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ABSTRACT

In this paper we develop strategies for integrating cer-
tain well-known variance reduction techniques to es-
timate a mean response in a finite-horizon simulation
experiment. Our building blocks are the techniques
of conditional expectation, correlation induction, and
control variates. Under some mild assumptions, we
explain how each integrated strategy yields a smaller
response variance than its constituent variance re-
duction techniques yield individually. We also pro-
vide asymptotic variance comparisons for integrated
strategies involving the correlation-induction tech-
nique of Latin hypercube sampling. Our Monte Carlo
results show that in the simulation of stochastic activ-
ity networks, large efficiency gains can be achieved by
using these integrated variance reduction strategies.

1 INTRODUCTION

A diversity of variance reduction techniques (VRTs)
have been developed to improve the efficiency of
simulations—that is, to reduce the computing effort
necessary to obtain some specified precision. For a
survey of VRTs, see Wilson (1984) and Nelson (1987).
There has been relatively little work on integrating
these well-known VRTs into an overall variance re-
duction strategy that can exploit various sources of ef-
ficiency improvement simultaneously. Moreover, few
attempts have been made either to quantify the ef-
ficiency improvement resulting from integrated vari-
ance reduction strategies or to establish general con-
ditions under which these integrated strategies are
preferable to direct simulation or standard VRTs used
alone. See Avramidis and Wilson (1992) for a re-
view of the literature on integrating variance reduc-
tion techniques.

This paper is organized as follows. In Section 2 we
define our notation, formulate the variance reduction
problem, and review some basic VRTs. In Section 3

445

James R. Wilson

Department of Industrial Engineering
North Carolina State University
Raleigh, North Carolina 27695-7906, U.S.A.

we develop and study some integrated strategies for
variance reduction. In Section 4 we provide asymp-
totic variance comparisons for integrated strategies
involving the correlation-induction technique of Latin
hypercube sampling. Section 5 contains the results
of a Monte Carlo study designed to gauge the effi-
ciency gains due to the integrated variance reduction
strategies in the context of activity network simula-
tion. In Section 6 we summarize the main findings
of this work, and we recommend directions for future
research.

2 NOTATION AND BACKGROUND

The problem is to estimate the expected value 8 of
a target response variable Y. This includes esti-
mating noncentral moments and probabilities, but
it does not include estimating, for example, central
moments or quantiles. We assume throughout that
E[Y?] < oo so that 6 = E[Y] and ¢} = Var(Y)
are both finite. The response 1s assumed to have the
form Y = f(V4,...,V},), where the function f(-) has
a fixed number of inputs; and the input random vari-
ates {V1,...,V,} have a known probabilistic struc-
ture. By this we merely mean that we have a way
of generating the random vector V. = (Vp,...,V;) so
that it has the correct distribution. The input ran-
dom variates are generated as V = H(U), where:
U = (Uy,...,Uq) is composed of d independent ran-
dom numbers that are uniformly distributed on the
unit interval (0, 1); and H(-) is a sampling plan, cor-
responding to the random-variate generation scheme
used. In some parts of this paper, it is convenient to
view Y as a function of the input random variates,
whereas elsewhere we prefer to view Y as a function
of the input random numbers. In the latter situation,
we write Y = f[H(U)] = y(U). Throughout this pa-
per, the word funclion will mean a Borel measurable
function, taking either real scalar values or real vec-
tor values. Vectors and matrices will be denoted by
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Figure 1: A Directed Network

boldface type.

ExAMPLE 1. Consider the directed network in Figure
1. The input random variates are {V, ..., V5}, where
V; is the (random) duration of arc 7 for i = 1,...,5.
Thus p = 5 in this example. Let

T = max{Vy + Vo, Vi + Va + V5, Vi + Vs )

be the longest directed path from node 1 to node 4,
and suppose the response is Y = 1{r<,), the indicator
function of the event {T" < ¢} for a given cutoff time ¢.
We assume that the random variates Vi, V4, and Vs
are mutually independent with known distributions
and that the random vector (Vs, V3) is independent
of V1, V4, and V5 with a known bivariate distribution.
Consider the following sampling plan:

