameters. Hora (1983) and
Avramidis and Wilson (1989, 1993) have introduced
methods to extend the parameterization of distribu-
tion families. Unfortunately neither of these meth-
ods is guaranteed to yield a significantly improved fit;
and Avramidis and Wilson (1993) show how Hora’s
method can actually yield a fit that is statistically in-
ferior or even mathematically illegitimate. Moreover,
the additional parameters introduced by these meth-
ods have no direct, intuitive interpretation in terms
of the underlying process that is being modeled.

In view of the limitations of conventional tech-
niques for simulation input modeling, there is a need
for a parametrically extensible distribution family
with the following properties: (a) its parameters are
meaningful to users and easily estimated from data,
and (b) its density and distribution function can be
readily edited graphically. These considerations mo-
tivated our examination of Bézier distributions.
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3 BEZIER DISTRIBUTIONS

3.1 Definition of Bézier Curves

In computer graphics, a Bézier curve is used to ap-
proximate a smooth univariate function on a bounded
interval by forcing the Bézier curve to approximate

a given set of control points {p; = (z;,z) : i =
0,1,...,n}. Formally, a Bézier curve of degree n with
control points {py, Py, -.,P,} is given parametrically
by
P(t) = [Pr(t;nlz), Pz(t;niz)]
n
= Y Bnit)p; for tef0,1], (1)
i=0
where ¢ = (z9,21,...,2,) and z = (20,21, ...,2n),
and where for i = 0,1,...,n, the blending function

By, ;(t) is the well-known Bernstein polynomial

— n! i n—i

Bézier curves have two characteristics that are partic-
ularly important for graphically-based approximation
of functions (Farin 1990):

1. A Bézier curve interpolates ezaclly its first and
last control points; this means that the curve will
pass through these control points.

2. A Bézier curve is edited under global control; this
means that a change in one control point affects
the shape of the entire curve.

Although Bézier curves are edited under global con-
trol, the effect of the ith control point p; on the shape
of the curve is greatest when t = i/n. As t increases
from 0 to 1, the effect of the initial control point pg on
the current curve coordinates P(t) decreases; and the
effect of the final control point p,, on P(t) increases.
In this sense, the control points act like “magnets”,
where the “magnetic attraction” of control point p;
is strongest when the independent variable t = i/n so
that the corresponding point P(t) is in the vicinity
of p;. Bézier curves are used extensively in computer
graphics because of their ease of implementation, in-
tuitive construction, and numerical stability.

3.2 The Bézier Distribution Function

If X is a continuous random variable with bounded
support [z, *], unknown CDF Fx(-), and unknown
PDF fx(-), then we can approximate Fx(-) with
an appropriate Bézier curve of the form (1), where
the control points pg, Py, --,P, have been arranged

so as to ensure the basic requirements of a CDF:
(a) Fx(z) is monotonically nondecreasing in z; (b)
Fx(z.) = 0; and (c) Fx(z*) = 1. By utilizing the
Bézier property that control points p, and p, are
exactly interpolated, we can ensure Fx(z.) = 0 if
we take p, = (z.,0.0), and Fx(z*) = 1 if we take
Pn = (2%,1.0).

3.3 The Bézier Density Function

If X is a continuous random variable as defined in
§3.2, then we can show that the corresponding density
fx(+) is given parametrically by

P*(t) = [P;(t;n,z), P} (t;n,z,2)], (3)
where
P (t;n,z) = P(t;n,z), (4)
and
.y _ P.(t;n—-1,Az2)
Piltinz,2) = 5071 An)
n—1
. Bn_1i(t)Az;
— Ez:O 1, ( ) (5)

ise Bno1i(t)Az;

for all t € [0,1]. In equation (5), we take Az
= (Azg,...,Az,_1) and Az = (Azo,...,Azp_1),
where Az; = z;4; —z; and Az; = zi4 — 2z (1 =
0,1,...,n) represent the corresponding first differ-
ences of the z- and z-coordinates of the original con-
trol points {pg,P;,-.-,P,} in the parametric repre-
sentation (1) of the distribution function.

