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Abstract

In this paper we summarize the results of our theoret-
ical investigation into the costs and benefits of extend-
ing the conservative simulation window established
in a non-aggressive windowing algorithm. There are
two primary costs incurred by the non-aggressive al-
gorithm: the cost of global synchronization and the
cost of blocking due to pessimistic synchronization
constraints. As the conservative simulation window is
extended processors are required to synchronize less
often and parallelism is increased. However, the in-
creased aggressiveness increases the costs assoclated
with state saving and rollbacks. This is the funda-
mental trade-off we capture analytically.

1 Introduction

Most of the synchronization protocols developed for
parallel discrete event simulation fall into two basic
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categories. Protocols that are non-aggressive (e.g.
Chandy and Misra 1979, Chandy and Sherman 1989,
Lubachevsky 1988, and Nicol 1993) do not allow a log-
ical process (LP) to process an event with timestamp
{1f it is possible that it will receive another event with
a timestamp less than ¢ at some point in the future
(when an LP processes an event with a timestamp less
than an event already processed it is termed a causal-
tly error). Aggressive protocols (e.g. Time Warp,
Jefferson 1985) allow an LP to process events in any
timestamp order, and causality errors are corrected
through a rollback mechanism.

Both approaches have inherent problems. Non-
aggressive protocols tend to leave processors idle due
to overly pessimistic synchronization constraints. Ag-
gressive protocols are criticized for the high overhead
costs associated with state saving and rollback, and
because of the possibility of cascading rollbacks.

Recently, there has been much interest in the paral-
lel simulation community in synchronization protocols
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which blend aspects of aggressive and non-aggressive
techniques. The goal of this research is to maxi-
mize the advantages, and minimize the disadvantages,
of each approach. Some researchers are investigat-
ing limiting the aggressiveness of Time Warp in or-
der to reduce the costs of state saving and to elimi-
nate cascading rollbacks (e.g. Madisetti et al. 1992,
Turner and Xu, 1992 and Lubachevsky et al., 1989).
Other researchers are investigating adding aggressive-
ness to non-aggressive protocols in order to increase
concurrency (e.g. Steinman 1992, and Dickens and
Reynolds, 1990). To date, there have been few ana-
lytical studies which examine the costs and benefits
of decreasing the aggressiveness of Time Warp or in-
creasing the aggressiveness of non-aggressive proto-
cols.

In this paper we summarize the results of our in-
vestigation into the adding of aggressive processing
to a class of non-aggressive protocols termed window-
ing protocols (e.g. Nicol 1993, Chandy and Sherman
1989, Lubachevsky 1988). We chose a windowing al-
gorithm because they are the only protocols for which
important scalability results have been proven (Nicol
1993, Lubachevsky et al. 1989, Lubachevsky 1989a).
We develop a model to show that adding limited ag-
gressive processing offers the potential for significant
improvement in performance while maintaining the
important scalability features of the non-aggressive
protocol.

We are not the first researchers to look at adding ag-
gressiveness to a non-aggressive windowing protocol.
Lubachevsky et al. (1989) did this in relation to the
Bounded Lag Algorithm, and also showed that the
aggressive version of the algorithm is scalable. The
distinguishing feature of our work is in the analytic
model. Our model provides a detailed study of the
costs and benefits of adding aggressive processing to
the non-aggressive protocol. Lubachevsky did not ad-
dress this issue. The difference in the scalability re-
sults is that our model predicts the cost of aggressive
processing as a function of the number of LPs in the
system. Lubachevsky did not address the costs of his
algorithm as a function of the number of LPs.

The protocol we propose to correct causality errors

is essentially Time Warp with limited aggressiveness.
As noted above, there are other researchers who have
proposed and studied limiting the aggressiveness of
Time Warp. Again the distinguishing feature of this
work is in the development of the analytic model. We
study the costs of aggressive processing as a function
of the level of aggressiveness. This is unique among
all of the studies of aggressive processing.

In this paper we present an overview of our model-
ing technique and give a summary of our results. The
details of the model can be found in Dickens et al.
(1993).

