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ABSTRACT

In this paper we introduce Hierarchical Object Nets as
amodeling methodology for discrete event systems based
on the DEVS (Discrete Event System Specification) for-
malism. We explain the modifications we propose and
show how the methodology may serve as a basis for an
open visual object-oriented modeling and simulation sys-
tem. Further, the advanced concepts of active simulation
objects and the prototype oriented model base are ex-
plained. The advantages of the concept for modeling, sim-
ulation and evaluation are reviewed.

1 MOTIVATION

Modeling and simulation of large structured discrete
event systems like automated manufacturing systems de-
mand highly developed modeling formalisms and simula-
tion tools. Simulation systems under consideration have
to be applicable in very different fields, from abstract sys-
tem design to detailed description of single components.
The formal means of description has to be flexible enough
to express structured systems of different character (dis-
crete, continuous, and control processes). It should sup-
port modularization and model re-use as well as the
choice of the level of abstraction, its change and the com-
bination of different abstraction levels within one model.
For application in industry, it must be possible to embed
modeling and simulation tools into given engineering pro-
cesses and to re-use already formalized knowledge. Con-
temporary concepts like graphical modeling as described
by Ozden (1991) and interactive simulation as proposed
by O’Keefe (1987) have to be considered. To our best
knowledge, current simulation systems only partially ful-
fill these requirements.

Based on work done on object-oriented graphical mod-
eling (Thomas 1991) we developed the concept of Hierar-
chical Object Nets (HON) as a basis for an open (i.e. mod-
ularly expandable) visual object-oriented modeling and
simulation system. The approach is based on the DEVS
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(Discrete Event System Specification) formalism devel-
oped by Zeigler (1984, 1987). Some of its original con-
cepts have been modified or expanded to raise the expres-
sibility or ease the modeling, and to suit the needs of
advanced simulation and animation.

2 A BRIEF LOOK AT THE DEVS
FORMALISM

The DEVS formalism is the system-theoretic man-
ifestation of the object-oriented modeling paradigm. A
discrete event system can be viewed as a hierarchical ag-
gregation of communicating system entities. The DEVS
formalism supports the specification of modular discrete
event models in a hierarchical manner, thus preserving the
structure of the real system down to the desired degree of
refinement.

The formalism permits the specification of basic model
components, from which larger models are built, and the
specification of hierarchical aggregations of these com-
ponents. Basic model components (atomic models) are
specified as:

M

<X,S8,Y,0,A,t>

X: the set of input events;
S: the sequential state set;
Y: the set of output events;
oO: the transition function, which may be separated
into
— an internal transition function d,: § — $ and
— an external transition function §,: Q X X = §
with the total state
0 = ((s,e)ls€ S5,0<e <1(5));
A: the output function A : § — Y;

7: the time advance function 7 : § = R o,+w,
mapping the state S to the non-negative reals.
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Atoms can be connected to form coupled models.
Coupled models are defined as:

N = <D, (M}, I}, {z,)>

D: the set of component identifiers;
foreachiinD,
M;: the DEVS for component i in D;
I: the setof influencees of i;
for each jin [;,
Z;j: the i-to-j-output translation function
Y, =X,

Zeigler (1987) showed that the DEVS formalism is
closed under composition. That is, coupled models may
serve as components in larger coupled models, thus per-
mitting the specification of hierarchical models. A de-
tailed description of the DEVS formalism can be found in
(Zeigler 1984).

Zeigler (1984) uses abstract simulators to execute the
models. Abstract simulators are an algorithmic descrip-
tion of how to carry out the instruction implicit to the mod-
els to generate their behavior. There is a one-to-one rela-
tion between abstract simulators and model components.
For each component, there is one abstract simulator which
sends and receives messages, calls transition functions
and maintains event time information locally.

There are several simulation environments which are
direct implementations of the DEVS formalism. DEVS-
Scheme developed by Zeigler (1990) is a Scheme-(i.e.
Lisp-)based environment employing the modeling power
and expressive strength of an Al language. With DEV-
SIM++, Kim and Park (1992) duplicate the simulation
part of this system as an implementation in C++ mostly to
gain simulation execution speedup. The CommonLisp-
based implementation STIMS-CLOS by Prihofer (1991)
also gives proof of the rising interest in this formalism.