Vi = Hy(Uy,Us), | Va = Ho(Us), Vi = Ha(Us,Us),

Va = Hq(Us), Vs = Hs(Us), (1)
where {Uj,...,Us} are random numbers and
Hi(:),..., Hs(-) are given functions that can be eval-

uated readily. Here we do not use the method of
inversion to generate all input variates; instead Vj is
generated by some other method that requires two
random numbers. Moreover, V3 is generated condi-
tional on Vs; and thus V3 is also a function of two

random numbers. With the sampling plan above, we
have d = 6, and

y(uq, ..., ug) =
1 if max{ Hi(uy,u2)+ Ha(uz),
Hl(ul,‘(tg)-f-H3(‘U.3,U4)+H5(US),
Hy(us) + Hs(ug)} <,
0 otherwise. B

In a direct simulation experiment, we perform n
independent replications that yield independent and

identically distributed (i.i.d.) observations of the tar-
get response {Y; : ¢ = 1,...,n}. The direct simu-
lation estimator is the corresponding sample mean
Y (n), which is unbiased and has variance n~!oZ.
The aim of variance reduction techniques is to iden-
tify an alternative estimator #(n) based on n replica-
tions (which are not necessarily i.i.d.) such that
E[0(n)] =60, Var[d(n)] < Var[Y(n)].

Even when the estimator 6(n) is based on n depen-
dent simulation runs, typically a central limit theo-
rem (CLT) holds so that

n'/?[0(n) - 6] 2. N(0,0%) asn—o0, (2)

where —2- denotes convergence in distribution and
N(u,c*) denotes a normal random variable with
mean p and variance o°. We then say that é(n) has
asymplotic mean § and asymplolic variance parame-
ter o°. . i

Suppose we have two estimators 6,(n) and 6,(n)
satisfying CLTs of the form (2) with respective vari-
ance parameters o; and o3 such that ¢ < o3. We
then say that 6, asymptotically dominates §,. For any
given finite replication count n, this does not guaran-
tee that either the bias or the variance of #;(n) has
smaller magnitude than the corresponding character-
1stic of ég(n). However, asymptotic dominance is a
reasonable criterion for comparing estimators when
it is difficult to obtain exact expressions for the bias
and variance of each estimator at each sample size n.
For simplicity, we will occasionally suppress the ar-
gument n in the discussion of alternative simulation-
based estimators 8;, #, when no confusion can result
from this usage.

2.1 Conditional Expectation

Suppose we can identify an auxiliary random vec-
tor X such that we can evaluate the conditional ex-
pectation h(x) = E[Y|X = x] analytically or numer-
ically for each possible value of x. Thus the ran-

dom variable Z = h(X) is an alternative estima-
tor of # based on a single replication. From the re-
sults {X; : i = 1,...,n} of n independent simulation

runs, we compute the corresponding random sample
{Z, = h(X;) : i = 1,...,n}; and the conditional-
erpectation (CE) estimator of 8 is

fce(n)=n"') " 7.
i=1

Since
E[Z]= E[E(YIX)] =6
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and
0% = Var(Z) = 0% — E[Var(Y|X)],

we see immediately that écg(n) is an unbiased esti-
mator of § and that Var[fcg(n)] < Var[Y(n)], with
equality holding if and only if Y is a function of X.

EXAMPLE 1 (CONTINUED). To evaluate the condi-
tional expectation of ¥ = lyr<y) analytically, we
condition on X = (X1,X3) = (W1, V). If Fa3(-,)
denotes the joint cumulative distribution function
(c.df.) of the input random vector (Va,V3), and if
F4(-) denotes the c.d.f. of V4, then it is easy to check
that

h(zy,z2) =

P{T <t|X, =Vy =z, X, = V5 = 25}
Pr{Vo <t -z, Va<t—z;— 25, Vs <t— 25}
Fos(t—zy,t—zy —z2) F4(t—z2). B (3)

2.2 Correlation Induction

We give a general method for obtaining negatively
correlated observations of an arbitrary random out-
put W observed in the simulation. (Since we will
apply the following development not only to the tar-
get response Y but also to other simulation-generated
outputs, we let the symbol W denote a “generic” sim-
ulation output to which a correlation-induction strat-
egy will be applied.) We view W as a function of the
input random numbers:

sz(Uj Zjelw),

where Iy is a subset of {1,...,d}, and the function
w(-) is defined by the simulation code. In the sequel,
we assume that the arguments of the function w(U; :
J € Iw) always occur in increasing order of the index
7

An easy-to-check condition that guarantees nega-
tive correlation induction is based on the notion of
negative quadrant dependence proposed by Lehmann
(1966). We say that the distribution of the bivariate
random vector (A;, A2) is negatively quadrant depen-
dent (n.q.d.) if

Pr{A, < a1, A2 < a3}
< Pr{A4; < a1} Pr{A; < a2} forallay, as.

