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ABSTRACT

There is increasing focus on the model development
aspect of systems simulation, termed "Model
Engineering”. Current software development tools
consist primarily of CASE tools with simulation
extensions or simulation tools with model-building
extensions. The need for a Computer-Aided Simulation
Model Engineering (CASME) environment is identified
and discussed. In particular, a CASME environment
should support a model building process based on the
interconnection of components which are either
primitives or collections of primitives (model modules)
to form other model modules. The features and tools
comprising a CASME environment which support such
a process and provide model specifications for use in
simulation execution environments are also identified
and discussed. The conclusion is that such a tool would
be useful, but only insofar as simulation environments
provide for implementation of model and measurement
(experimental frame) specifications.

1. INTRODUCTION

To simulate a system requires a model of the structure
and behavior of the system, whether it is a detailed
model intended to capture as much of the actual
structure and behavior as possible, or a reasonably
simplified model capturing what is proposed to be the
most pertinent structure and behavior. Most systems,
and thus system models, can be decomposed into
separable parts as part of a natural mental process in
understanding and defining the system structure and
behavior. This way of thinking yields approaches to
system modeling that identify the system parts and their
interactions in succeeding layers of detail. This
approach of decomposition can be clearly seen in
formalized approaches to system modeling such as
Structured Analysis and Design Techniques (Marca &
McGowan 1988), object-oriented modeling and design
(Booch 1991, Rumbaugh, et al 1991), and in software
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engineering based on the concepts of modularity
(Wirth 1985).  Infact, it is only natural to apply
software engineering techniques to simulation model
development, since simulation models are ultimately
software products. In order to apply those techniques to
simulation modeling, however, software tools (similar
to CASE tools for software engineering but oriented to
simulation modeling) are needed to facilitate the
decomposition and "re"composition of system
simulation models. Often these tools are CASE tools
with simulation extensions (e.g., Cadre) or are
modeling extensions of simulation environments (e.g.,
SLAMSYSTEM, GPSS/VI, SIMAN 1V, and
SES/Workbench just to name a few).

If the simulation model development tool is separate
and distinct from the execution tool, then the model can
potentially be executed on different tools and in different
paradigms (e.g., levels and flows of a Systems
Dynamics approach versus queues, customers, and
servers in a discrete-event queueing approach).
Experience, however, dictates that model development
is a highly iterative process between model building and
execution. As a result, the developer wants to
instantaneously transition between the two, which casts
a strong vote for both model development and execution
residing in the same tool. In any case, the point can
still be made that model development and execution,
though highly interrelated, are two separate efforts.
Issues for model development, such as decomposition,
system structure, and system behavior, are separate
from issues for execution, such as timing mechanisms,
collection of measures (frequently statistical), random
number generation, and output analysis. The focus of
this paper is on issues of the former, simulation model
development, and the division between it and executable
model implementation.

The emphasis on model development has been
growing in conferences and literature, receiving its own
label - modeling engineering - first coined by Fishwick
(1989). Model engineering, analogous to software
engineering, refers to the methodology and tools for
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building system models which are less focused on a
particular simulation method and more focused on the
underlying and unifying framework. One naturally
would ask: "What software tools would support
model engineering ? What would be the features and
tools of a Computer Aided Simulation Model
Engineering (CASME) environment? What would
enhance the process of modeling?" In answer to these
questions, the following approach is proposed: a
CASME ool will provide for the "code-free"
construction of model modules (which are collections of
primitives) from model primitives and other model
modules already defined. Both model modules and
primitives will have defined interfaces which are used to
interconnect them to form other model modules. The
rest of the paper will first define model primitives and
modules, describe the model building process with an
emphasis on reuse, and then identify CASME
environment features and tools which address different
aspects of model building.