3 HIERARCHICAL OBJECT NETS
3.1 Introduction

The DEVS formalism has been developed as a system
theoretic fundament for discrete event system specifica-
tion. It incorporates a level of generality, expressive
strength and flexibility not reached by other approaches.
The formalism provides a basis for extending the view on
models, allows handling them as knowledge used to an-
swer a multiplicity of questions rather than as ”just simu-
lation models”. However, when applied only to simula-
tion problems the flexibility becomes a problem. This
affects the ease-of-use of a DEVS-based simulation sys-
tem and its simulation efficiency. We propose hierarchical
object nets as a modification of DEVS in order to extend

the formalism’s practicability to make this powerful
means available to practice.

The concept of Hierarchical Object Nets is a modifica-
tion of the original DEVS formalism with respect to the
functionality of coupled models, and message (i.e. exter-
nal event) propagation. All implementation differences
between realizations of the Hierarchical Object Net con-
cept and systems based on the original DEVS and are
stressing these modifications. The outcome from these
differences is described in detail in Section 5.

3.2 Differences between HON and DEVS

A major difference between Hierarchical Object Nets
and the original DEVS formalism is the functionality of
a coupled model. In our approach, a coupled model is not
just a container for its components, but may also have
some “atomic behavior”. That is, it may have internal and
external transition functions, a sequential state, an output
function and a time advance function. To mark the differ-
ence between a coupled model as defined by Zeigler and
the modified definition proposed here, we call our version
an aggregate.

Input events to the aggregate are filtered by the aggre-
gate’s external event function. They may or may not be
propagated to the components. In case of propagation, the
aggregate’s output function is applied, the time advance
for this operation is zero. External events of components
which are directed to other components of the same aggre-
gate are propagated directly, without activation of the
coupled model. For this reason, all objects (aggregates as
well as atoms) maintain lists of their influencees. Compo-
nent output targeted to the outside of the aggregate is han-
dled like an external input event for the aggregate (when
viewed as an atom). It follows that this output may be fil-
tered in the same way as the input events discussed earlier.

Dealing with events to and from aggregate components
in this way allows flattening the model with respect to
simulation and distributed time synchronization. The ag-
gregate then serves as a gate between its components and
the outside model environment as shown in Figure 1. Syn-
chronization of distributed simulation may be done using
well-known and efficient algorithms described else-
where. Moreover, computational overhead resulting from
the synchronization related message passing between
coupled model and its components is minimized.

== = I5=

Figure 1: Flattening an Aggregate
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As a disadvantage of this approach one could see the
lack of an implicit tie-braking mechanism as known from
DEVS. The selector proposed in the original formalism
stresses the fact that the coupled model manages execu-
tion token distribution (and thus, synchronization) by su-
pervising event propagation also between its components.
However, in our approach, tie-braking mechanisms can be
implemented as part of the model wherever necessary.

From the system theoretic point of view, every aggre-
gate can be transformed into a combination of a coupled
model and an atom. However, since the semantics of an
aggregate are strongly related to the functionality of its
atomic part, both parts should be viewed and handled as
one entity.

3.3 Object Behavior
3.3.1 Active Objects

Zeigler introduced the concept of abstract simulators as
explained in Section 2. This concept has been abandoned
for the Hierarchical Object Net approach. Focusing only
on simulation (i.e. the dynamics of a model), the division
between the knowledge about a model and the execution
of its implicit dynamics is not necessary. This step opens
the way to the advanced concept of active objects. Active
objects are "alive” from their instantiation up to their de-
struction. Editing, simulation and animation stimuli are
handled locally by the objects themselves in the way ex-
ternal events are handled. The behavior of objects in those
three areas of activity is defined by their appropriate ex-
ternal transition function section. Thus, relying on the ob-
ject behavior, a simulation system may handle modeling,
simulation, and animation in a fully decentralized way.

3.3.2 Editing Behavior

The editing of objects defines or alters their state. For
atomic objects, these are the variables describing the
state, for aggregates this is the internal structure, consist-
ing of components and their internal coupling.

Using active objects we are able to decentralize the
editing, i.e. to perform the modeling without using some
central model editor. Instead, the individual objects use
their own editing methods, thus individually controlling
the definition and modification of their state.

State:

7% Immediate Output

Restore g i pply é

Figure 2: Atom State Editor Window

The attributes of atoms are usually changed by means
of dialog boxes as shown in Figure 2. Figure 3 shows a
graphical net editor window as used for an aggregate. User
interaction in the editors is handled by the objects like ex-
ternal events changing the objects state.

