Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

DATA-DRIVEN SIMULATION OF NETWORKS WITH MANUFACTURING BLOCKING

Gordon M. Clark
Charles R. Cash

Department of Industrial and Systems Engineering
The Ohio State University
Columbus, Ohio 43210, U.S.A.

ABSTRACT

This paper presents a data-driven simulation of a network
using manufacturing blocking to control work-in-process,
and this simulation is called BNS for Blocking Network
Simulation. The model is object oriented and is
constructed in C++ using an object-oriented simulation
environment called HOSE. The structure of the data-
driven network simulator is illustrated with examples of
the underlying code. An important feature of the model
is a sequential procedure for determining run length to
achieve statistical precision in an output performance
measure. An illustrative example compares the
performance of BNS with a queueing network
approximation. The principal conclusion is that the data-
driven network simulation can be applied by users with
minimal simulation knowledge as a rapid modeling tool.

1. INTRODUCTION

The knowledge and time requirements to create
models limit the use of simulation because the
individuals with problem-domain knowledge frequently
lack the skills required to construct and use simulation
models. If they have the aptitude to learn how 1o use
simulation models, they may not have the available time.

We call a model data driven when users can apply the
model to different situations by changing input data that
only requires problem-domain knowledge with a minimal
modeling knowledge requirement. As a result, a number
of software companies offer products such as ProModel
(Harrell and Tumay, 1992) and WITNESS (Murgiano,
1990) that allow users to define simulation models based
on input data which significantly reduces the modeling
knowledge requirement. However, in an attempt (o0 be
useful in diverse situations, these products allow the user
to augment their data-driven models with specialized
logic to represent particular processes. Of course, use of
these features increases the user’s modeling knowledge

662

requirement. Typically, these products do not incorporate
procedures for performing basic statistical analyses such
as calculating confidence intervals and adjusting run
fengths to achieve a desired statistical precision. RESQ
(Gordon, MacNair and Welch, 1986) is an example of a
simulation language that does, reducing the simulation
user’s knowledge requirement.

Simulation modelers need to develop domain-
specific models as opposed to generic products that are
data driven and only require minimal simulation
knowledge so long as the users apply these models in a
specific domain of application. That is, the simulation
user should be able to apply his/her domain knowledge
without learning a simulation language or mathematical
statistics required for run-length control. The philosophy
proposed in this paper is that simulation modelers should
create domain-specific data-driven models that represent
the characteristics of a class of systems such as a system
of manufacturing cells using manufacturing blocking to
control work-in-proces (WIP). This paper illustrates that
approach by describing the architecture of a network
simulation of work stations with fixed capacity buffers
that control work-in-process (WIP) by manufacturing
blocking. This paper refers to the simulation as the
Blocking Network Simulation (BNS). Construction of
BNS uses a Heirarchical Object-oriented Simulation
Environment (HOSE) written in C++. BNS exploits two
features of HOSE, viz., its object-oriented nature and its
ability to allocate memory to new objects at run time.
This paper illustrates how concepts in HOSE can be used
to develop domain-specific data-driven simulations.

BNS was originally written to study cellular
operating policies for SPECO, a precision gear
manufacturer in Springfield, Ohio. The version written
for SPECO incorporates several features omitted from
this paper so that the details will not obscure the basic
principles presented. The purpose of BNS is to facilitate
extensive simulation experimentation of systems with
manufacturing blocking. One could use BNS to perform
"rapid modeling" analyses (Suri and de Treville, 1991;

Data-Driven Simulation of Networks with Manufacturing Blocking 663

Suri and de Treville, 1992) in which models are created
in hours and executed in minutes. Suri and de Treville
contend that simulation model development typically
requires days or weeks and takes hours to execute on an
PC; thus, they recommend queueing theory models for
this purpose. See Snowdon and Ammons (1988) for a
review of queueing network packages. This paper shows
that simulation can be a rapid modeling tool with respect
to model development; however, the execution times on
a PC can be long as Suri observes. The performance of
BNS on a test problem is compared to the manufacturing
blocking approximation developed by Lee and Pollock
(1990). The advantage of a simulation as a rapid
modeling tool is the simulation model’s inherent ability
to represent diverse system structures.

Section 2 of this paper gives an overview of
HOSE. The use of HOSE in developing BNS is
described in section 3, and section 4 presents results
from BNS and compares it to Lee and Pollock’s
queueing approximation.

