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ABSTRACT

A simulation environment (COGNOSCO) designed to
monitor the evolution of manufacturing systems is
presented. Assuming that today manufacturing
simulation is dedicated to (long term) system design or
to (short term) scheduling, this environment is an
attempt to address the continuum of decisions that lie
between these two extremes. Its object-oriented basis
supports modular and graphical modeling. A model can
be connected either to the simulation engine to evaluate
decisions, or to the production system to monitor its
behavior. Simple instruments are used to track the
evolution of important variables, while knowledge bases
will provide the user with focused information and
valid candidate decisions when a shock or progressive
alteration in performances arise.

1 INTRODUCTION

Nowadays, manufacturing simulation is used for design
and capacity planning (Lenz 1985) as well as for
scheduling (Bilberg, and Alting 1991) purposes. System
design involves long term or at least middle term
decision-making, while scheduling deals with very
short term decisions (even though prior simulation of
the scheduling rules is possible). Between these two
extremes, a continuum of problems remains
unaddressed. On another hand, production systems
managers are assisted by MRP and CAD/CAM systems
as well as various CIM components. These tools use the
same data and generate a vast amount of information
which is difficult to manage without a truly integrated
global database. An ideal way to tie the loose ends
would be a model collecting and arranging the
information issued by the manufacturing system
(Norman 1992). The simulation environment
COGNOSCO (from the Latin word meaning "I learn to
know" or "I learn to understand") we are currently

developing addresses this question.

In this paper, we will try to show how a toolkit like
COGNOSCO could be used for manufacturing system
analysis. The first part is dedicated to a brief
presentation of this environmemt and its components.
The second section introduces the basis of continuous
monitoring for discrete-event manufacturing systems.
Finally, the instrument concept is detailed in the last
section.

2 THE COGNOSCO ENVIRONMENT

The COGNOSCO environment belongs to the family of
tools that are designed to integrate simulation and
manufacturing systems (Bilberg, and Alting 1991; Mize
et al. 1992; Tayanithi, Mannivan, and Banks 1992). It
has been developed according to object-oriented (OO)
principles in C++ and represents a set of about 50
classes and 35,000 lines of code (Figure 1). Due to
these OO origins which support modularity and
inheritance concepts, this environment is composed of a
collection of independent skilled modules (Fabre, and
Leblanc 1993). To date, the following modules have
been developed:

- a manufacturing library;

- an instrument library;

- a simulation engine;

- a graphical user interface (GUI),

- amodel base and its manager;

- a compiler.

Current developments involve the creation of new
instruments, especially to perform ABC (Activity Based
Costing) analysis, and the knowledge base module (see
section 4). The COGNOSCO components are
independent and reusable. The compiler is designed to
establish a temporary link between them when a model
is to be simulated. The information stored in the model
base is then translated to create the model and its
components. This translation depends on the target
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Figure 1: The COGNOSCO Classes

simulator. One possibility might be, for example, to
connect the GUI and the model manager to another
simulator. These modules allow model creation without
coding, using only fill-in forms, graphs and icons
(Fabre 1990).

A model, from the user point of view, is composed of
graphs collecting icons in networks. Each icon
identifies an element or another graph, allowing thus
multi-level representation (Bond, and Soaterman 1988).
To build a model, the user has to develop at least two
graphs: one for the description of the manufacturing
process for a given part, and another to represent the
layout of the factory with its various resources. The
description of the process is done using flow process
chart representation (Fabre 1990). Two components

complete a typical model: the table of schedules for the
parts (using, for example, data from a production plan
or probabilistic distribution to model parts arrival in the
model) and the set of instruments to be used during the
simulation. COGNOSCO can also be tailored to model
specific manufacturing systems (e.g. FMS, warehousing
systems, material handling oriented systems, etc.).
Indeed, the two libraries (manufacturing components
and instruments) provide a true basis for the new
domain-specific sub-libraries. The inheritance concept
allows us to refine the behavior of the manufacturing
components classes, while assuring that the
communication protocols between the objects among
the whole manufacturing library will be preserved.
Traditional simulation tools (i.e. programming
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languages, simulation languages and simulators) used
in the manufacturing domain do not allow this modular
organization. Moreover, a trade-off has to be made in
their selectionm between ease-of-use and flexibility.
These tools are not provided with powerful design of
experiment and results analysis capabilities. Much of
the information generated during the simulation
experiment is usually wasted, considering that decision-
makers cannot cope with statistical analysis (or can, but
only marginally), and continue to pay more attention to
animation than statistics (Industrial Engineering,
1992). This is the main reason why they still lack
confidence in simulation for decision support
(Industrial Engineering, 1992; Keller, Harrel, and
Leavy 1991). Attempts have been made to provide
statistical analyzers (Mellicamp, and Park 1989) but
these tools remain hard to use by non experts. More
user-friendly tools therefore have to be developed,
allowing simulation objectives and results to be
accurately presented. The instruments embedded in our
environment are designed to meet these requirements
and facilitate the simulation analysis process.