2 The Aggressive Windowing
Protocol

In a windowing algorithm all concurrent simulation
activity is constrained to be within some window
of global simulation time. This simulation window,
which we refer to as the lookahead window, is defined
such that all events with timestamps falling within
the window can be executed concurrently without
any possibility of a causality error. The interested
reader is directed to Nicol (1993) for the construc-
tion of one such lookahead window. Processing events
with timestamps outside of the window may result in
a causality error and is therefore not allowed. Win-
dowing protocols generally proceed in three phases
where the lookahead window is computed in the first
phase, all events within the lookahead window are
processed concurrently in the second phase, and all
messages generated as a result of this processing are
exchanged in the third phase. Each phase is separated
by a barrier synchronization. There are two primary
costs incurred by the non-aggressive windowing algo-
rithm: the cost of global synchronization and the cost
of blocking due to pessimistic synchronization con-
straints.

We seek to minimize these costs by extending the
conservative simulation window defined by the algo-
rithm. We term this extension to the lookahead win-
dow the aggressive window and allow an LP to pro-
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cess events within both windows. Assume the sys-
tem is synchronized at logical time T where T is the
current window floor. The non-aggressive windowing
algorithm defines the lookahead window from logical
time T to logical time T+ L, where L is the width of
the lookahead window. Our modified algorithm de-
fines an aggressive simulation window from the upper
bound of the lookahead window (logical time T+ L)
to logical time T+ L + A.

Our modified windowing algorithm proceeds in two
phases as follows. In the first phase the LPs coop-
eratively determine the lookahead and the aggressive
windows. We discuss the best choice for the size of the
aggressive window (based on the results of our model)
in later sections. In the second phase of the modified
algorithm all events with timestamps falling within
the extended simulation window are processed. As
can be seen, the amount of aggressiveness exhibited
by the system is controlled by the size of the aggres-
sive window.

We propose to use a simple state saving and roll-
back mechanism such as Time Warp to correct any
causality errors that occur as a result of aggressive
processing. We assume state is saved before the pro-
cessing of any event within the aggressive window. If
an LP receives an event with a timestamp ¢, and it
has processed an event with a timestamp greater than
t, it must perform a rollback. When this occurs the
LP must restore the state that was saved immediately
before logical time ¢, and all events with timestamps
greater than ¢ must be reprocessed. If the LP has sent
any messages based on the processing of an event with
timestamp greater than ¢, we assume the message was
sent in error. In this case an anti-message is sent to
cancel the message. An anti-message has the same
content as the original message, and is sent to inform
the receiving LP that the original message was sent in
error. This corresponds to the aggressive cancellation
policy (Reiher et al. 1990) in Time Warp.

3 Approach to Modeling

In both the aggressive and non-aggressive versions of
the algorithm all of the LPs must wait until the slow-
est LP in the system completes it processing within
the simulation window. In this section we describe
our model to predict the performance of the slowest
LP in the system for both approaches. We begin with
a brief discussion of our model. Note that for the
rest of this paper we use the terms event and message
interchangeably.

Our model is closely related to the model developed
by Nicol (1993), although he has not studied process-
ing outside of the lookahead window. Our model is
also closely related to the models developed by Aky-
ilidiz et al. (1992) and Gupta et ol (1991), and uses
the same assumptions. Akylidiz and Gupta however
are investigating the behavior of Time Warp which
does not limit aggressive processing as we are propos-
ing.

We model our protocol as a collection of servers
where activities occur. An activity (e.g. service given
to a job at a queue) begins, ends, and upon its comple-
tion causes other activities. In our model each com-
pletion causes exactly one other activity somewhere
in the system. We assume a completion causes an ac-
tivity at a server that is picked at random, where each
server is equally likely to be picked.

The delay in simulation time between when an ac-
tivity begins and ends is called the duration of the
activity. We assume each server chooses the duration
of an activity from an independent, identically dis-
tributed exponential distribution with mean 1/X. We
assume there are N servers, and one server per LP.
Our model assumes a closed queueing system where
the system is heavily loaded and the probability of a
server being idle is very close to zero.

We define the processing cost of the given approach
as the expected cost of processing through one unit
of logical time. This cost includes the events that
must be processed within the simulation window (i.e.
the real work of the simulation), as well as the over-
head costs associated with the particular approach.
We model the over-head costs relative to the cost of
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processing a single event, and we assume each event
takes approximately the same amount of real time to
compute.
Given this brief introduction we describe the com-
putation of the cost function for each approach. We
- derive the probability distribution for each random
variable defined in the model in Dickens et al. (1993).

