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ABSTRACT

In this paper we examine three methods for combin-
ing the variance reduction techniques of antithetic
variates and control variates to estimate the mean
response in a designed simulation experiment. In
Combined Method I, we perform h independent pairs
of simulation runs as follows—on the second run of
each such pair, we use random number streams that
are antithetic (complementary) to the streams used
on the first run of the pair to drive the non-control-
variate components of the simulation model; and we
use independent random number streams to drive the
control-variate components of the simulation model.
In Combined Method II, we also perform h indepen-
dent pairs of runs; but on each pair of runs we use in-
dependent random number streams to drive the non-
control-variate model components, and we use anti-
thetic random number streams to drive the control-
variate components. In Combined Method III, all of
the random number streams driving the second run of
each pair of runs are antithetic to the streams driving
the first run of the pair. For each of these three meth-
ods we derive the variance of the resulting estima-
tor of the mean response to make a theoretical com-
parison of the efficiency of each method. We imple-
mented these three methods, along with the classical
method of control variates, in a simulation model of
a resource-constrained activity network to show how
each combined method is implemented in practice
and to evaluate the performance of each combined
method experimentally. The results indicate that: (a)
Combined Method III outperformed all other meth-
ods, and (b) the effectiveness of Combined Method
I1I as well as the choice of whether to use Combined
Method I or Combined Method II depends on the de-
gree of correlation between the control variates and
the response.
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1 INTRODUCTION

In this paper we propose three ways of combining the
two standard variance reduction techniques of anti-
thetic variates and control variates to yield more pre-
cise estimators of the mean response.

For a single-model simulation experiment (i.e., one
system configuration or design point), the methods of
antithetic variates and control variates are probably
among the most commonly applied variance reduc-
tion techniques (Law and Kelton 1991, Chapter 11).
The method of antithetic variates assigns complemen-
tary streams of random numbers to pairs of simula-
tion runs taken at a single design point to induce
a negative correlation between the corresponding re-
sponses. Let y; and y; denote two responses obtained
by antithetic replicates of a single design point. Sup-
pose that we estimate p, = E(y;) (¢ = 1,2) by the
sample mean response %(yl + y2). Then we observe
that in general,

1
cov(yr, y2).

1

Var[%(yl +y2)] = 5
In this equation, if the covariance between y, and
y2 obtained by antithetic replicates is negative, then
the variance of the sample mean is less than that
obtained by two independent replicates (for a more
detailed discussion of antithetic variates see Section
II1.6 of Kleijnen 1974, Section 2.2 of Bratley, Fox,
and Schrage 1987, and Section 11.3 of Law and Kel-
ton 1991).

In contrast to the approach of antithetic variates,
the method of control variates attempts to exploit in-
trinsic correlations between the target response and
selected auxiliary outputs (control variates) when all
of these quantities are generated within a single run.
Let y; and c; respectively denote the response of in-
terest and the s x 1 vector of control variates ob-
tained from the ith simulation run. We assume that
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(i=1,2,...,2h)
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where o2 is the unconditional variance of y;, Oyc is

y
the s x 1 covariance vector between y; and ¢;, and ¢

1s the s X s covariance matrix of ¢;. Also, without loss
of generality, we assume E(c;) = O(,x1). In the con-
text of performing 2h independent replications of the
simulation, joint normality of the response and the
controls ensures that the response can be represented
by the following linear model:

y=Py1(2hxl)+C‘1+€, (2)

where y = (y1,92,.-.,y21n) is the vector of replicated
responses, u, is the mean response, 15,1y 1s a 2h x 1
vector of ones, C is a 2h X s control variate matrix
whose ith row consists of ¢;/, a = Eglayc is the
s x 1 vector of control coefficients, and € is the 2h x 1
vector of error terms (see Lavenberg, Moeller, and
Welch 1982). The least squares estimators of a and
fy in the linear model (2) are given by, respectively:

&= (C'PC)"'C'Py and i, =y—-¢'a, (3)

where § = (2/1)‘11’(1X2,,)y = (2/1)‘12?:1% and
¢ = (2h)711 (1521)C = (2h)~! Zf__’fl ¢;’ respectively
denote the sample mean of the responses and the
control vectors computed across 2h replications, and
P = Ioaxon) — #1(2,,,(1)1’(],(2;,) (see Searle 1971,
p. 341). Under the normality assumption in (1),
the components of the error vector € are independent
identically distributed (IID) variates with distribu-
tion N(Ov‘7§|c) where

a';‘;'c = var(yile;) = ayz - a;czzlayc (4)