2. OVERVIEW OF HOSE

The unique characteristic of HOSE is its
structure that integrates concepts common 10 many
simulation network languages with the DEVS formalism
proposed by Zeigler (1984 and 1990). These concepts
are implemented in C++ which is object-oriented, permits
run-time memory allocation and de-allocation, and is very
efficient. Lomow and Baezner (1991) and Joines et al
(1992) describe other simulators implemented in C++.

2.1 Concepts Common to Existing Simulation
Network Languages

Gonerate Request Delay Depart
exponential(1) Swton exponertial{ 8) Station

\ 4

Figure 1 Single Station Queue

First, we will describe the particular
interpretation in HOSE of concepts found in various
simulation languages. Simulation entities are active
objects in HOSE in that they are created, travel from
node to node, and are destroyed when they no longer
have nodes to visit. The simulation model can have
resources which have a limited capacity. Entities can
attempt to enter a resource at a request node at which the
entity can request ¢ units of the resource capacity. If the
available resource capacity is at least ¢ then the entity

immediately enters the resource; otherwise, the requesting
entity is placed in a queue list defined for each resource
to wait for adequate capacity to be made available.
Entities leave a resource at depart nodes at which they
release £ units of capacity causing the available resource
capacity to be increased by £ Entities experience
explicitly timed delays at delay nodes. No limit exists as
10 the number of entities at a particular delay node and
the time at a delay node can either be a deterministic
quantity or a sampled value for a probability distribution.
Entities are created at create or generate nodes. Generate
nodes produce a sequence of entities with a specified
distribution of times between creation for the individual
entities. Create nodes produce a single entity either at a
scheduled time or when another entity arrives to a create
node. Each type of entity follows a list of nodes.
Figure 1 illustrates a sequence of nodes for a single
station queueing system with exponentially distributed
interarrival times and exponentially distributed service
times. When an entity reaches the end of its node list,
the entity’s total life time in the simulation is
automatically computed before the entity is destroyed.
HOSE automatically produces output summaries that
include:

o Queue length statistics for each resource

° Queue delay time statistics for each resource

° Utilization statistics for each resource

o Time in resource statistics for each resource

o Number of entities in the system for each entity
type

° System time statistics for each entity type.

2.2 DEVS Concepts in HOSE

HOSE incorporates many concepts defined by
Zeigler (1984 and 1990) to give it a very modular
structure and the ability to represent hierarchical models.
Zeigler defines an atomistic model using the Discrete
EVent System (DEVS) formalism. These atomistic
models are sufficiently modular so that they can be
coupled together to form coupled models that are also
DEVS models. A DEVS model includes adequate data
1o completely specify its state, DEVS models change
state at event times. These events can be either external
or internal events. An external event generates a state
change caused by another DEVS model. An internal
event is a state change caused by the DEVS model itself.
The analogy in HOSE is that all nodes are DEVS models
in the sense that they can have internal events, external
events, and they manage their own data depicting their
state. For example, an entity arriving to a delay node is
an external event for the delay node. The delay node
maintains a list of entities in the delay and their

664 Clark and Cash

scheduled times for departure from the delay. Departure
of an entity from the delay is an internal event occurring
without stimulus from another node. A generate node
has an internal event when it produces a new entity. The
data for a generate node includes an identifier for the
particular node list that entities produced by the generate
node will folow. The node also maintains a count of
the number of entities created and destroyed by the node.
The analogy between a DEVS model and resources in
HOSE is less direct. Think of a resource and the
collection of all request nodes and depart nodes refering
to the resource as a DEVS model. The resource includes
data depicting its state by maintaining a list of all entities
waiting for the resource, i.e., the resource queue, and a
list of all entities actually inside the resource. An arrival
to a request node is an external event for the resource.
The particular request node identifies the particular
external event port defined by Zeigler for a DEVS
model. HOSE routes a departure from the resource to
the next node on the entity’s node list. The depart node
could be regarded as an output port for the resource.
Also, the arrival of the entity to the next node is an
external event for that node.

Zeigler (1990) defines a number of different
messages sent between DEVS models to coordinate their
external and internal events. HOSE has a much more
simpler method for coordinating events. A sequencer
object maintains a list of events, but each event on the
list is an internal event for a node. When a node, call it
the previous node, sends an entity to its next node
causing an external arrival event, that arrival event is
represented immediately after the state of the previous
node has been updated. Thus, external events never
appear on a sequencer’s event list. Some loss in
modularity occurs in HOSE because of this
simplification, but HOSE also realizes a considerable
increase in computational efficiency.