We exploit this concept in Result 1 below to provide
the desired sufficient condition for induced negative
correlations. Moreover, we use the concept of nega-
tive quadrant dependence to define a special class G
of distributions for the random-number inputs. Every
distribution G € G must have the following proper-
ties:

CI, For some k > 2, G is a k-variate distribution
with univariate marginals that are uniform on
the unit interval (0, 1).

CI; Each bivariate marginal of G is n.q.d.
CI3 All bivariate marginals of G are equal.

Throughout this paper, we let Go(k) denote the dis-
tribution of & mutually independent random num-
bers. It is clear that Gy(k) satisfies conditions CI;-
CI3 so that Go(k) € G.

Using a k-variate distribution G selected from G,
we induce negative correlations between k replica-
tions of the simulation output W according to the
following scheme. Let Ly, denote an arbitrary subset
of I consisting of the indices of the random-number
inputs to w(-) that are used for correlation induction.
We perform k dependent replications yielding outputs

WO =wUP jelw), i=1,....k (4

where the input column vectors

T
U= (UM, uP e w,

are sampled as follows:

(a) For every index j € Lw, the random vector Uj;
has distribution G;

(b) For every index j € Iw — Lw, the random vector
U; has distribution Go(k); and

(¢) The column vectors Uy, ..., U, are mutually in-
dependent.

Condition (a) specifies that we induce dependence
between the outputs {W() . = 1,...,k} by ar-
ranging a negative quadrant dependence between the
jth random numbers sampled on each pair of replica-
tions, provided j € Ly . Condition (b) specifies that
for each j € Lw, the jth random number should be
sampled independently on different replications. Fi-
nally condition (c) requires mutual independence of
the random numbers used within the ith replication
to generate the output W(); and this guarantees that
each W) has the correct distribution. We then de-
fine the average across the k replications

k
Wc[(G,Lw)Ek—le“), (5)

i=1

where we make explicit the dependence of Wey on the
distribution G and the index set Ly where G applies.
The dependence of Wc; on k is not shown explicitly,
but is implicit through G.
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The mean and variance of Wci(G, Lw) are easily
derived. Clearly, for any G € G and Lw C Iw, the
statistic Wci(G, Lw) is an unbiased estimator of
with variance

Var[Wci(G, Lw)) =
= &~ War(W) [1+(k—1)pw(G,Lw) ,

where
pw (G, Lw) = Corr[W), w)]. (6)

The next result follows easily from Lemma 3 of
Lehmann (1966).

REsuLT 1. If G satisfies condition Cla and w(-) is
a monolone function of each argument with indez in
Lw, then Cov[W®) W] <0 fori # j, with equality
holding if and only if W) and WU) are independent.

Thus Wei(G, Lw ) has smaller variance than W (k),
the average of k independent replications of W, when-
ever w(-) is a monotone function of each random-
number input U; with index j € Lw; no assumption
is needed with respect to the behavior of w(-) as a
function of U, for £ ¢ Ly .

Using definitions (4) and (5), we formulate
éCI(G, n), the correlation-induction (CI) estimator of
6 based on the k-variate distribution G and n sim-
ulation runs. Specifically, 6¢1(G,n) is obtained by
averaging m = n/k i.i.d. replications of the statistic
Yci(G, Ly ), where we take Ly = Iy = {1,...,d}:

m

é(;l(G,n) =m! Z Y,
=1

where m = n/k and {Y; i g Yei(G,{1,...,d}).
To obtain a single observation of Y¢i(G,{1,...,d}),
we average k negatively correlated responses, where
all d random-number inputs are used for correlation
induction. To simplify the exposition, we assume
throughout the paper that n is an integral multiple
of k. Next we review two important special cases of
the method of correlation induction.

2.2.1. Antithetic Variates (AV). Here k = 2, and
correlation is induced by using complementary ran-
dom numbers so that we have

U =1-0", j=1,....4d

We let Gay denote the distribution of [Ui1 : U{"”] and
we observe that Gav € G.

2.2.2. Latin Hypercube Sampling (LHS). Here
we sample in a stratified scheme from each of the
marginal input distributions so that we have

UJ(“:’L(’)_I—*U"’;, i=1,.. .k j=1,..4

k
Y
where
(a) m1(+),...,mq(-) are independent random permu-
tations of the integers {1,...,k}; and

() {U;; : 3 =1,....d, i = 1,...,k} are random
numbers sampled independently of each other
and of the permutations m(-),. .., 7q4(+)-

We let GLu(k) denote the distribution of each k-
dimensional column vector of input random numbers
generated in this way—that isq: U; ~ Gru(k) if and
only if U; = U;“,...,U;k)] is generated accord-
ing to (7). In Avramidis (1993) it is shown that
Gru(k) € G for any k > 2.