(see Theorem 2.5.1 of Anderson 1984); and the least
squares estimator /i, is an unbiased estimator for p, .
Lavenberg, Moeller, and Welch (1982) showed that
the unconditional variance of fi, is given by

o 2h —2 5 03
var(fy) = (m) (1= Ryegp (9)

where R:c = ay‘za’ch}Elayc is the square of the

multiple correlation coefficient between y; and c;.
Lavenberg, Moeller, and Welch also defined the quan-
tity 2,'2’:—:32 as the loss factor due to the estimation of
the unknown control coefficient vector a in (2); and
they identified (1 — RZc) as the minimum variance
ratio which represents the potential for reducing the

variance of the estimator of 1, by the control variates.

Thus, the efficiency of control variates is measured by
the product of the loss factor and the minimum vari-
ance ratio.

There are three obvious ways to use control variates
in conjunction with antithetic variates: (a) apply the
antithetic-variates method to the response but not
the control variates; (b) apply the antithetic-variates
method to the control variates but not the response;
and (c) apply the antithetic-variates method to both
the response and the control variates. These consti-
tute the three combined methods discussed in Section
2.

This paper is organized as follows. Section 2 de-
velops the three combined methods for jointly apply-
ing control variates and antithetic variates. Section
3 describes the simulation model that was used in
an experimental comparison of the three combined
methods as well as the classical methods of control
variates and direct simulation (i.e., no variance reduc-
tion technique used). Section 4 presents a summary
of the experimental performance evaluation of these
five techniques. Section 5 presents the conclusions of
this research and gives recommendations for future
work.

2 SIMULATION EFFICIENCY OF COM-
BINED METHODS

In computer simulation, random number streams that
drive a simulation model are under the control of
the experimenter and completely determine the sim-
ulation output. Let the random number stream
ri; = (7ij1,Tij2,...)" denote the potentially infinite
sequence of random numbers used to drive the jth
random component in the simulation model at the ith
replicate, where {rijz : k = 1,2,...} are IID U(0,1)
variates. The random components in a queueing sim-
ulation model may include, among other things, the
sequence of service times sampled at a particular ser-
vice center, the sequence of interarrival times sampled
from a given arrival process at a service center, etc.
Here, we are saying that, to each random component
in the simulation model, we assign a separate random
number stream to generate realizations of the cor-
responding stochastic simulation input process. We
assume that ¢ random number streams are required
to drive the entire simulation model, and we let R;
denote the complete set of streams used for the ith
replication of the model (for i = 1,2,...,2h):

R; = (ri1,ri2, ..., Tig).

We now consider the random number assignment
strategy of jointly utilizing antithetic variates and
control variates to estimate the mean response p,. To
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this end, we separate R; into two mutually exclusive
and exhaustive subsets of random number streams,
such that (for i =1,2,...,2h)

R; = (Ri1, Riz).

The first subset, R;;, consisting of (¢ — s*) random
number streams, is used to drive the non-control-
variate random components in the model so that ¢;
is independent of R;;. The second subset, R;5, con-
sisting of s* random number streams, is used to drive
the control-variate random components in the model
so that ¢; 1s a function of R;s. These properties are
summarized as follows (for i =1,2,...,2h):

c;,R;; are independent and ¢; = ¢;(Ry2).

Applying the method of antithetic variates to the
appropriate random components in the simulation
model may induce correlations between: (a) re-
sponses, (b) control variates, and (c) responses and
control variates, across replicates.

Specifically, we consider the following methods: (a)
use antithetic variates for all random components ex-
cept the control variates, (b) use antithetic variates
on only the control variates, and (c) use antithetic
variates for all random components. Through sta-
tistical analysis and simulation experimentation, we
will explore how these methods may improve the sim-
ulation efficiency in reducing the variance of the es-
timator, and what conditions are necessary for each
method to ensure an improvement in variance reduc-
tion.