Shut OFF
Inport

Switch 1
TVBoolean

Figure 3: Aggregate Net Edtor Window

Applying this concept, a model is an aggregate object
with a corresponding editor window. When the user in-
serts a new component into this window, this component
is immediately instantiated, making its own editor win-
dow or dialog available at once. If the component is an ag-
gregate, the model now may be further refined.

3.3.3 Simulation Behavior

In line with the object-oriented paradigm simulation is
also locally controlled. Objects (atoms and aggregates as
well) maintain local event lists and local virtual time in-
formation. Incoming events are processed according to
their time stamps; generated local events are scheduled
and output events are produced. The way in that current
object state, local virtual time and the information con-
tained in the input events (the time stamp and additional
information) are combined to obtain internal and output
events describes the objects simulation behavior. The ad-
herence to the causality constraint (event processing in
their timely order) is locally controlled. This is a major
difference to the original algorithm described by Concep-
cion (1985) and Zeigler (1990), where the event synchro-
nization is supervised by the coupled model for its direct
components.

3.3.4 Animation Behavior

The modeling paradigm stressed in this concept leads
to the idea that a hierarchical, object-oriented animation
may fit the hierarchical model best. As implemented here,
it provides a basis for an easy-to-implement, high-quality
visualization of the simulated process.

Atomic objects have methods to represent themselves
and their state during animation. For instance, this can be
done by naturalized shapes (like switches for a Boolean
object). Usually, aggregates do not visualize themselves,
but merely provide an animation canvas for their compo-
nents which can be moved and concealed, and thus unify
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the animation methods of their
(Thomas 1991).

The object-oriented animation serves as an exper-
imentation interface to the user of the simulation system.
The direct connection of animation and simulation ob-
jects also enables run-time interaction not available with

other systems.

components

4 PROTOTYPES AND CLASSIFICATION

The characteristics of Hierarchical Object Nets de-
scribed above allow a comfortable use of top-down mod-
eling principles. To be able to use bottom-up modeling
variants and re-use models implemented earlier, a simula-
tion model management system has been implemented.
The prototype/instance concept described in this section
is based on an object-oriented database management sys-
tem.

An object prototype is a kind of “recipe” for an object
instance. It includes descriptions of the object’s initial
state (i.e. the initial values of state variables for atoms or
the initial component structure and coupling of an aggre-
gate, respectively) and its message interface. The latter
consists of a description of available input and output
ports and the message types which are accepted or sent.
This information can be used for static message type
checking during coupling scheme editing.

Simulation object instances are “working copies” of
prototypes. The state of instances can be altered by editing
or during simulation without interfering with other
instances derived from the same prototype. The term “ob-
ject” is used throughout this paper (as usually done in lit-
erature) for prototypes and for their instances as well.

Instances must be transformed into prototypes to be
available for re-use. Then, information about the object’s
state or structure and the object’s message interface is
saved in a database and the usage information of the proto-
types is updated for all affected models in the database.
Changes to prototype definitions are observed by the
model management system and may be propagated auto-
matically to all instances of the respective prototype.

Further to the use in coupling scheme checking, the in-
terface information contained in object prototypes is used
as the basis of an interface-oriented object classification
concept. This approach is different from the System Entity
Structure concept developed by Zeigler (1984). While the
taxonimy relations contained in a SES are built upon im-
plementational inheritance knowledge, our classification
relies on inheritance of the models port and message inter-
face (i.e., from the system-theoretic point of view, on in-
put and output set inheritance). A prototype may be a de-
centant of another prototype if its interface at least
comprises the interface of its parent. However, since the
scheme implements a half-order, no assumtions can be

made about the taxonomic relations of classes residing in
different paths of the inheritance tree.

5 ADVANTAGES OF THE CONCEPT
5.1 Effects on Modeling

Hierarchical Object Nets belong to the group of net-
based graphical means for model description. This leads
to the use of a purely graphical modeling environment
without the necessity of any textual means of description.
One major advantage of graphical net editors and dialog
boxes for parametrization is that these tools may be under-
stood intuitively; they gain the advantages of visual pro-
gramming environments described by Glinert (1990).
Moreover, the graphical environment in connection with
the interface description based message type checking
prevents a variety of errors during modeling. The learning
curve for such a system is much steeper than that for a lan-
guage based, textual system.