2. MODEL PRIMITIVES

The essential starting point of the model building
process is with a set of model primitives which
correspond to pre-coded implementation-specific
software modules. The primitives are used much like
higher-level language constructs in software
programming to build model modules. Many available
commercial simulation environments utilize a library of
primitives, such as in environments based on SIMAN,
GPSS and SLAM. These approaches are based on
transaction flow which defines the processes a series of
transactions experience. The interfaces between
primitives in these environments are predefined; the
user specifies the attributes of the transactions and the
flows through which they go. While transaction flow
modeling environments are both useful and popular, a
CASME tool should adopt a more general view to
encompass a wider range of models. A more general
approach is taken in SmartSim (Ulgen & Thomasma
1990), in which the interfaces (in terms of messages)
between simulation model objects can also be defined.
DeNet (Livny 1991) also provides a more general
approach, in which connections are defined between
precoded modules. Each connection can represent any
number of events between modules (events in DeNet are
analogous to messages in object-oriented languages).
While in DeNet the ports are implemented in code , in a
different, object-oriented approach (Luna 1992) the ports
are notional, in that they define the set of messages
which can be sent to and from an object. In effect,
ports are sets of protocol which a sender or receiver
object must satisfy in order to make a valid connection
with another object. In order for the model primitives
to be used for model building, they should identify the
corresponding implemented code's interface both in
terms of the types of messages (or function calls) and

arguments. It is important to note that only the
interface specification is needed for model building
(such as the definition module in Modula-2); while the
implementation is only needed for execution.

2.1 Model Primitive Interface

The interface specification of a simulation model
primitive is comprised of external events (which are
analogous to messages) which are exchanged with other
primitives. These events are separated into input and
output events, in which external input events are
received and external output events are sent. In DEVS
(Zeigler 1984, Concepcion & Zeigler 1988), which is
based on a system theoretic approach, these external
events correspond to the DEVS input and output ports.
In OMT (Rumbaugh et al 1991), an object-oriented
modeling methodology, events correspond to messages
received and sent by objects. An example of a DEVS
implementation is found in DeNet, which provides the
event calling mechanism by sending an event {0 an
output port which in turn causes the input port of the
receiving module to execute the corresponding event.
An example of an object-oriented approach is seen in
SmartSim and other approaches (Luna 1991) utilizing
the object-oriented language Smalltalk (Goldberg &
Robson 1983), in which an event sent by one object as
a message causes the receiving object to implement a
method corresponding to the message. Zeigler ( 1990)
discusses the similarities and differences of the DEVS
and object-oriented approaches.

2.2 Declarative Model of Primitives

While the interface is all that is needed for
interconnection of primitives, it does not provide any
information on the behavior of the primitive. For
some primitives, the name and interface provide enough
indication for the user to guess its behavior. If there is
documentation, the user can read a definition of the
behavior of the primitive. If the user has access to the
primitive's source code, the user can also try to decipher
its behavior from the listing. But none of these
approaches is particularly satisfying since primitives
can exhibit complex behavior which is not obvious
from its interface. In addition, documentation on
primitive behavior can be inadequate or lag the current
state of the software, and source listings of primitives
(if they can be obtained) are often difficult to
comprehend. The issue of understanding the behavior
of implemented software objects is particularly germane
to software reuse (Stacy et al 1992). Object-oriented
modeling methodology addresses this issue through the
use of state/transition diagrams, which are declarative
models of the behavior of objects. Whilc such an
approach has merit, several improvements must be
made. First, a state/transition diagram approach must
be able to handle the complexity of large systems
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(fairly complex primitives should not result in unusable
state/transition diagrams). Second, the diagram should
consistently handle events (external and internal) which
effect transitions between states. Third, the diagram
should be kcpt consistent with the actual implemented
code it represents.

Reducing state/transition diagram complexity through
the use of formal notation and statc orthogonality has
been introduced by Harel (1987). In particular, his
approach using "statecharts” provides for hierarchical
state diagrams so that a state/transition diagram can be
divided into levels in order to be more manageable (state
substitution).  An alternative approach is with
Augmented Transition Networks (Bolc 1983), which
provides for hierarchy by substituting lower level
diagrams for a transition in a higher level (transition
substitution). In any casc, thesc approaches are a start
in addressing the issuc of dealing with statc/transition
diagram complexity.