2.1 Combined Method I

In this subsection, we present a method for combin-
ing antithetic variates and control variates based on
correlated replicates in which only the non-control-
variate random components in the model are used
for correlation induction. Recall from the discus-
sion given in the Introduction, the basic idea of this
method (as well as the methods presented in the next
two subsections) is to group the replicates into h an-
tithetic pairs. Within the jth pair of replicates, Com-
bined Method I uses (Ryj_1,1, Rgj_1,2) as the input
to run 25 — 1 and (Rgj_1,1, Roj,2) as the input to
run 2j, where Roj_1,1, Roj_12, and Ry; 2 are mu-
tually independent sets of random number streams;
and jo_l,l is the set of random number streams that
are antithetic (complimentary) to those comprising
Roj_1,1 B
Roj_1,1 = (T25-1,k),

where (k = 1,2,...,9 —s* for j = 1,...,h) and
Ty;_1, denotes the random number stream compli-

mentary to ryj_; x so that (for k =1,2,...,9 — s*).

1 =71,k

Fj_ 1k =1—rg_1% = 1 =7 1k2

Across pairs of replicates, this method uses indepen-
dent random number streams. Thus, the jth pair of
responses, yp;_1 and yo; (j = 1,2,...,h), are nega-
tively correlated by the use of antithetic streams on
the non-control-variate random components. How-
ever, across all 2h replicates, the control variates
c¢i (1 =1,2,...,2h) are independently generated by
the assignment of randomly selected random num-
ber streams, {R;2 : ¢ = 1,...,2h}, used to drive
the control-variate random components for each repli-
cate. Because we randomly select the random number
streams to drive the control variates, the response y;
(i =1,2,...,2h) is independent of the control variate
vector ¢, when ¢ # k (k= 1,2,...,2h). Based on the
above discussion, we have the following properties for
Combined Method I:

Property I-1: Homogeneity of response variances
across replicates,

Vaf(yi)=0§ for i1=1,2,...,2h. (6)

Property I-2: Homogeneity of response correla-
tions across replicate pairs and independence of
responses observed on different pairs of replica-

tions,
cov(yi,yx) =
_plo'y
i=k+1
= k=13,...,2h -1
0
otherwise.

(M

Property I-3: Homogeneity of response-control-
variates covariances across replicates and inde-
pendence of the response and control variates
observed on different replications,

Cov(y;, ci)
Uyc
i=k=12...2h

O(sx1)
i 4k
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Property I-4: Homogeneity of control-variates co-
variances across replicates and independence of
control variates observed on different replica-

tions,
Cov(ci,cx) =
Ye
_ t=k=12,...,2h
a O(sxs)
i#k

We make the following assumption about Combined
Method I:

Assumption I-1: 0< p; < 1.

In view of (7), Assumption I-1 postulates a negative
induced correlation, —p;, between the responses of
antithetic pairs of runs. Techniques for structuring
the simulation experiment to ensure the validity of
Assumption I-1 are described in Subsection 2.4 and
Section 3.

Under the four properties listed above, the variance
of the mean response, y; = %(ygj_, + y2;), and mean
control variate vector, ¢; = %(czj_l + €2j), within
the jth replicate pair (j = 1,2,..., h) are respectively
given by:

1 2
var(y;) = §(l—p1)o;, (10)

and

cov(¢;) = %Ec. (11)

Also, the covariance matrix between j; and ¢; is given
by:
o 1 .

cov(y;,¢;) = 7%vc: (12)
The joint normality assumption of the response and
control variates gives the joint distribution of g; and
¢; (7 =1,2,...,h) as the following multivariate nor-
mal distribution:

™ [ (1-p1)ol oy
N, - y . (13
* ([ O(sx1) ] 2[ Tyc I (13)

Consequently given ¢;, the conditional distribution of
Y, is normal with expectation E(y;|¢;) = py + ¢ja
and variance
~ = 1 2 1 —1 1 2
var(y;|¢;) = —2-((1 - pl)ay —0yc'E¢ oye) = 51'1 ,
(14)
where

= ((1- Pl)": —oyc'Ecloye)

(see Theorem 2.5.1 of Anderson 1984). As with the
case of the linear relationship in (2), the A x 1 vector
of mean paired responses, y, can be represented as:

n
Y2 _ .
:ﬂy:l-(hxl)‘*'ca'*'€ ) (15)

<
N

Yn

where C is a h x s matrix of control variates whose
jthrow is €;. Regression analysis on this linear model
yields the following controlled estimator of the mean
response:

R 1 I
By = le(lxh)(Y“C(C’QC) 'C'Qy)
1, e ey
= El(lxh)(l(hxh)_C(C’QC) 'C'Q)y,
(16)

where Q = Ihxn) — +1(ax1)1 (1xn). From this ex-
pression for fi,, it can easily be shown (see Appendix
in Kwon and Tew 1993) that its unconditional vari-
ance is

N _ T hs
var(y) TE [” oo 2)]