The structure of HOSE allows for a model node
that has a sequencer object as a data member. The
overall simulation model has its sequencer object which
is called the base sequencer, and the overall simulation
model can have multiple model nodes. This permits
hierarchical models which have yet to be implemented.

2.3 Implementation in C++

A Class defines an object-oriented data structure
in C++. This class structure defines data members and
functions for the class. The C++ program can create
individual instances of each class where each instance
has its own particular data values. The class functions
have access to those data values. The node class is an
important class in HOSE. Each instance of a node class
has an arrival function and a dolt function. The arrival

function causes an entity arrival from another node. The
dolt function causes the node to perform an internal
event. A sequencer object calls a node’s dolt function
after removing the next event from the sequencer event
list. All particular node types are derived from the node
base class. That is, request, delay, depart, generate, and
other nodes are derived from the node class so they
inherit the functions of the node class, viz., the arrival
and dolt functions.

Another important base class is the entity base
class. Entities have attributes such as:

° Entity creation time
° Pointer to the entity node list
o Current node on the node list

Particular applications of HOSE may require more
attributes for an entity than those listed above. For
example, a cart entity may have a list of job entities on
the cart. To allow for additional attributes such as a list
of entities, the modeler derives a new class, e.g., class
cart from the entity base class. All existing data
members and functions defined for an entity are then
inherited by instances of the cart class objects.

The new operator in C++ is very important to
HOSE Using the new operator, class instances are
created at run time using memory from the free store or
memory not used by existing data and programs. For
example, the statement

entity *pEnt = new
entity("JOB" entityNum route,time,pGen);

creates a new entity and stores a pointer to the entity in
the variable pEnt. The function entity is called a
constructor function in C++. The input arguments to the
entity constructor function are:

"JOB" a character string identifying the entity
type on output traces

entityNum an integer uniquely identifying the
particular entity of type entityNum

route a list of nodes for the entity to follow

time the current simulation time or the
entity creation time

pGen a pointer to the generator node creating
the entity

The statement
delete pEnt;

returns the memory allocated to entity whose pointer is
PEnt to the free store. At that time, a destructor function

Data-Driven Simulation of Networks with Manufacturing Blocking 665

defined for the entity class is called which reports the
destruction of the entity to its source generator node
pointed to by the variable pGen.

3. Blocking Network Simulation (BNS)

The BNS represents the processing of jobs by a
network of work stations having fixed capacity buffers
using manufacturing blocking to control WIP. See
Onvural and Perros (1986) for a description of different
types of blocking. External arrivals can occur to work
stations specified by the user. These arrivals may be
determined either by an input job release schedule (from
the Material Requirements Plan (MRP)) or by interarrival
probability distributions. If the initial work station for an
entering job is blocked, the job is placed in the shop
backlog which has no limits on number of jobs. This
section illustrates the structure of the BNS program, the
input data for an example simulation, and describes the
run length control algorithm to achieve a user-specified
level of precision in an output performance measure.

3.1 Ilustrative C++ Code

BNS represents manufacturing blocking by
assigning two resources at each work station. One to
represent the work station and one to represent the
buffer. A job requests a buffer prior to departing from
its previous work station; thus, a full buffer prevents the
job from leaving the previous work station, blocking its
flow. BNS reads input data specifying the stations in
the network, and then creates resources for the buffers
and work stations. This can be done by the C++
statements:

/[Name = a character string giving the resource name
/| bufName = a character string giving the buffer
I name
// MQty = number of machines in the work station
/I bsize = buffer capacity
in >> rName >> rQty >> bsize;
// read from input data stream.
resource *station = new resource(rQty,s-Name);
// station is a pointer to the work station resource
bufName = textCat(rName, "_Buffer");
// concatenate _Buffer to the end of the rName
I character string
resource *buffer = new
resource(bsize,bufName);
// buffer is a pointer to buffer resource

In C++, // tells the compiler to regard the remainder of
the record as a comment.

After creating resources, BNS reads data
specifying the route through the network for each job
type. Similar to a process plan, the data for job type
gives a sequence of operations. Assume that a step in
the operation sequence specifies the work station pointed
to by the resource pointer workStation and that the
previous work station has resource pointer prevStation,
then the C++ code is:

new request(1,*stationBuffer);

new depart(1,*prevStation);

new request(1,*workStation);

new delay(rName,lognormal,stream,mean,stdDev);

In BNS, each job is a lot that can have multiple parts.
Each job requests one unit of the respective resources.
The delay time in the example assumes a lognormal
distribution for the operation time. In BNS, the delay
time can include setup, a run time for each part in the
lot, and a batch size capacity for the particular work
station. Some work stations such as soaking pits can
perform their operation in batches of parts. In that case,
the lot is divided into several batches if the batch size is
smaller than the lot size.