3.4 Moments of the Bézier Distribution

The expected value of a Bézier variate .\' is given by

E[X]= %Z (%) z ,_ ((25_1)) Az (6)

=0

Closed-form expressions analogous to (6) can be given
for the higher-order noncentral moments of a Bézier
variate (Flanigan 1993), but these expressions are
cumbersome to evaluate. An efficient alternative
scheme to determine the moments of the distribution
can be based on the following result

1
B[XH = /0 kPO L= PLONPL)] dt. (7)

Equation (7) is valid when X is a nonnegative ran-
dom variable. If X has a (finite) negative lower bound
z., then equation (7) can be applied to calculate
the noncentral moments of the nonnegative random
variable {, = X — z.. It follows immediately that
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E[X] = E[¢.] + z«; and the remaining central mo-
ments of X coincide with the corresponding central
moments of (,. Thus the standard deviation, the
skewness, and the kurtosis of X are the same as for

G

3.5 Generating Bézier Variates by Inversion

A Bézier random variable with density (3) can be
generated by inversion as follows. Given a random
number U ~ Uniform[0, 1], we perform the following
steps: (a) find ty € [0, 1] such that

P,(ty;n, z) = Z Bri(tv)z = U, (8)
=0
and (b) deliver the variate
X = P(tysn, @) = > Baa(tu)z: . (9)
i=0

The solution to (8) can be found by any root-finding
algorithm such as Miiller’s, Newton’s, or the Bisec-
tion method (Conte and de Boor 1980).

4 MODELING BEZIER DISTRIBUTIONS
USING PRIME

PrIME, PRobabilistic Input Modeling Environment,
1s a graphical interactive software system that incor-
porates the methodology defined in §3 to help an ana-
lyst estimate the univariate input processes that arise
in large-scale simulation studies. PRIME is designed
for IBM-compatible microcomputers equipped with
a math coprocessor and a pointing device such as a
mouse. It is written entirely in the C programming
language, and it has been developed to run under Mi-
crosoft Windows (Microsoft Corporation 1990) ver-
sion 3.0 or later. PRIME is designed to be easy and
intuitive to use. The construction of a CDF is per-
formed through the actions of the mouse, and sev-
eral options are conveniently available through menu
selections. Control points are represented as small
black squares, and each control point is given a unique
label corresponding to its index 7 in equation (1). Fig-
ure 1 shows a typical session in PRIME, where the
CDF window is displayed.

In the absence of data, PRIME can be used to
describe an input process conceptualized from sub-
jective information or expertise. The representa-
tion of the conceptualized distribution is achieved
by adding, deleting, and moving the control points
via the mouse. As mentioned in §3.1, each control
point acts like a “magnet” pulling the curve in the

System Menu

Title Bar
Y N\
Menu B -' PRIME <
u Bar
% File Edit Fit Data Analysis Display Options
F(x)
A .
L]
Control Point
- (—)
0 . >
[ ]
/4 X
Drawing Area

Figure 1: A PRIME Window

direction of the control point, where the blending
functions, described by the Bernstein polynomials,
govern the strength of the “magnetic attraction” of
each control point. The movement of a control point
causes the displayed CDF to be updated (nearly) in-
stantaneously. The corresponding PDF and the first
four moments are (nearly) simultaneously updated
in adjacent windows so that the user gets immedi-
ate feedback on the effects of his movements of the
control point. Figures 2 and 3 give some indication
of the wide variety of distributional shapes that can
be achieved with this approach to subjective distri-
bution estimation. The figures make it clear that
the flexibility of this approach greatly exceeds that
of subjective estimation techniques based on distri-
bution families with a fixed number of parameters
(DeBrota et al. 1989).

4.1 Data-Driven Estimation of Bézier Distri-
butions

Classical fitting algorithms have been employed to
fit Bézier distributions to sample data sets. Suppose
that arandom sample {X; : j = 1,2,...,m} has been
taken from Fx(-) and that F,,(z) = (number of X;’s
< z)/m denotes the corresponding empirical distri-
bution function. If we define an appropriate distance
function d(Fn(-), Fx(-; n,,2)) between the empir-
ical CDF Fy,(-) and the fitted CDF Fx(-; n,z,2)
given parametrically by (1), then a natural approach
to data-based distribution fitting is to use a suitable
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Figure 3: A Trimodal Distribution

optimization procedure to solve the problem

min - d(Fm(), Fx(;n,z,z))

Z
s.t. P!(t;n,z,2)>0 for t€[0,1] 3, (10)
20 =0, zn =1,
zo < X(1), Zn 2 X(m)

where X1y < X9y < --- < X(n) are the order statis-
tics for the sample {X;}.