_ % Rz [ _h=2
= grl—p—(R 1))(T§),
(17)

where R(c is the multiple correlation coefficient be-
tween y; and ¢; (z = 1,2,...,2h). Thus, provided
Assumption I-1 holds, Combined Method I will re-
sult in a reduction of the variance of i, if the effects
due to antithetic variates (p;) and the control vari-
ates (R;lc))z, together, compensate for the loss factor

h=2
h—s—2"

2.2 Combined Method II

In this subsection, we consider the second method
for combining control variates and antithetic variates
based on correlated replications in which only the
control-variates components of the simulation model
are used for correlation induction. Contrary to the
random number assignment in the previous section,
this method uses antithetic random number streams
for the control-variate random components and inde-
pendent random number streams for all other ran-
dom components in the model. With this replica-
tion strategy, we induce negative correlations between
the responses, between the control variates, and be-
tween the response and the control variates within
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h pairs of the responses and the control variates,
respectively, obtained from (Rgj_11,Roj-12) and
(szll,l_{gj_l'z) (7 = 1,2,...,h). However, across
pairs of replications, we get independent outputs.
Based on the above discussion and the development
given for Combined Method I, we note the following
properties for Combined Method II:

Property II-1: Homogeneity of response variances
across replicates,

var(y;) = o2 for i=1,2,...,2h.  (18)

Property II-2: Homogeneity of response correla-
tions across replicate pairs and independence of
responses observed on different pairs of replica-

tions,
cov(yi, yx) =
—P20§
=k+1
= =1,3,...,2h -1
0
otherwise

(19)

Property II-3: Homogeneity of response-control-
variates covariances across replicates, homo-
geneity of response-control-variates covariances
across replicate pairs, and independence of the
response and control variates observed on differ-
ent replicate pairs,

Cov(y;,cr) =
Tyc
i=k=12,...,2h
(2
oo
_ i=k+lork=1+1
N min{i, k} =
1,3,...,2h =1
0(.!)(1) ‘
otherwise

(20)

Property II-4: Homogeneity of control-variates
covariances across replicates, homogeneity of
control-variates covariances across replicate
pairs, and independence of control variates ob-
served on different pairs of replications,

Cov(ci,ck) =

e
i=k=12,...,2h
=P
_ i=k+1
k=13,...,2h—-1
O(sxs)
otherwise }

(21)

We make the following assumption about Combined
Method II:

Assumption II-1: 0 < py < 1.

In view of (19), Assumption II-1 postulates a negative
induced correlation, —p,, between the responses of
antithetic pairs of runs. Techniques for structuring
the simulation experiment to ensure the validity of
Assumption II-1 are described in Subsection 2.4 and
Section 3.

Under the four properties given above, the vari-
ance of y;, the covariance of ¢;, and the covariances

between §; and ¢; are, respectively (j = 1,2,...,h):

_ 1 e
var(g5) = 5(1 - p2)o} (22)

) = — (2) .
cov(cj) = 2(2 c+X7), (23)

and
_ 1
cov(yj,¢;) = ZCOV(y'zj-x + Ya2j, €251 + €o5)
= —(O'yc +0'(2))

(24)

Based on the joint normality assumption of the re-
sponse and control variates and the properties given
n (18), (19), (20) and (21), we have the joint distribu-
tionof §; and ¢; ( j=1,...,h)is a s+1-dimensional
multivariate normal distribution with mean

E[ g; ] - [ 0511) ] ’ (25)

(26)
Since ¢; (j = 1,2,...,h) are independent, following
the development of (17) we get by an analogous ap-

proach:
. T3 h—2
var(y) = o (h - 2)
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= S wn (221).

2h s—2
(27)
where
1'22 = (1- pg)aj
—~(oye + 0\ (Be + D) Yoye + o)
(28)
and
(R()? = (1= p2)o2) Hoye + b2y
(Be + ) Hoye + 02,
(29)

which is the square of the multiple correlation coef-
ficient between y; and ¢;. Thus, provided that As-
sumption II-1 holds, Combined Method II will result
in a reduction of the variance of fi,, if the effects
due to antithetic variates (p2) and the control vari-
ates (Rﬁz))z, together, compensate for the loss factor

h—2
h—s—2"