3.2 Yllustrative Input Data

Figure 2 Three Station Network

A hypothetical example representing a simple
manufacturing process illustrates the BNS program. In
this example, three work stations (stat_1, stat_2, and
stat_3) produce four job types (Typel, Type2, Type3,
and Typed). Each work station consists of a buffer and
a single machine. The buffer capacity is unlimited for
the first station, but is restricted to 2 and 1 for work
stations two and three. The order arrival processes are
independent Poisson processes with rates A, = 0.16,
0.096, 0.224, and 0.32 for job types i=1,2,3 and 4,
respectively. An order consists of a single part. Orders
are processed by work stations according to the route

666 Clark and Cash

defined for a job type; however, the operation performed
at work station one is the first sequence on all routes.
Service times at a work station are exponential with rate
1 independent of the type of job being processed.
Although, there are many performance measures of
interest for this example, we are interested in estimating
mean WIP. Figure 2 depicts a network diagram for this
example.

To analyze this example using BNS, a user
would simply create an ASCII text file illustrated below.
The first record contains eight simulation model
parameters. These parameters specify in order in which
they appear: number of batches, initial deletion period,
batch length, due-date assignment procedure, sample for
arrival process or use an input job release schedule,
confidence interval o-level, relative percent error (8) of
the sample mean WIP , and random number stream
identifier. This example specifies an initial deletion
period of 1000 time units, 20 batches with length 500
time units to estimate mean WIP within 10% of its true
value with 90% confidence. An interarrival time
distribution specifies order arrival times. A due-date
assignment procedure is a feature that is omitted in this
example. The following section discusses the remaining
three parameters used to control of the simulation run
length. The next record indicates the number of work
stations to be modelled which is 3 in the example. Each
work station record indicates the work station name,
number of resources, and the capacity of the work station
buffer (e.g., stat_2, 1 and 2). The unlimited capacity
buffer for station one is represented by specifying a
capacity which is not restrictive. The 4 on the next
record indicates the number of job types to be modelled.
This value is followed by the job name, number of
sequences in its route, lot size, flow allowance time,
interarrival time distribution, and distribution parameters
(e.g. Typel, 1, 1, 2.0, exponential, 0.16). The number of
sequences in the job types route specifies the number of
following records containing data for the part’s route.
Each route sequence record specifies: the work station
name, setup time mean, setup time coefficient of
variation, mean cycle time, cycle time coefficient of
variation, the operation’s batch size processing capacity,
and the operation time distribution. (e.g., stat_1, 0.0, 0.0,
1.0, 1.0, 1, exponential). The format for the job type
data is repeated for three remaining jobs.

20 1000 500 0 O 0.10 0.10 1;
3; // number of work stations
stat_1 1 1000;

stat 2 1 2;

stat 3 1 1;

4; // number of job types

Typel 1 1 2.0 exponential 0.16;

stat_1 0.0 0.0 1.0 1.0 1 exponential;
Type2 2 1 4.0 exponential 0.096;

stat_1 0.0 0.0 1.0 1.0 1 exponential;
stat.2 0.0 0.0 1.0 1.0 1 exponential;
Type3 3 1 6.0 exponential 0.244;

star_1 0.0 0.0 1.0 1.0 1 exponential;
stai_2 0.0 0.0 1.0 1.0 1 exponential;
stat 3 0.0 0.0 1.0 1.0 1 exponential;
Type4 2 1 4.0 exponential 0.32;

stac_1 0.0 00 1.0 1.0 1 exponential;
stat_3 0.0 0.0 1.0 1.0 1 exponential;

3.3 Run Length Control for Statistical Precision

BNS assumes "steady state” operation. If the
user is representing a particular MRP, BNS assumes that
the MRP is repeated a number of times where the state
at the completion of a MRP becomes the input state for
the next repetition of that MRP. Non-overlapping batch
means is used to estimate confidence intervals for a
single performance measure such as mean WIP or job
throughput time. A batch is the period over which the
MRP is defined. In studies for SPECO, a MRP for one
calendar year was used and that MRP was repeated a
number of times. The user inputs a stated precision level
for the output performance measure expressed as a
fraction, i.e., 8 in the above example, of the mean value
and a confidence level, i.e., 1-a, that the true mean
value is within that fraction. The results reported in this
paper used .10 for both & and o. The run-length
procedure used is a sequential procedure for achieving
level of precision. We modified a procedure described
by Law and Kelton (1991) for terminating simulations
to be usable in the steady-state case using non-
overlapping batch means.