3.1 Costs of Non-Aggressive Process-
ing

In the non-aggressive windowing algorithm the LPs
concurrently process all of their events within the
lookahead window. When an LP completes this pro-
cessing it enters into a barrier synchronization wait-
ing for the other LPs to similarly complete. Given
our assumption that each event takes approximately
the same amount of real time to compute, processing
within the lookahead window will be dominated by
the LP with the most messages to process.

After processing within the lookahead window the
LPs enter into a global synchronization. We assume
the system uses a traditional barrier synchronization
such as the gsync() routine provided on an Intel
iPSC2 hypercube. The cost of a barrier synchroniza-
tion is O(Logz P) given a system with P processors.

We define My 4 as the random variable representing
the maximum number of events within the lookahead
window taken over all of the LPs in the system. Let
Cr 4 represent the cost (to the maximally loaded LP
) of processing through one lookahead window. Then

Cra=Mpa+cLogy P. (1)

The ¢ term in Equation (1) is a factor used to express
the cost of global synchronization relative to the cost
of processing a single event. To compute the cost of
processing through one unit of logical time we divide
Cpra by L, the width of the lookahead window. We
define Costn 4 as the cost of processing through one
unit of logical time for the non-aggressive approach.

_ Mpa+cLogs P

Costya = B — (2)

3.2 Costs of Aggressive Processing

Before developing our cost model for the aggressive
approach it is necessary to define some terminology.

When an LP receives a message from another LP
we term this message an arrival message (i.e. it ar-
rives at the receiving LP). Due to the construction of
the lookahead window it is guaranteed that no LP will
receive an arrival message with a timestamp that falls
within the aggressive window. However, an LP may
receive an arrival message with a timestamp that falls
within the aggressive window (or where the times-
tamp is greater than the upper bound of the aggres-
sive window). Unless stated otherwise, whenever we
refer to an arrival message we are referring to an ar-
rival message with a timestamp within the aggressive
window.

When an arrival message causes an anti-message
to be produced it is termed a first generation anti-
message. We define an Nth generation anti-message
as one that is produced because of the receipt of an
Nth — 1 generation anti-message. We define a roll-
back chain as a chain of anti-messages. The depth of
the rollback chain is the maximum generation anti-
message produced in the chain. We define the maz:-
mum rollback chain as the rollback chain which pro-
duces the highest generation anti-message observed in
the system for a given iteration of the protocol.

Now that we have developed our terminology we
continue with the development of the costs of aggres-
sive processing.

3.3 Workload of the Dominant LP

We define a special LP which is used to track the oc-
currences in the system which dominate system per-
formance. In order to ensure we track the processing
costs of the slowest LP in the system, we define the
workload of this special LP such that it is greater
(or it is reasonably expected to be greater) than any
LP in the system. We term this specially defined LP
the dominant LP. We make a set of very pessimistic
assumptions regarding the workload of the dominant
LP, and we use this workload in our calculation of the
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cost of the aggressive approach.

First, we assume the dominant LP has the maxi-
mum number of events in the lookahead window taken
over all LPs in the system. Recall we defined M4 to
represent this random variable. Similarly, we assume
the dominant LP has the maximum number of events
within the aggressive window taken over all LPs in
the system. We define M4, as the random variable
representing this cost.

Next, we assume the dominant LP receives the max-
imum number of arrival messages taken over all of
the LPs in the system. This assumption places a very
heavy workload on the dominant LP since each arrival
message can invalidate (and thus force the reprocess-
ing of ) the events within the aggressive window as well
as previously received arrival messages. Additionally,
each time an event is reprocessed the state of the LP
must be saved. We define M 4, as the random variable
representing the number of arrival messages received
by the dominant LP, and we define Repa, as the ran-
dom variable representing the number of events that
must be reprocessed due to the arrival messages.

Next, we consider the reprocessing caused by the
receipt of anti-messages. It is important to note that
the processing costs to a given LP that receives one
of the anti-messages in a rollback chain may not be
large, but the cost to the system is cumulative. That
is, the entire system must remain blocked until ev-
ery anti-message in a rollback chain is processed. In
order to account for the cumulative effects of the max-
imum rollback chain we make the pessimistic assump-
tion that the dominant LP receives an anti-message
for each generation anti-message in the maximum roll-
back chain. This assumption also places a heavy work-
load on the dominant LP since the amount of repro-
cessing caused by an anti-message is a function of the
number of messages processed aggressively. We de-
fine Reps, as the random variable representing the
amount of reprocessing caused by anti-messages in our
system.