2.3 Combined Method III

In this subsection we present Combined Method III,
which jointly implements control variates and anti-
thetic variates based on correlated replicates induced
by utilizing all random components in the simula-
tion model for correlation induction. Unlike the ran-
dom number assignment strategies discussed in the
previous two sections, we apply antithetic variates
to all random components in the model. This as-
signment strategy induces correlations across h pairs
of both the response and the control variates. That
1s, negative correlations are induced between the re-
sponses, between the control variates, and between
the response and the control variates within A pairs
of replicates. However, the induced correlation be-
tween the response and the control variates is differ-
ent from that of Combined Methods I and II. Across
the h pairs of replicates, the mean response and the
mean of the control variates (within a pair of repli-
cates) are independently observed by the assignment
of different sets of randomly chosen random number
streams. As before, we identify a set of properties for
this strategy with regard to the covariance structure
of the responses and control variates in the exper-
iment. Based on the above discussion and the de-
velopments for the other two combined methods, we
have the following properties for Combined Method
III:

Property III-1: Homogeneity of response vari-
ances across replicates,

var(y;) = 03 for i =1,2,...,2h. (30)
Property III-2: Homogeneity of response corre-

lations across replicate pairs and independence
of responses observed on different pairs of repli-

cates,
cov(yi, yk) =
—Psﬂz
i=k+1
= k=13,...,2h-1
0
otherwise

(31)

Property III-3: Homogeneity of response—control-
variates covariances across replicates, homo-
geneity of response—control-variates covariances
across replicate pairs, and independence of the
response and control variates observed on differ-
ent replicate pairs,

Cov(yi,ce) =

O'yc )
i=k=1,2,...,2h
3

o

- i=k+lork=1+1

min{i, k} =
1,3,...,2h -1

Osx1)

otherwise

(32)

Property III-4: Homogeneity of control-variates
covariances across replicates, homogeneity of
control-variates covariances across replicate
pairs, and independence of control variates ob-
served on different pairs of replicates,

Cov(ci,ck) =
e
t=k=12,...,2
S

= i=k+1

k=13,... 2h—1
O(sxs)
otherwise J

(33)

We make the following assumption about Combined
Method III:
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Assumption ITI-1: 0< p3 < 1.

In view of (30), Assumption III-1 postulates a nega-
tive induced correlation, —p3, between the responses
of antithetic pairs of runs. Techniques for structur-
ing the simulation experiment to ensure the validity
of Assumption III-1 are described in Subsection 2.4
and Section 3.

Under the four properties given above we obtain
analogous results to those given in Section 2.2 (j =

1,2,...,h):

_ 1
var(g;) = 5(1 - p3)a, (34)
- 1 3)
cov(E;) = -2-(Ec +27), (35)
and )
cov(yj, ;) = 2(cryc + a'( )) (36)

Under the joint normality assumption of the response
and control variates and the properties given in (29),
(30), (31) and (32), the joint distribution of y; and
C; is given as:

vi | _ Hy
E[ ¢ ] B [ 0(sx1) ] ’ (37)
and variance
= 1 1— 2 (3))/
Var[ Yj ] S ( PS)Uy (oyc+o
C; 2| oyc+ o, Zct 2(3
(38)

Since €&; (j = 1,2,...,h) are independent, following
the development of (26) we get by an analogous ap-
proach:

2
iy = B _h=2
var(y) = gy (h—-s—2)
_ (1=p3)a; RON2 (_"_2_)
= T(l (Rye)?) 5 )
(39)
where
7 = (1—p3)63
—(oye + D) (Bc + E&)(oye + o)
(40)
and
(R = ((1-ps)od) (oye +02)
(B + &) (aye + i),
(41)

461

which is the square of the multiple correlation coeffi-
cient between y; and ¢;. Provided Assumption III-1
holds, Combined Method III will result in a reduc-
tion of the variance of fi,, if the effects due to anti-
thetic variates (p3) and the control variates (R!(fg)2,

h=2

together, compensate for the loss factor s

2.4 Comparison of the Combined Methods
and Control Variates Method

In this subsection we give a brief and formal com-
parison of the three combined methods presented in
the three previous subsections and the method of con-
trol variates. This comparison assumes the validity of
the assumptions given for each of these four methods
and is done with respect to the unconditional vari-
ances of the estimators for the mean response given
in equations (5), (17), (27), and (39), respectively.
We can say something in general about the assump-
tions. If the simulation response y and the simulation
model are structured so that y is monotonic in each
random-number input (either nonincreasing or non-
decreasing), then it is guaranteed that p;, p2, and
p3 are all nonnegative (see Bratley, Fox, and Schrage
1987).