The purpose of the state/transition diagram is to
represent the behavior of the primitive, and as such it
must specifically identify the external input and output
and internal transitions corresponding to external and
internal events. The time advance must also be
represented for those events which occur after a specified
period in a particular statec (such as a delay). It is
important that processes which occur over time be
identificd as states with corresponding transitions such
as "start process” and "end process”. An cxample of
this is provided by Fishwick's FSA for a jug (1992a),
in which 1o fill a jug, the jug transitions [rom the
"cmpty" state by either transition "fill" or "transfer" to
an intermediate state, "filling", and then when it is
complete, to state "full". The elements of extcrnal and
internal transitions with time advance are all organized
with a strong theoretical basis in the DEVS
methodology (Zeigler 1984). The DEVS formalism
would prove the ideal basis for developing a
statc/transition diagram approach which rclates the type
of event, condition and delay to transitions between
slates.

In order for a state/transition representation of a model
primitive's behavior to be valuable in understanding and
correctly implementing the model primitive, it must be
consistent with the model primitive code. If the model
primitive is in a state of change due to further
devclopment and modification, then the state/transition
diagram must be continually updated. There are two
possible approaches: update the state/transition diagram
manually from the model primitive implementation, or
automatically generate the diagram each time the model
primitive is changed. The latter scems most desirable,
although there do not scem to be any such tools
currently in existence. If the needed information is
contained in the primitive source code (such as one
based on a DEVS or object-oriented approach), then it
seems plausible that a state/transition diagram could be
automatically generated. An added wrinkle in an
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object-oriented approach is with inheritance - can an
object's state/transition diagram also bc d(;fmed
incrementally? This issue is raised by Aksit and
Bergmans (1992). It seems that using a h_icrarchical
approach could be promising, but this requires further
thought and work.

In summary, a model primitive defines the interface of
a corresponding software implementation in terms of
ports or connections which each have a spegificd
protocol of events or messages. The modcl primitive's
behavior is represented by a state/transition diagram
tailored to simulation modeling. A group of
primitives together form a library for usc in the model
building process of a CASME tool.

3. MODEL MODULES

Model modules are a set of intcrconnccted componcents
in which each connection is defined by a sct of protocol
and each component is either another model module or a
model primitive. The model modulc external interface
is the set of unconnected interfaces of thc module's
components. Model modules arc analogous to the
"coupled component” in DEVS (Zcigler 1984), whilc
the model primitive is analogous to the "atomic
component”.

3.1 Module Levels of Abstraction

Model modules can be defined in successive layers of
abstraction (Figure 1). At the highest level, the module
topology view is defined by a digraph composed of
nodes interconnected by unidirectional arcs.  The next
level, the protocol view, identifies thce types of
intemode communication. Each arc has a corrcsponding
protocol of events or messages identificd for it. As a
result, a node's interface is defined by the total protocol
of its input and output conncctions.  Since the node's
behavior itself is not identified, any numbcer of nodes
which satisfy the interface can be "plugged” in. This
essentially results in a module whose component types
are parameters which can be varied. Such an approach
based on processes is implemcnted in AI3 (Benjamin,
Mayer & Blinn 1992), and is also implemented using
substitution transitions in a Petri-net implementation
in Design/CPN (Meta Software 1992). When each
node is labeled as an object, the protocol view
corresponds to the object model in OMT. The next
level, the component view, identifies the node types as
either model primitives or model modules. At this
level the components have been parameterized. The
result of a hierarchy of modules which arc realized at the
component view is a hierarchical tree of interconnected
modules whose 'leaves' correspond 1o actual software
code and whose internal nodecs are connection
specifications (Figure 2). At the lowest level, the data
view, the variables of each primitive are assigned with a
particular set of values (i.e. from a data base or
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Figure 2. Hierarchy of Modules at Component View

parameter filc). The module at this level corresponds 10
an object instance and provides a full definition of the
module for execution. The different levels of
abstraction for a model module arc important when
considering issues of model repositories and model
rcuse.

3.2 Module Declarative Models

Model modules as described thus far are functional
rather than declarative models; they identify the different
components and their relationships. The behavior of
the module is essentially the aggregate of the interactive
behavior of ils components. s a declarative model
appropriate for the module? It secms the answer is ycs
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if the declarative models of the components can be
abstracted to form a single overall declarative model
which provides some overview of the module behavior,
perhaps using hierarchical state/transition techniques as
discussed earlier. Whether this actually provides more
insight, rather than just a jumble of states or a small
but nonintuitive set of states, remains to be seen. But
what if the user desires for the module to have a
behavior of its own? The answer is simple, another
primitive needs to be added to the primitive library
(with corresponding software code) which implements
the module-specific behavior (beyond the components'
aggregate behavior). This 'meta’ primitive corresponds
to the immutable composition of an object as described
by Odell (1992).