With this assistance, manufacturing simulation may
become used efficiently on a more regular basis and, as
suggested above, for a wider range of studies.
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3 CONTINUOUS SYSTEM MONITORING

The monitoring and control of manufacturing systems
using simulation is a relatively new issue in the field of
manufacturing simulation in comparison with design
and scheduling. Most of the work in this area is
oriented toward the control of FMS or automated cells
(Bilberg, and Alting 1991; Mize et al. 1992; Tayanithi,
Mannivan, and Banks 1992; Harmonosky 1990). The
first aim of the COGNOSCO environment is to achieve
continuous monitoring of manufacturing systems.

This presupposes that the system studied is
adequately equipped with captors tracking and
transmitting its evolution in real-time. Otherwise, only
selective monitoring can be achieved (mostly when
problems arise), but data collection in this case could be
a too long process to allow for rapid and efficient reac-
tion. The large amount of information to handle and its
dynamism make traditional mathematical optimization
methods cumbersome. Therefore, a simulation model
seems the most appropriate way to treat the evolution of
the manufacturing system as well as changes in the
user's objectives.

Our environment is organized around the model that
will be at the heart of the manufacturing information
system (Figure 2). The objective is to allow

Interface

Figure 2: Organization of the COGNOSCO Components
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manufacturing engineers to constantly monitor the
production system, provided with gauges reflecting its
behavior in real-time. Once the model has been
developed and validated with the simulator, constant
monitoring will be helpful for:

- training (from machine level, to factory level);

- diagnosis support;

- scheduling;

- costing and accounting, etc.

Simulation-based monitoring, with the support of
the model, will help users to understand the dynamic
behavior of the system and the interactions among its
components. It appears to be a preliminary condition
for achieving accurate real-time control.

This depends on the constant evolution of the model
in accordance with the changes in the system. Once
validated, the model is disconnected from the simulator
engine and 1is constantly updated by events arriving
from the system via the global database and its filters.
This presupposes, as we pointed out earlier, that data
can be collected throughout the factory, but does not
imply that the system is fully automated.

The amount of information can rapidly become
overwhelming, even with the use of filters to reduce and
format this information. Simulation will be useful here
as well. In fact, we believe that only a small number of
indicators is relevant, given a set of objectives for the
manufacturing system to fulfil. This is the way cars are
piloted and the way nuclear power utilities and many
continuous process systems are run. But, continuous
processes rely on models using differential equations,
and therefore, monitoring in this case is easy to achieve.
This is not true for discrete-event manufacturing
systems where no mathematical equation can be easily
retrieved and relevant variables are harder to isolate.

Thus, simulation is used to determine the variables of
interest before the model is connected to the
manufacturing system. The composition of this set of
pertinent variables is dynamic and can evolve.
Assuming that the system is in a steady state,
simulation will have to be performed at defined
intervals to update this list. At the same time, however,
the evolution of the system must still be monitored to
avoid losing information (Harmonosky 1990). A copy
of the model in its current state is issued for simulation
purposes, while the model itself continues to monitor
the system in the background.

In the monitoring mode, the important variables are
constantly displayed on the screen and their dynamic
behavior is studied by instruments. The evolution of the
other variables is recorded by these instruments and
does not appear constantly on the screen. This record is
printed as a summary when the results are reported,
unless the variables leave their authorized range of

variation during the study. In this case, a warning is
issued to the effect that the system is evolving outside
its limits. This situation can be the consequence of a
progressive divergence or due to an unexpected event.