Elements in Hierarchical Object Nets may be inter-
changed regardless of whether they are aggregates or
atoms, as long as the used ports of the objects’ interfaces
are compatible (i.e. belong to common anchestors). This
modularity is based on Zeigler’s proof that the DEVS for-
malism is closed under composition and on the object
classification scheme described above. The potential se-
mantic identity between different implementations of
model elements can be used to maintain different versions
of model components to answer different questions. Also,
the level of abstraction can be altered in this way and thus
the system allows stepwise model refinement.

Priahofer (1992) explaines three different levels of
complexity for the implementation of variable structure
models (component exchange, component and coupling
creation and destruction, and changes forced from outside
a model). The interface-oriented simulation object classi-
fication may provide a basis to address all of these prob-
lems. Employing this concept, even the use of simulation
objects as message parameters seems to be possible.

The hiding of the object’s implementation by its inter-
face (corresponding to the encapsulation in object-ori-
ented modeling) is the basis for the definition of model li-
braries. These libraries are collections of aggregate
prototypes. The inclusion of application-specific model
libraries opens the way to extend of the simulation system
in a modular fashion. The availablity of domain-specific
modules allows the modeler to stay within the usual level
of abstraction and to deal with simulation theory only
marginally. Implementation details of the library objects
used will be of no interest in most cases due to the com-
pleteness of description given by interface and functional
specification.

Stressing the fact that all input and output to and from
aggregate components is filtered by the aggregate, the im-
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plementation of partially automated rapid simulation
seems possible for some application areas. The aggregate
observes input and output and does behaviour adaption.
When the desired confidence level is reached, the func-
tionality of the aggregate’s atomic part replaces that of the
contained coupled model.

Usually, coupled models will be implemented by
means of the aggregates standard net-editor windows.
Components to be instantiated and the inner coupling of
aggregates is put in directly. For special application areas,
this instantiation and coupling process may be hidden to
the modeler. Such special editor windows are useful to al-
low the modeler to stick to description means which are
better known (like Petri nets or others) or more applicable
under certain circumstances (e.g. when they allow to re-
use knowledge already formalized within an engineering
process). Internally, an automated projection of the ap-
plication specific means of description onto Hierarchical
Object Nets has to be done; the appropriate objects have
to be instantiated and connected. The “look-and-feel” of
the adapted modeling approaches is kept, and the ap-
propriate set of interpretative analytical means can be pro-
vided. Models can be iteratively refined while changing
the modeling approach more than once. E.g., a HON
model of an automated assembly line may contain a con-
trol specification expressed as a Petri net, which in turn
contains places made up from queues implemented as
atomic HON objects. Whether an (atomic or aggregate)
object may serve as a component in a model of a different
type depends on its interface.

The proposed way of incorporating different modeling
approaches is reminiscent of Hybrid Heterogeneous Hier-
archical Modeling as proposed by Miller and Fishwick
(1992). However, due to its focussation on simulation as-
pects our concept lacks means for hybrid (combined sym-
bolic, numerical, and knowledge-based) analysis meth-
ods.

5.2 Effects on Simulation

The immediate availability of simulation objects
instantiated with a model editor retracts the borders be-
tween editing process and simulation. Models may be
executed in early design stages; and models can be run,
stopped, altered and further executed without re-compila-
tion and re-start. In this way, the turn-around times for er-
ror tracing and correction can be reduced.

Another positive outcome for debugging is, that mod-
els can be animated using the model editor. Opening some
of the editor windows, the modeler selects objects to be
observed and may set simulation breakpoints.

The instantiation and destruction of aggregate compo-
nents and inner coupling is an aggregates reaction on stim-
uli initiated by the user through the editor window. These

stimuli may also be produced by the executed model it-
self, thus changing its own structure. This feature of
model driven self-restructuring permits e.g. the imple-
mentation of evolutionary or learning models.

The concept of Hierarchical Object Nets allows the
modeler to choose the desired level of abstraction. This,
in connection with the partially atomic nature of aggre-
gate objects can be the basis for an automated rapid simu-
lation system. For rapid simulation, fine-grained struc-
tured aggregate representations of systems are replaced
by their atomic functional counterparts. Behavior adapta-
tion can be at least partially automated when the aggre-
gates themselves are enabled to supervise incoming and
outgoing external events. Even the transition from the
structural to the functional representation and back could
be automated for some applications.