We define TM 4, as the total number of messages
processed by the dominant LP, including those mes-
sages reprocessed due to the receipt of arrival mes-

sages and anti-messages.

TMAg = MLA+MAr+MAg+ (3)
Repar + Repan

Next, we consider the cost of saving state. Given
our assumption that state is saved before every mes-
sage that is processed aggressively, the dominant LP
must save its state before the processing of all mes-
sages ezcepl those processed within the lookahead
window. Let SSt represent the total number of times
the dominant LP saves its state. Then

SSp =TMua, — Mpa. (4)

Finally, we must consider the cost of global synchro-
nization at the upper bound of the aggressive window.
We note that due to unpredictable message exchange
patterns we cannot use a traditional barrier synchro-
nization, and our model therefore assumes an aggres-
sive barrier synchronization such as that described
by Nicol (1993a). As noted by Nicol, the cost of an
aggressive barrier synchronization is on the order of
two to three times that of a traditional barrier syn-
chronization. Either Nicol (1993a), or Dickens et al.
(1993), may be consulted for a thorough discussion of
the issues associated with an aggressive barrier syn-
chronization.

The cost of global synchronization for the aggressive
algorithm is 2 ¢ Log, P. We define SS, as the cost of
saving state relative to the cost of processing a single
message. We define C4y as the cost of processing

through one simulation window for the dominant LP.
Then

Cag = TMAg + 55; SST + 2¢cLoga P. (5)

We define Costsy as the cost of processing through
one unit of logical time for the aggressive algorithm
and give its value below.

Ciag
LtA ©)

Costag =
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4 Theoretical Results

In this section we compare the processing costs of
the two approaches. All of our results assume a sys-
tem with N = 1024 LPs and a mean service time of
1/X = 1. Given these parameters the expected width
of the lookahead window is E[L] = .0385. In order
to be consistent with our analytical model we assume
there is one LP per processor, and thus we assume
P = 1024. We define the expected improvement in
processing costs as

_ Costya

EI =
Costagg

()
Thus ratios greater than one indicate the superiority
of the aggressive windowing algorithm.

We derive results for aggressive window sizes of A =
100%, A = 50% and A = 10% of the mean of the
service time distribution. We discuss this choice for
A below. There are two independent variables which
must be considered: the cost of global synchronization
relative to the cost of processing a single message,
and the cost of saving state relative to the cost of
processing a single message. We present a family of
curves where the state saving cost is varied on the
z axis, and the expected improvement in processing
costs is given on the y axis. State saving costs vary
between zero and twice the cost of processing a single
message. Each curve represents the improvement in
processing cost given a cost of global synchronization
that is 0, .25, .5, .75, 1.0 or 2.0 times the cost of
processing a single message. We show the line where
the expected processing costs for the two approaches
are identical.

Before presenting the results of our analysis we
briefly discuss the size of the aggressive window. The
purpose of this analysis is to investigate the impact
of limited aggressive processing on the performance
of the non-aggressive windowing protocol. Since we
are only considering limited aggressive processing we
are able to make some approximations which signifi-
cantly simplify our analysis (these approximations are
discussed in detail in Dickens et al. 1993). These ap-
proximations begin to break down however if the size

of the aggressive window becomes too large. Our ap-
proximations are very reasonable for aggressive win-
dow sizes up to the mean of the service time distribu-
tion, and for this reason we only consider aggressive
window sizes between zero and 100% of the mean of
the service time distributions. It is important to note
that the impact of our approximations is to under-
estimate the improvement in performance that can
be obtained due to the addition of limited aggressive
processing.

In Figure 1 we plot the expected improvement
given an aggressive window size of A = 100% of the
mean service time. As can be seen, our model pre-
dicts significant improvement in performance for a
very wide range of state saving and global synchro-
nization costs. We find these results are very en-
couraging, particularly given our very pessimistic as-
sumptions regarding the cost of aggressive processing.