Our definition of LHS is more general than the
usual one, introduced by McKay, Beckman, and
Conover (1980) and followed by Stein (1987). These
authors assume that the input random variates are
independent, and each of these variates is generated
by the method of inversion. We do not require either
of these assumptions. For any K C {l,...,p}, we
say that strict LHS is used on K if the input random
variates {V; : i € K} are sampled using the method
of inversion.

2.3 Control Variates

Suppose we can identify a 1 x ¢ vector of concomitant
random variables C = (C, ..., C,) having known, fi-
nite expectation p~ = E[C] and a strong linear as-
sociation with Y. We try to predict the unknown
deviation Y — 6 as a linear combination of the known
deviation C — p in order to adjust the response ac-
cordingly; this yields the “controlled” response

Yov =Y —b(C - pe)t.

For any constant 1 x ¢ vector b, the controlled re-
sponse Ycv is an unbiased estimator of 4. Let
oyc = Cov(Y,C) be the 1 x ¢ vector of covariances
[Cov(Y,Cy),...,Cov(Y,Cy)] and let ¢ = Cov(C)
be the q x q covariance matrix of C, where we assume
that ¢ is positive definite. The variance of Yoy 18
minimized by the optimal control coefficient vector
b* = ayczgl. Even though in some applications
Y ¢ may be known, oy ¢ is almost always unknown,
and therefore b* must be estimated.
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Suppose we have available n 1.i.d. observations
{(Y;,Ci) : ¢ = 1,...,n}. The most commonly
used control coefficient vector is the sample analog
of b*, b = SyCSEI, where Sy ¢ is the 1 X ¢ vector

of sample covariances [CE)V(Y, Ch), ..., va(}", Cy)

and S¢ is the sample covariance matrix of C. The
control-variate (CV) estimator based on the sample
{(Y;,C;) :i=1,...,n} is then defined as

fcv(n) =Y —b(C - pe)"

where ¥ and C are the sample means of {Y; : i =
1,...,n}and {C;:i=1,...,n} respectively.
Although the basic variance-reducing properties of
fcv have been established under relatively stringent
assumptions about the joint distribution of the re-
sponse Y and the control vector C, Nelson (1990)
pointed out that irrespective of the distribution of

(Y,C),
1/215 D 2 2 -
n'/*lfcv(n) — 8] — N[0, o3-(1 — Ry )] as n — x,

where R}, - = a,.czglaﬁc/o; 1s the squared coeffi-
cient of multiple correlation between Y and C. Thus
fcy(n) asymptotically dominates Y (n).

3 INTEGRATED STRATEGIES FOR
VARIANCE REDUCTION

3.1 Conditional Expectation and Correlation
Induction

We begin by expressing the conditioning vector X as
a function of the input random numbers:

X =z(U; : jeIx) forsome Iy C{l,....d}, (8)

where Ix is the set of indices of the random numbers
on which X depends. As scen in §2.1, the random
variable Z = E[Y|X] = h(X) is an alternative esti-
mator of # based on a single replication of the sim-
ulation; and Z has no larger variance than Y. Thus
we may view Z as the new response of interest, and
we can obtain an even more precise estimator by ap-
plying the technique of correlation induction to the
random variable Z. For this purpose, we express Z
as a function of the input random numbers

Z =h(X)=hlz(Uj :j € Ix)] = =(U; : j € Ix).

EXAMPLE 1 (CONTINUED). In §2.1 we took X =
(Vi, Vs). In view of (1), we have Ix = {1,2,6}. More-
over, (3) implies that
z(uy, uz, ug) =
Fast — Hy(up, ua), t — Hy(uy,up) — Hs(us)]
XF4[t - Hs(UG)]. |

Given an arbitrary k-dimensional distribution G €
G, we perform k dependent replications of the simu-
lation using the distribution G to sample the random
numbers with indices in Ix. The random numbers
with indices in {1,...,d} — Ix need not be sampled,
since Z does not depend on them. Following the no-
tation in (5), we define the conditional expectation-
correlation induction (CE+CI) estimator based on
the distribution G and n replications as

m

fce+ci(G,n) =m™! Z Zi,

i=1

where m = n/k and {Zi};';l L Zcil(G, Ix).
The following result is proved in Avramidis and
Wilson (1992).