First, we consider the three combined methods pre-
sented earlier. Comparing Combined Methods I and
IT via equations (17) and (27) yields that Combined
Method I is preferred to Combined Method II if

(R()?) < (1= p2)(1— (RZ)?).  (42)

Similarly, working with (17) and (39) yields that
Combined Method III is better than Combined
Method I, provided that

(1= p = (RD?) > (1= p3)(1 - (RED)?).  (43)

Also, working with (27) and (39) yields that Com-
bined Method III is better than Combined Method I1
if

(1-p1—

(1= p3)(1 = (RS2 < (1 - p2)(1 — (R)?). (44)

As we discussed earlier, the loss factors for the three
combined methods are the same; hence, they cancel
when constructing the comparisons. Thus, the prefer-
ence of the three methods is determined according to
their minimum variance ratios given in (17), (27), and
(39), respectively. Of course, other ordering schemes
for the terms in equations (17), (27), and (39) could
be conjectured. Clearly, it is not easy to identify
an ordered relationship among (R ) )2 (R(z))2 and

( )2 since these terms involve the unknown ele-
ments e, 2(2) 2(3), gy, a'gzc), ”gc)‘ Nevertheless,
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we hope to give some clarity to this problem with the
experimental results given in Section 4.

Next, we compare these three combined methods
to the method of control variates. A comparison of
equations (5) and (17) yields that Combined Method
I is better than the control variates method if

(1= p1 = (RED®) (5%
< (1-Rjc) (2}?’:32) :

(45)
Also, comparing equations (5), (27), and (39) shows
that Combined Method II is better than the method
of control variates if

2 _
(1= p2)(1 = (R (723%)
< (- R2o) (525%5) 5
(46)
and Combined Method III yields a better result than
the method of control variates, provided

(1= p3)(1 = (RED?) (525%5)
<(1-Ro) (s25%)

(47)
Note that the loss factor of each combined method
is greater than that of the method of control vari-
ates. Hence, for preference of each combined method
to the method of control variates, the associated min-
imum variance ratio of the combined method should,
at least, compensate for the increase in the associ-
ated loss factor. The effects of antithetic variates and
control variates on the minimum variance ratio for
Combined Method I are represented by an additive
form in reducing the variance of the estimator of the
mean response. Next, we present our computational
results based on the application of these three com-
bined methods to a classic simulation model.

3 EXAMPLE

We conducted a set of simulation experiments on
a resource-constrained stochastic activity network in
order to evaluate the performance of the variance re-
duction methodologies presented in Section 2. This
section contains a brief description of this system.
Section 4 contains a summary of the numerical re-
sults obtained from these simulation experiments.

3.1 A Resource-Constrained Stochastic Ac-
tivity Network

We consider the resource-constrained stochastic ac-
tivity network depicted in Figure 1 of Kwon and Tew

Table I
Activity Resource Requirements

Activity Mechanics  Technicians
1 3 0
2 0 2
3 2 0
4 1 0
5 2 0
6 4 1
7 0 2
3 2 0
9 0 0
10 1 0
11 1 0
12 3 0
13 1 1
14 1 2
15 1 1
16 2 ]

(1993) which is similar to that described in Chap-
ter 5 of Pritsker (1974). (Our network differs from
Pritsker’s in that we have substituted exponential dis-
tributions for triangular distributions in the activity
durations.) This network is a model of a repair and
retrofit project, and it consists of 11 nodes and 16
activities.

Two types of resources are used in this network—
mechanics and technicians. There are 5 mechanics
and 3 technicians. As depicted in Table I, each activ-
ity is assigned a 2-tuple indicating the required num-
ber of mechanics and the required number of techni-
cians. In addition, each activity is assigned an activ-
ity duration distribution corresponding to a specific
exponential distribution (with the exception of activ-
ity 9, which has duration 0). This latter assignment
scheme is given in Table II. An activity cannot start
until all of its predecessors have been completed and
the required units of each resource can be assigned to
that activity. Among the activities whose predeces-
sors have all been completed and which are waiting
for the allocation of a required resource, mechanics
are assigned to activities in the following order: 4,
8, 10, 13, 15, 3, 5, 11, 14, 1, 16, 6, and 12. Techni-
cians are dispatched to waiting activities in the fol-
lowing order: 15, 13, 14, 6, 7, and 2. Thus available
resources are assigned to waiting activities according
to the shortest expected processing time (SPT) of the
waiting activities.