(A = 100% MST, P « 1024)

Figure 1: Theoretical Improvement, A = 100%
MST

In Figure 2 we plot the expected improvement in
performance given an aggressive window size that
is 50% of the mean service time. Although the
model still predicts significant improvements in per-
formance, the predicted improvement is less than that
for the larger aggressive window. This is because
our model predicts, and simulation studies support,
that if the costs of processing through an aggres-
sive window of size Al is Y, then the cost of pro-
cessing through an aggressive window of size A1/2
is greater than Y/2. Thus the total cost of pro-
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cessing through two aggressive windows of length
A = 50% of the mean service time is greater than
the cost of processing through one aggressive win-
dow of length A = 100% of the mean service time.

(A = B0% MST, P « 1024)

Theoretical Improvement, A = 50%
MST

Figure 2:

In Figure 3 we plot the expected improvement
in performance given an aggressive window size of
A = 10% of the mean service time. As can be seen,
our model predicts only limited improvement in pro-
cessing costs for this very small aggressive window.
The reasons for this are the same as those discussed
above.

(A = 10% MST, P = 1024)

Figure 3: Theoretical Improvement, A = 10%

MST

5 Simulation Studies

In this section we present a set of simulation studies
in order to test the predictions of our model. All of
the results (except where noted) assume P = 1024
processors, N = 1024 LPs and a mean service time
of 1/A = 1. The system we simulated is a simple
FCFS queueing network with one server per LP. Each
data point represents the mean observed value taken
over sixteen trials, where each trial consisted of one
thousand iterations of the algorithm. Note there was
very little observed difference between the trials.

In Figure 4 we show the number of messages pro-
cessed by the LP which processed the maximum num-
ber of messages taken over all LPs in the system. This
message count does not account for state saving or
global synchronization costs, and thus is the number
of messages captured by TM4, in Equation (3). As
can be seen, our model does indeed give a very pes-
simistic view of the costs of aggressive processing.

0—O Previcied
©O—Q Coterved

00 02 o8 08 10
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Window Size (% Time)

Figure 4: Number of Messages Processed by

the Dominant LP

In Figure 5 we use these empirical results to com-
pute the improvement in performance for an aggres-
sive window size given A = 100% of the mean ser-
vice time. In this graph we include the cost for state
saving and global synchronization. As expected, the
observed improvement in performance is better than
that predicted by our model.
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(A = 100% MST, P = 1024)

10
State Saving Cost

Observed Improvement, A = 100%
MST

Figure 5:

6 Scalability

We predict the cost of aggressive processing as the
size of the problem and the size of the architecture
are simultaneously increased. In order to compensate
for the increasing cost of global synchronization as
the number of processors is increased (i.e. keep the
work load per processor constant), we assume there
are J = P Logy P LPs per proceeeor, and N = J P
LPs. We increase N from 512 to 65,536. The results
are shown in Figure 6 (these results include the costs
captured by TM 4, in Equation (3)).

As can be seen, our model predicts that as we in-
crease the number of LPs by a factor of 128, the
number of messages processed by the dominant LP
increases by approximately a factor of two. These
are very encouraging results. In order to test these
results we varied the number of LPs in our simu-
lation from 512 to 4096 (the maximum number of
LPs that can be handled in our simulation due to
memory constraints). As can be seen, simulation
results confirm the trend predicted by the model.

600
0—©Predcted
@—@ Cbeerved

—

() 100

120 40 160
2 Ralsed o Power

Figure 6: Scalability Results

7 Conclusions

In this paper we have presented an over-view of our
approach to modeling the impact of adding aggres-
sive processing to a non-aggressive windowing proto-
col. Our model predicts, and simulation studies sup-
port, that aggressive processing can, for a wide range
of state saving and global synchronization costs, offer
the potential for significant improvement in perfor-
mance. Further, our model predicts the larger the
aggressive window size the greater the improvement.
As noted however the assumptions of our model be-
gin to break down as the size of the aggressive window
approaches the mean of the service time distribution.
Thus the model is not able to predict the impact of a
significant level of aggressive processing, or unlimited
aggressive processing as occurs in Time Warp.

Our model predicts, and simulation studies sup-
port, that the aggressive algorithm scales well as the
size of the simulation problem increases. This is an
important area which merits further investigation.
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