ProOPOSITION 1. For any G € G, the estumator
0ce+c1(G,n) 1s an unbiased estimator of 0, with
Varlcgsc1(G.n)] < Var[fci(G,n)].  If z(-) is a
monotone function of each of its arguments, then
Va.r[écg+C|(G, 71)] S \/ar[OCE(n)].

3.2 Control Variates and Correlation Induc-
tion

Our approach to the joint application of the methods
of control variates and correlation induction is based
on the observation that the control vector C usually
depends only on a proper subset (U; : 1 € I¢) of the
input random numbers (U; : i = 1,...,d), so that we
may write

C=c(lj:j€lc) forsome Ic C{l,....d}, (9)

where If. = {1,...,d} = Ic # 0.

EXAMPLE 1 (CONTINUED). Suppose C = V4 + V5 =
Ha(Us) + Hs(Us), a scalar. Then Ic = {5,6}, I}
{1,2,3,4}, and c(us, ug) = Ha(us) + Hs(us). 1

Our development is in the same spirit as the ap-
proach of Tew and Wilson (1993) for integrating the
Schruben-Margolin strategy with the method of con-
trol variates. The key idea is to induce the desired
negative correlation between the responses by sam-
pling dependently only on the coordinates that do not
affect the control vector, thus preserving the depen-
dency structure between the response and the control
vector on each simulation run.

Given an arbitrary k-dimensional distribution G €
G, we perform k£ dependent replications of the simu-
lation using the distribution G to sample the random
numbers with indices in Iiz. The random numbers
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with indices in I are sampled independently accord-
ing to Go(k). Following the notation in (5), we define
the auxiliary quantities

Y =Yal(G, IL),
C=[Crci(G,I5),...,Coct(G, IL)]. (10)

To simplify the notation, we will take p(G) =
py (G, 1), where py (G, I) is defined as in (6). We
define écv+C|(G,n), the control variate-correlation
duction (CV+CI) estimator based on the distribu-
tion G and n replications, as the control variate esti-
mator

m

T
R l m - R l -
fcvici(G,n) = . ZY;’ - b(; Zci - uc) ,
iz1 i=1

with m = n/k, {(Vi, C:)}72, e (¥, C) as in dis-

play (10), and b= S)-,C-Sg-,l, where Sy = denotes the
1 x g vector of sample covariances between Y and the
components of C in (10) and S denotes the q x ¢

sample covariance matrix of C.
The following result is proved in Avramidis and

Wilson (1992).

PROPOSITION 2. Suppose that C is of the form (9),
G € g, and y(-) is a monotone function of each
argument with inder i I.. If each of (Y,C) and
(Y,C) has a multivariate Normal distribution, then
éCV+c[(G,n) 1s an unbiased estimator of §; and ig-
noring terms of order O(1/n), we have

Var[écv+C](G, n )] -

: (k= 10(G) _ |
Var[fcy(n)]

- Rip =

Moreover, wrrespective of the distributions of (Y,C)
and (Y,C), Ocvyci(G) asympiolically dominates
écv.

_ Unfortunately, a variance comparison between
BCV+CI(G,n) and 0ci(G,n) is not possible in gen-
eral. With 0ci(G,n) we sample dependently on all
the coordinates, which might induce more correla-
tion between replications of Y than when we only
sample dependently on some of the coordinates, as
with fcvici(G,n); and this extra correlation might
outweigh the benefit of the term —R3 . that arises
from the use of control variates.

3.3 Conditional Expectation and Control
Variates

To combine the methods of conditional expectation
and control variates, we must select a control vec-
tor C and an auxiliary random vector X such that

we can evaluate the conditional expectations h(x) =
E[Y|X = x] and g(x) = E[C|X = x] analytically or
numerically for every possible value of x. Define the
auxiliary random variables Z = h(X) and D = ¢g(X),
and note that F[Z] = 6 and E[D] = p..

EXAMPLE 1 (CONTINUED). With the previously de-
fined vectors X = (.X1,X3) = (V1,V5) and C =
Vi + Vs, we have

glzy,z2) = E[Va+ Vs|Vi =21, Vs = 9]
E[Va] + za. [ |

We view Z and D as the new response and con-
trol vector respectively, and we use the control-variate
technique to further reduce the variance of Z. By
analogy with the standard control-variate method-
ology, we assume that the vector D has a positive
definite (p.d.) covariance matrix X p. Moreover, we
assume that

There 1s no 1 x ¢ vector d # 0 such that
dCT is a function of X alone.