The response of interest y is the observed network
completion time. We also consider two control vari-
ates which are used individually in performing both
the control variate and combined procedures. In par-
ticular, control variate ¢; is the sum of observed activ-
ity durations for the path consisting of activities 2, 7,
and 14; and control variate ¢, is the sum of observed
activity durations for the path consisting of activities
1,6, 12, and 13. These control variates were selected



Table II
Activity Duration Distributions
Activity  Description Distribution

1 disassemble power  exponential(3.00)
units

2 test and repair exponential(9.00)
instrumentation

3 clear main frame exponential(2.00)

4 procure new exponential(1.00)
subassembly

5 pull old assembly exponential(2.00)

6 clean, inspect, and  exponential(4.00)
repair power units

7 calibrate exponential(3.00)
instrumentation

3 inspect and repair exponential(1.00)
main frame

9 dummy 0.0

10 change tags exponential(1.00)

11 install new exponential(2.00)
assembly

12 assemble and test exponential(5.00)
power units

13 safety inspection exponential(1.00)

14 systems check exponential(2.00)

15 retrofit check exponential(1.00)

16 check all exponential(3.00)
fittings

through a series of preliminary simulation runs con-
ducted by Tew and Wilson (1993); ¢; was found to
be highly correlated with y and ¢, was found to not
be so highly correlated with y. Thus, we selected one
highly effective control variate (c;) and one less effec-
tive control variate (c2) to consider in our example.
This was done in order to illustrate the possible pit-
falls that can be encountered when using antithetic
variates in conjunction with control variates. Note
that both ¢; and ¢y include only the corresponding
sampled activity durations; they do not include the
time spent waiting for the allocation of resources to
these activities.

We used the SLAM II simulation language
(Pritsker 1986) to implement a model of the stochas-
tic activity network described above. (The SLAM II
code used by the authors as well as tables of the ran-
dom number seeds used and the observed responses
are available from the second author upon request.)
For each variance reduction method, an experiment
consisted of 20 (= 2h) replicates and 50 independent
macroreplicates (see Section 4). That is, for each vari-
ance reduction method, 1000 overall replications were
made. The macroreplicates were included in order to
ensure unbiased estimates of all variances concerned.

In modeling this system, we used two separate ran-
dom number streams to drive the random compo-
nents of the model (the non-control-variate random
components (r;) and the control-variate random com-
ponents (rp)). That is, for the case of using control
variate ¢, r; was used to drive activities 1, 3, 4, 5,
6, 8, 10, 11, 12, and 13 and r; was used to drive ac-
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tivities 2, 7, and 14 (an analogous arrangement was
used for the situation when we used control variate
c2). Thus, in the notation of Section 2, R;; = {r;1}
and R;; = {r;3}. For each of the two control vari-
ates, the estimation of p, under each of the follow-
ing methodologies was considered: (a) direct simu-
lation, (b) control variates, (¢) Combined Method I,
(d) Combined Method II, and (e) Combined Method
I1I. In each case, 50 independent estimates of u, were
obtained (one from each macroreplicate). These inde-
pendent estimates of y, were used to estimate var(,y)
and represented what we thought to be a sufficiently
large sample size for meaningful comparisons of the
five methodologies.

4 NUMERICAL RESULTS

This section provides a summary of the simulation re-
sults obtained from the example discussed in Section
3. For each of the two control variates considered,
c1 and ca, these results are organized into two parts:
(a) we present performance statistics (Table III) on
the observed variance reduction for the response vari-
able considered, where the results under control vari-
ates, Combined Method I, Combined Method II, and
Combined Method IlI, are compared to those of di-
rect simulation; and (b) we present sample estimates

(Table IV) of p1, p2, ps, R2c, (RVQ)?, (R(%)?, and
(Rﬁ;))z, in order to evaluate the quality of the com-
parative statements given in the inequalities of Sec-

tion 2.4. If we let: (a) N (= 50) be the number of
macroreplicates in the experiment, (b)

1 for direct simulation

for control variates

for Combined Method 1
for Combined Method II
for Combined Method III

OV O N

be the variance reduction method used, and (c)
fiy(m,n) be the point estimator of p, on the nth
(= 1,2,...,N) macroreplicate using the mth (=
1,2,...,5) variance reduction technique, then an ez-
ternal, unbiased estimator of the variance of ji,(m, n)
is given by

N
Vym) = < D liy(m,m) = iy (m))2,  (48)
n=1
where
- A
fry(m) = & Y iry(m,n).
n=1

(Note that the macroreplicates are not necessary for
the direct simulation method. However, we used in-
dependent macroreplicates on all 5 methods in order
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Table IIT
Variance Reduction in var(jy,)