Localization of simulation control within the objects
provides an ideal basis for distributed simulation. The par-
tially atomic nature of aggregates allows to flatten the ob-
ject hierarchy with respect to distributed model time syn-
chronization. As described earlier in this paper, standard
synchronization techniques may be used; model modula-
rization even allows the mixing of different synchroniza-
tion algorithms within one model to gain optimal results
in heterogeneous computing environments.

5.3 Effects on Result Evaluation and Presentation

The combination of raw simulation output to gain us-
able simulation results and their representation depends
very much on the model and the simulation goal. Often,
these results must be combined with information only
loosely related to the real system which has been modeled
or must be collected over several simulation runs. Most
known simulation systems tell between simulation model
on the one hand side and input generation, result evalua-
tion and presentation on the other. As a variant of the
DEVS formalism, Hierarchical Object Nets provide a ba-
sis for the implementation of Zeiglers (1984) experimen-
tal frames, thus permitting the definition of the exper-
imentation shell for a model using the same methodology
as for the model itself. Integrated object-oriented anima-
tion as briefly described in this paper gives the chance to
extend the experimental frame to serve as an visual inter-
active experimentation environment.

Another advantage gained from the proposed anima-
tion concept is that the implementation effort for a pro-
cess-oriented high-quality on-line animation is relatively
low in comparison to other known simulation systems.
The animation implementation is restricted to the posi-
tioning of the object shapes on an animation canvas and
the definition of their visibility attributes. Model dynam-
ics are automatically viewed by the objects themselves us-
ing their local state variables. In the current state of devel-
opment, the animation concept does not allow animation
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focus on "areas of interest”. To have a work-around for
such situations, animation is not restricted to the build-in
concept. Using files and communication objects, simula-
tion data may be given to other programs and can be visu-
alized in post-run animations by other tools.

The application of the integrated animation gives some
advantages over the use of external tools. During process-
oriented animation, e.g., the freedom of interaction with
the model can reach about the same level as during the
model-oriented animation using the model editor. This al-
lows the use of the integrated animation as a frontend (e.g.
operation panel) for the running model, so that a human
being may interact with the simulated process. One may
think of, for instance, an animated interactive control
panel for a simulated manufacturing system. Then, the
model may be used to test the panel design (its ergonomy)
as well as to train the operator (e.g. on how to deal with
dangerous situations for the system).

6 IMPLEMENTATION ISSUES

The concept of Hierarchical Object Nets is realized by
a simulation system prototype currently under develop-
ment at Daimler-Benz. To gain simulation speed, C++ has
been chosen as implementation language. Since incorpo-
ration of new atomic models currently requires a re-com-
pilation of the simulation system, we refrained from giv-
ing users a chance to define new atomic models. Instead,
the library of atomic models is extensive and comprises
even basic elements like variables (numbers, strings),
containers (matrices, stacks) and operators. The model
base management system sufficiently supports the model-
ler in finding appropriate (atomic or aggregate) models.
However, more flexibility may be gained by also incorpo-
rating a graphical approaches for atomic model definition
like Harel’s (1988) statecharts.

Further to using C++ as the implementation language,
portability is maintained by the use of a graphic library
which employs the graphic user interface of the respective
platform’s operating system and an object-oriented client/
server database system. Functionality for decentralized
editing, the simulator kernel methods for uniprocessor
simulation and basic parts of the object library are already
implemented. Current implementational work is concen-
trated on animation integration and object library exten-
sion. The applicability of the concept is tested by model-
ing and simulating a complex automated transport
system. Further work will concentrate on simulator kernel
improvement and probably the implementation of a dis-
tributed version of the simulator.

7 CONCLUSIONS

We see the concept of Hierarchical Object Nets and its
realization by the simulation system prototype currently
under development as a major step towards an easy-to-use
yet powerful simulation environment. With its roots in the
DEVS formalism, the approach bases on flexible and ex-
pressive description means. The realization integrates
several promising directions of development like purely
graphical object-oriented modeling, visual interactive
simulation, hierarchical animation, and others.

Simulation systems developed on the basis of Hierar-
chical Object Nets could be applied to all kinds of simula-
tion problems related to discrete event systems. However,
the main strength of the prototypical system will lie in the
combination of simulation and interactive run-time
animation and the flexibility and ease-of-use brought to
the modeling process. Typical applications will be found
in mixed abstraction level structured system modeling
and decision support related to such systems, in customer-
salesperson communications, and in technical training en-
vironments.
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