The classical fitting algorithms that have been
incorporated into PRIME include: least-squares es-
timation, minimum-L;-norm estimation, minimum-
Lo-norm estimation, maximum likelihood estima-
tion, moment matching, and percentile matching. See
Flanigan (1993) for a detailed description of these fit-

ting methods.

5 EXAMPLES

5.1 Distribution Fitting without Data

AbouRizk, Halpin and Wilson (1991) described an
application of subjective distribution fitting in the
context of construction simulation. To model the
time required to resurface a section of runway at a
small airport, the project engineer assembled the fol-
lowing information about this activity.

o Under the best circumstances, the minimum fea-
sible time to complete the resurfacing is 1 hour.

¢ Resurfacing must be completed within an 8-hour
period at night to avoid interfering with airport
operations.

e In the past, similar resurfacing activities have
most frequently lasted about 3 hours.

o There is at least a 75% chance that resurfacing
will last at most 6 hours.

Using VIBES, the project engineer initially mod-
eled the resurfacing time with a beta distribution
having the characteristics specified above. Unfortu-
nately, the resulting density appeared to be nearly
uniform on the interval between 1 and 8 hours, and
this model of the distribution of resurfacing times
was judged to be unrealistic. Through a series of
interactive modifications of the displayed beta den-
sity, the project engineer arrived at a more realis-
tic model of the distribution of runway resurfacing
time. Although the endpoints of the distribution were
unchanged, the final fitted beta density had a much
thinner right tail, with the 75th percentile set at 4.61
hours.

We also used PRIME to model the distribution of
the runway resurfacing time. First we defined the
support of the distribution by changing the minimum
and maximum values on the z-axis to 1 and 8, re-
spectively. Then we activated the PDF window and
a statistics window showing the first four moments of
the currently displayed distribution. We moved the
control points from their default positions until the
overall shape of the density was visually acceptable,
and the mode was approximately 3. Figure 4 shows
the final fitted Bézier distribution with the CDF win-
dow on the left and the PDF window on the right. Ta-
ble 1 displays the corresponding values for the mode,
the 75th percentile, the 99th percentile, and the first
four moments. In this example, the fitted Bézier dis-
tribution is very similar to the fitted beta distribution
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Figure 4: Subjectively Fitted Bézier Distribution of Runway Resurfacing Time

both visually and according to the characteristics dis-

played in Table 1.

Table 1: Comparison of Subjectively Fitted Bézier
and Beta Distributions for Runway Resurfacing Time

Bézier Beta
Mean 3.614 3.616
Standard Deviation 1.359 1.398
Skewness 0.482 0.368
Kurtosis 2.720 2.415
Mode 3.0 3.0
99th percentile 6.91 6.92
75th percentile 4.52 4.60
Min, Max 1,8 1,8

5.2 Distribution Fitting with Data

As an example of distribution fitting with data, we
describe an application of PRIME in a manufactur-
ing simulation study. Surface mount capacitors are
stored in lots of varying sizes in a facility adjacent to
the insulation resistance (IR) testing area. To model
the operation of the IR testing area, we needed to
estimate the distribution of lot sizes in the storage
facility.

Lot-size data were available for 2083 tested lots.
Figure 5 displays a histogram and Figure 6 displays
the empirical CDF for this data set, where all of the
original observations were divided by 1000 for sim-
plicity. Notice that in the vicinity of 20 and 270 on
the new scale (that is, lot sizes expressed in 1000s),
there are pronounced peaks in the histogram. Usually
such a bimodal distribution indicates that the sample

was taken from two distinct populations. In the cur-
rent context, the production engineers were unable to
provide any additional information that would enable
us to model the lot-size distribution as a mixture of
two simpler distributions; and thus we were forced to
exploit the capabilities of PRIME for modeling multi-
modal distributions.