Method Control Variate
c1 2

2 70.72 | 15.51

3 74.68 | 37.83

4 76.74 | 22.97

5 77.57 | 41.23

Table IV

Correlation Estimates
Estimator Control Variate

C) ]
RZ, 6753 | .1542
51 0892 | .3327
&y || 7586 | o661
B2 2875 | .1458
A2)2 |l 5761 | 2032
53 2864 | .2864
R || 5733 | 1582

to maintain consistency in the presentation of the re-
sults. We hope that this will help avoid any confusion
on the part of the reader in the interpretation of our
results.)

For the resource-constrained stochastic activity
network described in Section 3.1 we considered the
response of observed network completion time (y).
The first row of Table III contains the observed vari-
ance reductions, relative to direct simulation, for each
of the other four methodologies under consideration
when the control variate ¢; was used. The second
row of Table III contains the analogous observations
when control variate c; was used.

In order to better understand these results, we com-
puted maximum-likelihood estimates (MLEs) of the
squared-multiple correlation coefficient and the in-
duced negative correlation (where applicable) for each
of the four methodologies (see Section 3.6 of Morrison
1976). These estimates are given in Table IV. Again,
the first row contains the results obtained when ¢,
was used and the second row contains the results ob-
tained when ¢, was used.

The results presented in Table III clearly indicate
that the combined methods can result in significant
improvements over the method of control variates.
Specifically, we see that, for ¢;, all three Combined
Methods each resulted in a larger variance reduction
than control variates. Also, for ¢c; we see that again
all three Combined Methods each resulted in a larger
variance reduction than control variates. Clearly, in
both cases, Combined Method III outperformed all
of the other methodologies considered and the de-
gree to which it improved upon the method of control
variates seems to depend on the degree of correlation

between the control variate and the response. That
is, when a good control variate (c;) was used, Com-
bined Method III resulted in a modest improvement
(9.68%) over the method of control variates. How-
ever, when a poor control variate (c;) was used, Com-
bined Method III resulted in a much more substan-
tial improvement (165.82%) over the method of con-
trol variates. It should be noted that Cheng (1982)
suggests ways for increasing the magnitude of the
induced correlation between two random variables
and that through their application the performances
of all three of the combined methods presented in
this paper may be significantly improved. A com-
parison of the results for ¢; and c; further suggests
that when the control variate under consideration is
strongly correlated with the response variable, Com-
bined Method II may preferable to Combined Method
I and the reverse may be recommended when the
control variate is not strongly correlated with the re-
sponse variable.

In our example clearly the response is linearly
dependent on those input variables that are to be
treated antithetically or as control variates. A good
control (¢;) will pick up a lot of this dependence; an-
tithetic variates, whether applied to controls or non-
controls, will therefore only give marginal improve-
ment. This we see in the ¢; row of Table III. If how-
ever, the control variates are not well chosen (c2), but
the response does depend linearly on input variables,
then this will be picked up by applying antithetics to
the non-control inputs. This we see in the c3 row of
Table III.

Inspection of the correlation estimates when con-
trol variate c, is used and given in the second row of
Table IV indicates that the ranking schemes given
in equations (40) through (42) and equations (43)
through (45) are consistent with the observed vari-
ance reductions. However, the ranking schemes are
not consistent with the observed variance reductions
when c; is used. We observe that for our data the ex-
pressions in (40), (41), and (42) are probably not sig-
nificantly different; and precise conclusions are diffi-
cult to make. These results point out the importance
of the development of an accurate testing procedure
for selecting the best methodology in a given situa-
tion.

5 SUMMARY AND CONCLUSIONS

In the past, both control variates and antithetic vari-
ates have been shown to often be effective variance
reduction techniques for estimating the mean of a re-
sponse of interest for simulation experiments. In this
paper we have presented three methods that can eas-
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ily be implemented in a simulation experiment with-
out significant additional programming effort; each
combines both control variates and antithetic vari-
ates. Under general assumptions, these combined
methods are shown to yield superior performance,
based on estimator variance, compared to control
variates alone. These claims are supported by compu-
tational results. These results also show that, for the
combined methods, if the requisite assumptions for
that method are violated then an improvement upon
the control variates method may not be achieved.

We hope that this work will stimulate greater ap-
plication of these combined correlation methods in
simulation experiments and further investigative re-
search.
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