Let {X;:7=1,...,n} bei.id. observations of X. In

terms of the auxiliary observations

Z; = h(X;), D,=¢g(X;), i=1,....,n, (12

(11)

we define 9c5+c\/(71.), the conditional ezxpectation-
control variate (CE+CV) estimator based on n repli-
cations

fce+cv(n)=Z —b (D - MC)T )

where: Z and D are the sample means of {Z; : i =
l,...,n} and {D; : i = 1,...,n} respectively;

b=SzpSy';

Szp denotes the 1 x ¢ vector of sample covariances
between Z and the components of D in (12); and Sp
denotes the ¢ x ¢ sample covariance matrix of D.

Let Rzp denote the coefficient of multiple correla-
tion between Z and D. The following result is proved
m Avramidis and Wilson (1992).

PROPOSITION 3. Suppose that Xp is positive defi-
nite and (11) holds. If each of (Y, C) and (Z,D) has
a multivariate Normal distribution, then écg+cv(1l)
ts an unbiased estimator of 6, and Var[9c5+cv(n)] <
min{Var[@cy(n)], Var[fcg(n)]} for n > q/Ryp + 2.
Moreover, irrespective of the distributions of (Y,AC)
and (Z,D), Gcgrcv asymplotically dominates Ocv

and Ocg.

EXAMPLE 2. Suppose that (Y, C, X) is nonsingular
multivariate Normal. Then each of (Y, C) and (Z,D)
is multivariate Normal, ¥p is positive definite, and
(11) holds. N
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4 SOME ASYMPTOTIC COMPARISONS

In this section we show that Latin hypercube sam-
pling, a special case of correlation induction, is
asymptotically more efficient than the method of
control variates when a certain class of controls is
used. We also establish some general conditions un-
der which a combined variance reduction strategy
based on the methods of Latin hypercube sampling
and conditional expectation is asymptotically more
efficient than many of the other strategies discussed
in this paper.

Suppose the control vector C has the following
form in terms of the input random variates:

Ci= Y ¢:ij(V;) for i=1....q,  (13)
j€Jc
for some Jo C {1,...,p}, and where
(a) Foreach j € Je, ¢ ;(-) is an arbitrary univariate

function;

(b) The input random variates {1 : j € J¢} are
mutually independent; and

(¢) The remaining input variates (V5 @ j € J&),
where J. = {1,....p} = J. are independent of

(V;:jelde).

That is, each component C; of the control vector C
1s a separable function of a set of independent input
variates; and although the remaining set of input vari-
ates may be stochastically interdependent, the latter
set is independent of the former set. This setup often
occurs in practice since many put variates are gen-
erated independently of each other and control vari-
ates are usually taken to be sums of selected input
variates. For example, in queucing simulations, sums
or averages of service times observed at selected ser-
vice centers are frequently used as controls (Wilson
1984); and in simulations of stochastic activity net-
works, sums of activity times along selected paths are
often used as controls.

EXAMPLE 1 (CONTINUED). Using again C = V34175,
we see that (13) holds with Je = {4,5},¢ = |, and
¢14(x) = ¢15(x) = x for all real 2. B

We define the Latin hypercube sampling estima-
tor éL;i(n) to be éC[(GLH(n), n), where strict LHS is
used on J¢; and for simplicity in the following devel-
opment, we may assume that ¢ = J¢ without loss
of generality (recall the definition of /¢ in (9)). To
be explicit, we use the following sampling plan for
GLH(ny

y { F7H(U;), j€lec

T BWiciels), et

where F7!(:) is the inverse cd.f. of V;, Iz =
{1,...,di — I as in (9), and the functions {H;(-) :
J € Ji-} are the remaining part of the sampling plan,
whose form we do not need to make explicit.

The following result is proved in Avramidis and
Wilson (1992).

PROPOSITION 4. [f the response Y s bounded and
the control vector C has components of the form (13),

then Oy asymplotically dominates fcvy .