When unexpected events, shocks to the system or
changes in the objectives occur, simulation will also be
necessary. Unexpected events can be classified into two
categories (external and internal) and are the key issue
to address in constant monitoring. External shocks, for
example, are those generated by variations in the
forecasted demand (e.g. cancellation of an order or new
order with a high priority), in the material or in the
manufacturing resources received (e.g. in time or in
quality). Internal shocks are mostly the result of
machine breakdowns and accidents. Tayanithi,
Mannivan, and Banks (1992) propose a knowledge-
based on-line simulation system to handle machine
breakdowns and deal with this kind of internal shocks.
The distinction between external and internal shocks is
valuable at the various levels of abstraction, from the
system level to the machine level. When a shock occurs,
not only do the important variables have to be updated,
but the objectives have to be redefined. Simulation is
used to determine which strategy is the best suited for
an "efficient” recovery as shown in Figures 3 and 4.

At this point, we introduce the knowledge bases
(KB), a part of the COGNOSCO environment

F(t)

Avoid abnormal conditions

~ - -

Perform deterministic forecasting

Minimum reaction delay

Figure 3: Continuous Monitoring Qutput (1)
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Test recover strategies after shock

Figure 4: Continuous Monitoring Output (2)
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providing expert assistance in decision-making in
association with the instruments.

The KB will help the user in his efforts to "learn to
know" the system, managing both instrument
information and previous (accurate or validated)
decisions. They have to be viewed as an expert advisor
for the user as well as a tutor that will also learn from
its pupil.

When it can be stated that a decision has failed to
meet the required objectives and when a good decision
can be retrieved (directly or by simulating candidate
decisions), the user must modify the record of his
previous choice and update the KB with a good set of
parameters/decision. Because it is constantly growing,
the knowledge will have to be maintained too.
Inconsistencies must be avoided and higher-level
knowledge is to be generated, aggregating existing
knowledge. This leads to rule generation (i.e. move
from factual to global or general knowledge of the
manufacturing system) supervised by the user who is
responsible for validating the candidate rule. The rules
belong to two categories: static and transient. Those in
the first category are time-independent and are usually
system-independent (e.g. when a machine has broken
down, make an attempt to reassign products or a rule to
recognize bottlenecks). Those belonging to the second
category (e.g. rules dealing with rerouting entities) are
affected by the evolution of the system and have to be
weighted according to their current pertinence.

These rules are used to recognize problems as well as
to propose solutions. Some problems are easy to forecast
(as in Figure 3, when the curve tends to reach the upper
limit) and warnings can be issued before they occur,
given the upper and/or lower limit for this variable. In
this case, candidate strategies can be simulated and
implemented before this limit is reached.

When an unavoidable problem arises (Figure 4), the
user will be given a choice of possible decisions, the
number of which depends on the quality and amount of
knowledge included in the KB. In some cases, there
will be no solution proposed, or, in other cases, only
one pertinent solution will exist. The simulator will be
helpful to test the candidates lying between these two
extremes. ‘

Problems that can affect the system are global, due to
a conjunction of small local dysfunctions that are not
really problems (i.e. many indicators are close to one of
their limits), or local, with or without global
consequences (chain reaction). The first case is the
most difficult to treat, because no reason can be easily
retrieved. The bounds on the variables are perhaps need
to be revised or extended to a range, rather than limited
to a single value. In the second case, self-owned,
induced and structural problems (Rodde 1989) have to

be recognized. Those in the first category are critical
and must be solved. Those in the second reveal
bottlenecks and the links existing between the various
manufacturing components. The third category contains
problems mostly related to external shocks or global
events (e.g. end of shift).

OO manufacturing components and instruments
permit the isolation of local self-owned or induced
problems. Indeed, the local behavior of manufacturing
components is continuously monitored, even though
aggregate results are dispatched on screen. Thus,
problems can be recognized as they arise, considering
desegregated information from the lower-level
instruments when a warning has been issued.

4 THE INSTRUMENTS

The instrument concept, that we are using in
COGNOSCO and introduced in Fox et al. (1988), is
quite simple. As in a real-life system, skilled
instruments (e.g. clocks, counters and related products)
are linked to the objects they study (an instrument can
be linked to one or several objects). This is the first
level of instrumentation. The highest level contains
more sophisticated tools which will be able to provide
the KB with treated information (i.e. expert or
aggregated).