4. "CODE-FREE" MODEL BUILDING

Model building is the process of building modules
from model primitives and other modules (Figure 3).
"Code-free" refers to the pluggable approach this allows
by utilizing pre-coded software objects. In a typical
session in which a user builds a model "bottom-up”, a
selection of primitives and pre-defined modules is made
available to the user via a menu or a palette of icons.
The user defines the different components by selecting
one of the primitives or modules. The user then
connects the components (either via menu-prompt or by
graphically drawing an arc), which establishes the
protocol of the connection based on the protocol of the
interface ports selected. If the port protocols are
incompatible, then the connection is invalid and thus
disallowed. This ensures compatibility at run-time.
Once all the components are connected, the user
specifies the input and output ports of the module
interface and connects the remaining component ports
to them. The resultant module can then be used as is or
reused in a higher level module.

As an alternative, the user can adopt a “top-down"
approach, in which the user defines a module consisting
of primitives. As the behavior of each component
becomes better defined, then a corresponding module
can be created and substituted for the primitives in the
higher level module. As a result, the model becomes
increasingly decomposed into greater depth.

4.1 Reusability Issues

This approach to model building involves a heavy
reliance on the adequacy of the library primitives to
meet the user's needs, analogous to the language
constructs the software programmer has available to
meet his or her programming needs. While many
simulation environments (i.e. those based on
transaction flow) have a pre-defined set of primitives,
these are usually kept in inaccessible libraries. In
addition, much fewer allow for the capability to
combine primitives into subsystems which themselves
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can be reused, which does exist in such tools as Arena
(Pegden & Davis 1992), SES/Worl_<bench, and
RESQME (Gordon et al 1993). SmartSim allows for
more flexible primitives and subsystems, although
subsystems are themselves objects requiring some
programming. A CASME user should be e}l}owed to
program when necessary to build new primitives, and
be allowed to save modules which are built as reusable
model components. This is analogous to the X-
Window approach, which separates the widget
programmers from the application programmers (Young
1989).

> —» Prim,,

Prim2

Prim2

Prirn3

a) Bottom-up

Mod 1

[}

e

—-* Prim1

Prim2

Prim

1 Mod

Mod 2 ~

>

Prlm:3

Prim4 >

b) Top-down

Figure 3. Model Building Using
Primitives and Modules

4.2 Incremental Model Building

Model building by modifying existing modules raises
the issue of managing the variation of modules, in
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particular, an incremental programming approach to
building modules. Just as inheritance in object-oriented
programming allows subclassing by defining only the
changes to the superclass, so new modules ought to be
able to be defined as variations to an existing module.
For example, if a change in component type is
considered, only the new component type, protocol, and
connection need to be saved as changes to the existing
model module. The variations of a given module can
then be displayed to the user hierarchically (similar to
the Smalltalk class hierarchy browser) rather than as a
flat collection of modules from which the user has no
indication as to how they are related.

A question remains as to whether the user should be
able to view a module variation as a variation or as a
fully reconstructed module with the variations included.
In object-oriented code, typically only the variations are
displayed to the programmer for each object class. For
large and complex modules, displaying only the
variations would be valuable. If the changed
components, arcs, and protocol are displayed with the
corresponding connected components, then only the
pertinent parts of the module would be viewed by the
user. Sometimes, however, having the whole picture is
also valuable, so that a user would want the option of
either an incremental or full display of the module
(Figure 4).

S. CASME ENVIRONMENT FEATURES
AND TOOLS

There are several features and tools which a CASME

environment should provide which were highlighted
from previous discussion: a model builder tool,
repositories for primitives and modules, and an
executable builder tool.