In the rest of this section we examine the asymp-
totic efficiency of a combined variance reduction
strategy based on the methods of Latin hypercube
sampling and conditional expectation. Our result de-
pends on the observation that usually the condition-
ing vector is a subset of the input random variates,
so that we may write

X=(Vj:j€Jx) forsome Jx C{l,...,p}. (14)

We define the conditional expectation-Latin hy-
percube sampling estimator OcgyLn(n) to be
Oces+c1(GrLi(n).n), where strict LHS is used on the
index-set Jx N Je, and again we may assume with-
out loss of generality that Jx NJe = Iy Nl For
concreteness, we state that the sampling plan corre-
sponding to OcgyLn(n) is

V= { FH),
’ Hi[Uyielxy —(IxNJe)), jeIx —Je,

JEJIxNJ¢

where Iy is defined in (8), and the functions { H;(-) :
J € Jx — J¢} are the remaining part of the sampling
plan, whose form we do not need to make explicit.

The following result 1s proved in Avramidis and
Wilson (1992).

PROPOSITION 5. [f the response Y s bounded, if the
control vector C has components of the form (13), of
the conditioning vector X is of the form (14), of Tp
is posilive definite, and if (11) holds, then éCE+LH
asymplotically dominates écg+cv. OcE. écv, and
Oun.

5 AN APPLICATION

r

5.1 Integrated Strategics for Variance Re-
duction

The graph-theoretic structure of a stochastic ac-
tivity network (SAN) is described by the pair
(N, A), where N = {1,...,v} is the set of nodes
(vertices) in the network and A = {(q;,b;)

activity j has start node a; € A" and end node b; €
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N,j = 1,...,p}. The network is assumed to be
acyclic, with source node r € N and sink node
s € N. Each activity j has a random duration Vj,
so the input random variates are {V; : j = 1,...,p},
and the probabilistic structure of the network is de-
scribed by the joint distribution of the random vec-
tor (V1,...,V,). Let & denote the number of di-
rected r—s paths, and let A(¢) denote the index
set of activities on the fth path, so A(¢) = {j
activity j is on the fth directed r—s path} for ¢ =
1,...,&. The duration of the ¢th path is the random
variable

and the network completion time is
T = max{P,,..., P}.

We consider the problem of estimating the cumula-
tive distribution function Fr(-) of the network com-
pletion time. Let 7 be the set of cutoff values at
which the c.d.f. is to be estimated. Then, for each
t € 7, the response of interest is Y = lir<y =
f(V1,...,V,), where 1g denotes the indicator func-
tion of the event B. Here we view the overall es-
timation problem as a set of univariate estimation
problems—that is, each value in 7 corresponds to a
single estimand of interest.

We assume that the activity durations {V; : j =
1,...,p} are independent, each with a known distri-
bution. We use the method of inversion to generate
all random variates, so the sampling plan is

Vi =F7NU;), J=1,....p.

Thus, in the previously established notation, d = p,
Ix = Jx,and I¢c = Jo. The variance reduction tech-
niques discussed in the previous sections are applied
as follows.

As a conditional-expectation estimator, we use an
adaptation of an estimator developed for stochas-
tic shortest route problems by Sigal, Pritsker, and
Solberg (1980). A wuniformly directed cutset (UDC)
L i1s a set of activities such that any directed r-s
path contains exactly one activity in £. See Sigal,
Pritsker, and Solberg (1980) for properties of a UDC
and the derivation of their estimator of E[}]; and see
Provan and Kulkarni (1984) for an efficient algorithm
to identify a “good” UDC. For our purposes, we only
need to note that (7) the conditioning vector is of the
form (14) with Jx = {1,...,p} — £, where L is the
selected UDC; and (i) the conditional-expectation
estimator Z = E[Y|X] = h(X) is nonincreasing in
each component of X.

To form a control-variate estimator, we use the
same approach as in Avramidis, Bauer, and Wilson
(1991). Ranking the directed r—s paths in decreas-
ing order of expected duration, we let £1,#s, €3 be the
first three such paths. We use as control variables the
durations of these three paths:

Ci=P,= Y V;, i=123
JEA(L)

Observe that for i = 1,2, 3, E[C;] can be computed as
sums of mean activity durations, which will either be
known as part of the input to the simulation, or will
have to be evaluated from the known distributions of
activity durations. Also note that the controls are of
the form (13), with Jo = UL A((;) and

RPIRE B | VA SR (4
¢i () = { 0 otherwise.

We consider two correlation-induction techniques:
(a) antithetic variates (see §2.2.1); and (b) Latin hy-
percube sampling (see §2.2.2). Note that since we use
inversion, we are in fact using strict LHS on the entire
set of input random variates (Vy,...,V,).