The Instrument class (Figure 5) is the root of this
hierarchy. Its attributes offer basic support for the other
instruments, from the simple counter to the expert
analyzer. The pamList attribute contains the list of
parameters the instrument needs to be operational.
Once the instrument is embedded in a model, the
listevaleur attribute is used to record the
observations made by the instrument. Each instrument
can be linked to a graphical output manager
(presentateurAssoc) that formats and shows the
results on the computer screen using graphs,
histograms, pie charts, Kiviat graphs or simple tables
(by default). The collecteur attribute eventually
points towards another instrument. It can be an
instrument of the same type, when the measures
concerning all the objects of a given family must be
displayed in a single indicator, or an instrument from a
higher level, thus allowing multi-level measurement
and aggregation of results (this characteristic is
important for economic measures in a activity-based
costing environment, as described below). Instruments
are updated when the object(s) they are studying is (are)
modified by an event. Every object that has to be
studied is provided with a list of pointers to related
instruments and sends them a message using the
metAJour () method when its state is modified.

The metAJour () mechanism is blind in the sense
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class Instrument:

public virtual Chose ({

protected:
bool unique; //global instrument or not
bool imprim; //results shown on screen?
float lastImprim; //date of last ostream update
float datAff; //time of first ostream update
float pasAff; //time between ostream updates
oCltn listevaleur; //collection of measures
oCltn pamList; //collection of parameters
Instrument *collecteur; //instrument of upper level
XFiche *presentateurAssoc; //personal screen manager for
//data output and format
protected:
virtual void ajustevValeurs(bool affiche) {}
public:
Instrument();
Instrument (MyString& nm, int typ, int ind, bool unq);
Instrument (MyString& nm, int typ, int ind, bool unq, Instrument& in, XFiche& pr);
virtual ~Instrument();
virtual void presenteResultat(); //format results to show them
virtual void affiche(); //print measures on screen
virtual void affiche(ostream* ) {} //print measures on O/stream
virtual void affiche(const char* ) {} //save results on file
virtual void metAJour (Chose& obj); //update measures

virtual void
virtual void
virtual bool
virtual Instrument

compileResultats();

ajouteInfo(Instrument& inst);

verifievValidite(int &, Chose* = NULL) {}
*dupliqueInstrument ();

//collect data from instruments
//compile results

//validate data
//duplicate this instrument

Figure 5: Declaration of the Instrument Class

that there is no assurance that all the object's
instruments have to be updated but, by this means, we
achieve independence of manufacturing objects and
instruments. The argument of this method is the object
itself. The instruments are thus loosely tied to their
related object(s), but, provided with the parameters of
the pamList attribute, they are able to get the relevant
information from among the object's parameters. This
standard instrument pattern allows and encourages the
multi-criteria evaluation of models. Evaluations of
projects have been done according to operations,
economics and ergonomics criteria (Fabre et al. 1992).
The lower-level instruments (Figure 1) have been
completed and allow us to produce reports like those
generated by traditional simulators and simulation
languages. These instruments belong to the operations
instrument family and constitute the basis for the other
categories. The economics family of instruments (Table
1) has been designed as well. These cost measurement
instruments, tied to simple objects, will be used to
perform activity-based costing (ABC) measurement,
simple cost monitoring and tailored pricing in
accordance with system changes. McNair (1990) as
well as Raffish, and Turney (1991) propose a general
presentation of the ABC concepts. Both tangible and
intangible (e.g. quality, flexibility) costs can be tracked
and reported. This complies with the emerging trend of
reforming  traditional manufacturing  accounting
systems which became obsolete with the introduction of
new technologies where indirect cost grows while labor

cost diminishes. Abundant literature introduces new
approaches to take into account this evolution (see for
example: Arbel, and Seidman 1984; Azzone, and
Bertele 1989; Park, and Son 1988; Suresh 1990;
Kaplan 1990).

5 PLANNED DEVELOPMENTS

An evolutive environment (COGNOSCO) for the
continuous monitoring of manufacturing systems has
been introduced in this paper. Indeed, due to the
modular OO structure of COGNOSCO, new modules
can be easily integrated with the existing ones. New
components are still under development. The most
important among those are the specialized instruments
that will be added to assist the user in the decision-
making process. These instruments will also manage
the knowledge bases dedicated to monitoring. Artificial
intelligence and the cognitive sciences (connectionist
networks) are among the avenues we are considering
for developing these instruments.
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