The procedure requires the user to specify an
initial transient period and a batch length, i.e., batchSize,
measured in simulation time units. The value of
batchSize in the above example is 500. The initial
transient period is deleted from all statistical calculations.
BNS always uses a fixed number of batches equal to 20.
This value was selected based on the analysis performed
by Schmeiser (1982) showing little advantage in using
more than 30 batches. The procedure starts by
simulating 20 batches of the specified length. If the
confidence interval half width divided by the average of
the 20 batch means is no more than & then the
simulation terminates reporting the average of the 20
batches. Otherwise, the simulation is continued for
another 20 batches of length batchSize. Then, the
batches are aggregated making 20 batches of length 2 *
batchSize and the confidence interval half width is
recomputed and checked again. More explicitly, the
procedure is:

Data-Driven Simulation of Networks with Manufacturing Blocking 667

Simulate the transient period
j<0
halfWidth < & * xBar + 1
while (halfWidth > & * xBar)
Simulate 20 more batches of length batchSize
Compute 20 batch means where each batch has
length j * batchSize
halfWidth < Confidence interval half-width
based on 20 batch means
xBar < Average of 20 batch means
end while
report xBar

4, Illustrative Results

Table I BNS Results with Exponential Service Times

Average Min Max
Sim. 94,000 70,000 130,000
Run
Time
CPU 29.71 24.80 40.75
Time
(min)
Mean 10.04 9.48 10.69
WIP
Estimate

To indicate the performance of BNS, we
simulated the three station system described in section
32. Also, we programmed and executed Lee and
Pollock’s (1990) approximation for that system. The
mean WIP estimate obtained from Lee and Pollock’s
approximation is 9.9409 which is the same value reported
by them. The exact value for that system is 9.9946 so
Lee and Pollock’s has an error of slightly more than
.5%. The execution time for their approximation on a
computer with an Intel 80486 cpu operating at 33 MHz
was .0018 minutes. Table I presents the results from 10
replications of BNS with a 90% confidence interval half
width requirement of 10% of the mean. The results from
BNS verify the performance of the run length control

procedure described in section 3.3. The results are
clearly within 10% of the exact value; however, BNS
required about a half hour to complete a simulation with
the required precision. We note that increasing the
required precision to 5% of the mean value will result in
simulations that require about four times as long to
complete.

Table II BNS Results with Uniform Service Times
]

Average Min Max
Sim, 13,200 11,000 21,000
Run
Time
CPU 1.07 0.77 148
Time
(min)
Mean 4.08 391 446
wIP
Estimate

The above comparison matches a simulation
with a queueing network approximation for a system
configuration the approximation is specifically designed
to represent. However, the simulation has the inherent
ability to represent a wider range of system structures.
The user of the queueing network approximation may
have to employ a model of an inappropriate system
structure. Table II shows results from BNS where the
input data are modified to specify service times at all
stations that are uniformly distributed over the interval
(.5, 1.5). The mean WIP is now only 40% of its
previous value, and the mean time for BNS to simulate
this case is about 1 minute. Clearly, many users may
prefer a simulation such as BNS as a rapid modeling
tool when available queueing network approximations are
inaccurate representations of system structure.

5. Conclusions

Based on the results presented in this paper, we
offer the following conclusions:

1. Data-driven simulations can be constucted which
require a minimal amount of modeling
knowledge.

2. One can quickly initiate the execution of data-

668 Clark and Cash

driven simulations.

3. Data-driven simulations can be developed which
represent specific system structures.

4. Queueing network approximations may give
accurate results with very small computing times
when the system structure is consistent with the
assumptions inherent in the approximation.

5. Data-driven simulations may be the rapid
modeling tool of choice when queueing network
approximations of the desired system structure
are unavailable.

6. The object-oriented nature and run-time memory
allocation features of C++ are very desirable
features for developing data-driven simulations

ACKNOWLEDGEMENTS

Development of BNS was partially supported by
the IIT Research Institute under the Instrumented Factory
(INFAC) for Gears Contract. Management of the
SPECO Corporation inspired us to develop BNS by
showing us the need for models to assist them in
analyzing gear manufacturing operations. We appreciate
the support of IIT Research Institute and SPECO.