5.2 Monte Carlo Results

The SAN we used for this study was taken from El-
maghraby (1977), page 275; and it is depicted in
Figure 2. For each activity duration V;, the asso-
ciated distribution was taken to be either (a) a nor-
mal distribution with a specified mean p; and stan-
dard deviation o; = u;/4 whose tail was truncated
below the value 0; or (b) an exponential distribu-
tion with a specified mean y;. We chose the ex-
ponential distribution as the nonnormal alternative
for reasons elaborated in Avramidis, Bauer, and Wil-
son (1991). The set of activities with durations as
in (a) was taken to be { (1,2), (1,3), (2,4), (6.9),
(7,8) }. As a uniformly directed cutset, we chose
£ =1{(3,6),(2,6),(5,6),(5,8),(4,7)}.

The purpose of the Monte Carlo study was to es-
timate the variance reductions achieved by the fol-
lowing estimators: (i) écg(n), the conditional ex-
pectation estimator; (i) OAV(11) = éc[(GAv,n),
the antithetic variate estimator; (iii) fLu(n) =
OCI(GLH(H),n), the Latin hypercube sampling esti-
mator; (iv) fcv(n), the control variate estimator;
(v) éCE.,,CV(n), the conditional expectation-control
variate estimator; and (vi) éCE+LH(")u the condi-
tional expectation-Latin hypercube sampling estima-
tor.

Table 1 shows the resulting variance ratios with
respect to the direct-simulation estimator Y (n) for
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Ky =5.5, Ho = 13.0, H3 =70 By =5.2,

Hs = 16.5, e = 14.7, pr =6.0 ug = 10.3,

He = 20.0, Ui1o = 4.0, Myl = 3.2 Hiz = 3.2, M3 = 16.5

Figure 2: Network used in the Monte Carlo study.

Table 1: Estimated Variance Ratios
Var[Y (n)]/Var[f(n)]
for various estimators 6 and sample sizes n.

Estimand
Estimator  Fr(30) Fr(50) Fr(70) Fr(90)
0ce(32) 111 47 42 44
fav(32) 10 12 11 10
OLu(32) 12 22 29 22
fcv(32) 12 14 13 12

Oce+cv(32) 164 199 110 7.7
fce+Lu(32) 420 740 517 182
Oce+Lu(64) 407 836 757  46.2
Oce+Lu(128) 465 874 779 543

network 1. The CE technique appears to be the most
effective of the individual VRTs, followed by LHS and
CV. The AV technique was of little benefit, so LHS
was investigated more thoroughly as the correlation-
induction technique of choice. With the exception
of éAv, as expected from the results of Section 4,
écg.,,LH is the best of the six estimators considered
here. (No asymptotic comparison of §sv against the
other estimators seems possible in general.) Thus we
chose to include results for several sample sizes for
éCE+LH. Observe the large improvement that the in-
tegrated variance reduction strategies yield over the

individual VRTs.

6 CONCLUSIONS AND RECOMMENDA-
TIONS

Both our theoretical and experimental results
strongly suggest that integrated variance reduction
strategies have the potential to be highly effective in
a large class of simulation experiments. Although our
development is limited to finite-horizon simulations
with a fixed-dimensional vector of random-number
inputs, we believe that much of this development
can ultimately be extended to infinite-horizon simula-
tions with an infinite-dimensional vector of random-
number inputs.

In light of the demonstrated effectiveness of the
Joint application of Latin hypercube sampling (LHS)
and the method of conditional expectations (CE), we
believe that particular emphasis should be given to
this combined variance reduction strategy in future
research. Currently the key properties of LHS are
limited to the case of a bounded simulation response;
these properties should be extended to handle an
unbounded simulation response. Moreover as men-
tioned in the previous paragraph, a version of LHS
should be developed for infinite-dimensional random-
number inputs.

Finally, we observe that all of the results presented
in this paper are limited to independent replications
of a univariate simulation response. These results
should be extended to multiresponse simulations. In
addition, the combined variance reduction strategies
should be adapted to responses generated within a
single replication of a simulation model in steady-
state operation—that is, covariance-stationary sim-
ulation output processes.

We believe that our development provides a frame-



454 Avramidis and Wilson

work for effective application of combined variance
reduction strategies in many contexts. Beyond the
theoretical comparisons of the asymptotic efficiencies
of the various combined strategies, our experimen-
tal results for moderately complex stochastic activity
networks provide substantial evidence of the practi-
cal value of using this approach to improving the ef-
ficiency of large-scale simulations.
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