EY
0.007 o

0.006 +
0.004 +

0.003 -

0.001 1

0.000 t + + t —
-20.0 179 255.9 393.8 531.8 669.7

Figure 5: Least-Squares Fit for the Lot-Size Data Set

Once the lot-size data set was imported into
PRIME, we moved the control points so that the cur-
rently displayed Bézier curve approximated the em-
pirical CDF. Since the lot-size data set is bimodal,
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Figure 6: Least-Squares Fit for the Lot-Size Data Set

we judged that it would be easier to fit the sample
data if the Bézier distribution had more than six con-
trol points (the default in PRIME); hence we created
three additional control points. We then requested
PRIME to find the least-squares fit to the empirical
CDF. Figures 5 and 6 respectively display the re-
sulting PDF and CDF from the Bézier distribution.
The sum of the squared deviations of the fitted CDF
from the empirical CDF is 0.0329, and the largest
deviation between the fitted and empirical CDFs is
0.0237. Notice that the fitted PDF and CDF closely
approximates the shape of the lot-size data set.

To demonstrate the advantages of using PRIME
for fitting a distribution to the lot-size data set, we
also obtained fits to this data set using FITTRI and
Unifit IT. The FITTR1-generated PDF and CDF are
displayed in Figures 7 and 8 respectively. Clearly
the Johnson Spg distribution obtained with FITTRI
is unacceptable—the single mode of the fitted distri-
bution nearly coincides with the antimode of the em-
pirical distribution that lies roughly halfway between
the two modes mentioned earlier; and the maximum
deviation between the fitted and empirical CDFs is
0.0862. Although the Johnson Sp family includes
some bimodal distributions, inherent restrictions on
the relative placement of these modes effectively pre-
clude the use of an Sp distribution to represent the
lot-size data set.

Unifit II selected the Weibull distribution as the
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Figure 7: Minimum-L..-Norm Fit to Lot-Size Data
Set Using FITTRI with an Sg Distribution

best-fitting distribution for the lot-size data set. Fig-
ures 9 and 10 respectively display the resulting PDF
and CDF. It is evident from these figures that
the Weibull distribution selected by Unifit II is also
unacceptable—the single mode of the fitted distribu-
tion nearly coincides with the first mode of the em-
pirical distribution; and the second mode of the em-
pirical distribution is largely ignored. The maximum
deviation between the fitted and the empirical CDFs
is 0.0695; and in fact, Unifit II does not recommend
the Weibull distribution as a satisfactory representa-
tion of the data set.

6 SUMMARY AND CONCLUSIONS

Bézier distribution families are extremely flexible. If
more degrees of freedom, or parameters, are desired,
they may be easily incorporated into the formulation
of the Bézier distribution. Increasing the number of
parameters (control points) of a Bézier distribution
simply provides more flexibility without changing the
form of the distribution, which is still Bézier.

Distribution fitting using Bézier functions com-
bines all available information—subjective, visual,
and empirical—in the formulation of the distribution.
If data are available, then automatic distribution fit-
ting via conventional methods (such as least-squares,
moment-matching, and maximum-likelihood estima-
tion) is readily performed.
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6.1 Univariate Distribution Families

If X is a continuous random variable having a uni-
variate Bézier distribution function Fix(-) as defined
in §3.2, then the distribution of X has the following
properties:

e The first control point, py = [zo, 20, and the last
control point, p,, = [z,, 2], are exactly interpo-
lated. This property ensures that Fy(zy) = 2z
and Fx(z,) = zn; and when 2 = 0 and z, =
1.0, a valid CDF can be constructed.

o The density function, fx(-), has a closed-form
parametric representation as a ratio of two Bézier
curves, as given by (3).

e The density function is determined from the set
of control points, {py,P;,.-.,P,}, that define
the CDF. The result is an exact parametric rep-
resentation of the density—no information is lost
or approximated in the conversion.

e The kth noncentral moment, E[X¥], of a Bézier
random variate X has a closed-form solution,
and it also has a computationally efficient ex-
pression given by (7).

6.2 Modeling Simulation Inputs with PRIME

PRIME implements the methodology discussed in §3
so that users may construct univariate distributions
based on a family of curves in Bézier form. This
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Figure 9: Unifit II Fit to the Lot-Size Data Set with
a Weibull Distribution
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Figure 10: Unifit II Fit to the Lot-Size Data Set with
a Weibull Distribution

methodology is implemented in a graphical environ-
ment.

From the user’s point of view, PRIME is an easy-
to-use, intuitive, graphical software system. PRIME
presents immediate, visual feedback on the currently
configured distribution. The user can easily alter
an inappropriately-configured distribution by adding,
deleting, or relocating one or more of the control
points given in (1).
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