REFERENCES

Gordon, Robert F., Edward A. MacNair, Peter Welch,
Kurtis J. Gordon and James F. Kurose. 1986. Examples
of Using the Research Queueing Package Modeling
Environment. In Proceedings of the 1986 Winter
Simulation Conference, ed.J. Wilson, J. Henriksen, and
S. Roberts, 494-503, Institute of Electical and Electronic
Engineers, San Francisco, California.

Harrell, Charles R. and Ken Tumay. 1992. ProModel
Tutorial. In Proceedings of the 1992 Winter Simulation
Conference, ed. by J.J. Swain, D. Goldsman, R. C. Crain,
and J. R. Wilson, 405 - 410, Institute of Electical and
Electronic Engineers, San Francisco, California.

Joines, J. A., K. A. Powell, Jr. and S. D. Roberts. 1992.
Object-Oriented Modeling and Simulation with C++. In
Proceedings of the 1992 Winter Simulation Conference,
ed. by J J. Swain, D. Goldsman, R. C. Crain and J. R.
Wilson, 145-153, Institute of Electical and Electronic
Engineers, San Francisco, California.

Law, Averill M. and W. David Kelton. 1991. Simulation

Modeling and Analysis. 2nd Edition, New York:
McGraw-Hill, 536 - 537.

Lee., Hyo-Seong and Stephen M. Pollock. 1990.
Approximation Analysis of Open Acyclic Queueing
Networks with Blocking. Operations Research, 18:1123 -
1134.

Lomow, Greg and Dirk Baezner. 1991. A Tutorial
Introduction to Object-Oriented Simulation and Sim++.
In Proceeding of the 1991 Winter Simulation Conference,
ed. B. L. Nelson, W. D. Kelton, and G. M. Clark, 157-
163, Institute of Electical and Electronic Engineers, San
Francisco, California.

Murgiano, Charles. 1990. A Tutorial on WITNESS. In
Proceedings of the 1990 Winter Simulation Conference,
ed. O. Balci, R. P. Sadowski, and R. E. Nance, 177-179,
Institute of Electical and Electronic Engineers, San
Francisco, California.

Onvural, R. and H. Perros. 1986. On Equivalencies of
Blocking Mechanisms in Queueing Networks with
Blocking. Operations Research, 34: 293-297.

Schmeiser, B. W. 1982. Batch Size Effects in the
Analysis of Simulation Output. Operations Research, 30:
569 - 590.

Snowdon. Jane L. and Jane C. Ammons. 1988. A Survey
of Queueing Network Packages for the Analysis of
Manufacturing Systems. Manufacturing Review, 1:14-25.

Suri, Rajan and Suzanne de Treville. 1991. Full Speed
Ahead. OR/MS Today, June 1991.

Suri, Rajan and Suzanne de Treville. 1992. Rapid
Modeling: The Use of Queueing Models to Support Time
Based Competitive Manufacturing. Proceedings of the
Germany/US Conference on Recent Developments in
Operations Research, ed. G. Fandel, Springer Verlag.

Zeigler, Bernard P. 1984. Multifacetted Modeling and
Discrete Event Simulation. Orlando:Academic Press.

Zeigler, Bernard P. 1990. Object-Oriented Simulation
with Hierarchical , Modular Models: Intelligent Agents
and Endomorphic Systems. San Diego: Academic Press.

Data-Driven Simulation of Networks with Manufacturing Blocking

AUTHOR BIOGRAPHIES

GORDON M. CLARK is a professor in the department
of Industrial and Systems Engineering at The Ohio State
University. He received the B.LE. degree from The Ohio
State University in 1957, the M.Sc. in Industrial
Engineering from The University of Southern California,
and the Ph.D. degree from The Ohio State University in
1969. His current research interests include integrated
decision support systems in a CIM environment and the
design and analysis of efficient simulation experiments.
He serves on the editorial board for the ORSA Journal on
Computing and the Journal of Operations Management.
In 1991 he served as program chair for the WSC.

CHARLES R. CASH is a Ph.D. swdent in the
Department of Industrial and Systems Engineering at The
Ohio State University. He received the B.S.L.S.E. degree
in 1985 and the M.Sc. degree in 1986 from The Ohio
State University. His research interests include
simulation methodology, stochastic processes, and
analysis of manufacturing systems. He is a member of
IIE, SCS, and ORSA.

669