5.1 Model Builder Tool

The model builder tool consists of a user interface,
access to the repositories, and a means for checking
connection protocol compatibility. The user interface
can be menu-prompt or graphical or some combination,
and must provide a means for the user to create, select,
delete, and modify model modules. The user should
also be able to view declarative models of primitives
and modules. Browsers which display the primitives
and modules according to hierarchical relationships
would greatly simplify the user's selection of them. In
order to support this, the model builder tool should
provide saving and retrieving facilities for access to the
primitive and module repositories. The user should
also be able to create or delete connections between
components. This involves another tool, a protocol
checker, which compares the events or messages
originating from the sender with the events or messages
which the receiver expects to get. This could be further
enhanced by a protocol suggester, which given a

component identified as either a source or dgs_tination
component, will find other components (primitives and
modules) which satisfy the protocol constraints.
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Figure 4. Display of Incremental Changes

5.2 Repositories

The repositories for primitives and modules should
hold both model and data information. The primitive
repository holds the interface specification and
associated state/transition diagram (corresponding
declarative model). The primitives should be
hierarchically related by class as defined using object-
oriented analysis and design techniques whether or not
they are implemented in an object-oriented language.
This allows for the user to focus on fewer selections at
a time; it is easier to pick 1 out of 10 twice rather than
pick 1 out of 100 once. Data sets for each primitive
should also be saved in a corresponding database.
Module repositories, however, can be more complex.
Abstraction, compositional, and incremental
(specialization) hierarchical relations all exist for each
module (Luna 1993). Abstraction hierarchical relations
relate the module abstraction levels (topology, protocol,
component, and data views). A single trace down the
abstraction hierarchy fully defines a model module
(Figure 5). Compositional hierarchical relations relate
the module to its components, which constitutes a
hierarchical tree in the component view. Incremental
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(specialization) relations relate a module to the 'base’
module from which it is a variation. Each of these
relations should be displayable to the user. In addition,
the repositories should allow for import and export in
some kind of standard form (e.g. flat ASCII).

One possible
instance

T = Topology View
P = Protocol View
C = Component View
D = Data View

Figure 5. Fully Defined Module Hierarchy

5.3 Executable Builder Tool

Lastly, the executable builder tool would access the
primitive and module repositories to generate
simulation model specifications for existing simulation
execution environments. In DeNet, for example, the
topology file is the simulation model specification.
The DeNet environment uses this file to build and
execute the simulation model. DYMOLA (Cellier
1991) similarly generates model specification files to
run in ACSL, a continuous simulation environment.
SmartSim similarly can generate executable SIMAN
code.

So far, little attention has been paid to the
specification of measures. This is an important
consideration, since measures are typically included in
model code and can significantly complicate it.
Measures should be defined externally to the model code
itself. The executable builder tool should also provide
facilities for defining measures based on component
events, similar to the approach described by Luna for
hierarchical modular modeling (1992). These measures
should then be defined in a simulation environment file
which can be used by simulation execution
environments. The only problem is that many
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environments rely on the reporting facilities for
measures to be directly implemented in the modules as
described, so that modifying the measures taken requires
modifying model primitive code. This is
unsatisfactory. Approaches similar to that of SIMAN,
which utilize Zeigler's experimental frame based on
separation of model behavior and measurement (Zeigler
1984), should be encouraged. This would allow
CASME environments to specify measures as well to
be implemented by the target simulation environment.
6. CONCLUSION

A concluding question well might be, "Is there a need
for a CASME environment? Why not use a CASE
tool instead?" The answer lies in how well existing
tools provide the capabilities needed for model
engineering as defined in this paper and elsewhere
(Fishwick 1992a). Clearly parts of the capabilities are
implemented in currently available tools, but others are
still lacking. It is believed that a hybrid approach,
utilizing object-oriented and system theoretic
methodologies provides the greatest promise.
Ultimately, however, a CASME environment will be
ineffective if it is developed without regard to
simulation executable environments. A good start
would be to develop an open simulation executable
environment as the target for a CASME, based on open
libraries such as SIMPACK (Fishwick, 1992b). An
open CASME approach much like that of UNIX or X
Windows would enable contributions and enhancements
to occur over time. It seems that it may be time for
industry standards regarding model and measurement
specification interfaces between a CASME environment
and executable environments. With such standards, it
would be possible to develop models for
implementation in a variety of environments utilizing a
variety of paradigms. This would also make it much
more likely that independently developed primitives and
modules could be reused.
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