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ABSTRACT

We give an overview of the main techniques for im-
proving the statistical efficiency of simulation esti-
mators. Efficiency improvement is typically (but not
always) achieved through variance reduction. We dis-
cuss methods such as common random numbers, an-
tithetic variates, control variates, importance sam-
pling, conditional Monte Carlo, stratified sampling,
and some others, as well as the combination of cer-
tain of those methods. We also survey the recent
literature on this topic.

1. INTRODUCTION

1.1. A Notion of Efficiency

Stochastic simulation is typically used to compute the
value of a realization of a random variable X, taken
as an estimator of some unknown quantity p. Sup-
pose that X is defined over some probability space
(2, B, P) and use E to denote a mathematical expec-
tation. The bias, variance, and mean square error

(MSE) of X are defined as

B = EX]-u
o’ = Var(X) = E[(X - E[X])%);
MSE[X] = E[(X -w)? = B2 +0%,

respectively. We assume that the cost for computing
X (e.g., cpu time) is also a random variable and we

denote its mathematical expectation by C(X). We
define the efficiency of X by
1
Eff(X) = (1)

MSE[X] - C(X)"

In this context, for two estimators X and Y, we say
that X 1s more efficient than Y if Eff(X) < Eff(Y).
Efficiency improvement means finding another esti-
mator Y which is more efficient than the currently
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used estimator X in the above sense. Often, both esti-
mators are unbiased and are assumed to have roughly
the same computational costs; then, improving the
efficiency is equivalent to reducing the variance. For
that reason, most textbooks are research papers talk
about wvariance reduction techniques (VRTs). How-
ever, efficiency can sometimes be improved by in-
creasing the variance; see Fishman and Kulkarni
(1992) and Glynn and Whitt (1992) for examples.

This paper gives an overview of the main ideas and
recent research developments on efficiency improve-
ment, mainly through variance reduction. We give a
long list of references, with pointers to the most recent
or important (according to the judgement and knowl-
edge of this author). The list is clearly not exhaustive
and we make no attempt to trace back the historical
developments and give the original references.

For the readers who want to go further, we would
like to particularly recommend the nice survey papers
of Glynn (1994a), Heidelberger (1993) and Wilson
(1984). Good introductions on variance reduction can
also be found in Bratley, Fox, and Schrage (1987),
Hammersley and Handscomb (1964), and Law and
Kelton (1991) (among others).

Remark 1 The efficiency criterion (1) is not the only
possibility, but is often agreed upon, typically with
the assumption of no bias. Without bias, one can
generally sample twice as many independent copies
of the estimator, thus cutting the variance in half but
doubling the computational effort, so the efficiency is
invariant with respect to the number of replications in
this case. In the presence of bias, the latter no longer
holds, but (1) implies that variance can be traded off
for squared bias, and vice-versa, without essentially
altering the statistical precision of the estimator.

1.2, Asymptotic Efficiency

Arguing that (1) is difficult to compute in practice,
Glynn and Whitt (1992) propose to consider the ef-
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ficiency of simulation estimators in the asymptotic
sense, as the size of the computer budget increases to
infinity. What we now describe is a much simplified
version of their framework. Let .X'(¢) be the estimator
obtained with a budget ¢ (here, we have C(X (t)) = t).
Typically (under a few technical conditions), there ex-
ists a constant y and a random variable Z such that
tY(X(t) — u) = Z (where = denotes the convergence
in distribution), and also t*MSE[X (t)] = v+0(1) for
some constant v, where o(1) — 0 as t — oco. Then,
the asymptotically most efficient estimator is the one
with the largest value of v and, in case of a tie, the
one with the smallest value of v. Often, y = 1/2 and
Z 1s a centered normal for all estimators of interest in
a given class. In that case, those estimators are com-
pared through their variance constants. Note that
one often has v = 1/2 even in the presence of bias.
Examples where v # 1/2 are discussed in Glynn and
Whitt (1992) and Glynn (1994a). See also L’Ecuyer
(1992), L’Ecuyer and Perron (1994) and L’Ecuyer and
Yin (1994). Note that in the latter case, changing the
number of replications may change the efficiency of an
estimator.

As an illustration, suppose we want to estimate the
total expected discounted cost over an infinite hori-
zon, in a stochastic model with discounting, using a
truncated-horizon estimator over horizon 7. For a
computing budget ¢, we may perform n = |t/7] runs
of length 7. Then, the simulation cost per run typi-
cally increases linearly in 7, whereas the marginal de-
crease of the MSE (as a function of 7) damps out ex-
ponentially fast as 7 — co. To maximize the asymp-
totic efficiency in that case, there is an optimal way
of increasing 7 as a function of t; that is, a tradeoff
between the horizon length and the number of replica-
tions. See also Fox and Glynn (1989). Other impor-
tant examples involve derivative estimators based on
finite differences or on the likelihood ratio method,
and stochastic approximation based on these meth-
ods.

1.3. Modifying an Estimator for Variance
Reduction

To see how an estimator can be modified (in general),
recall that X is a measurable function of the sample
point w, say X = h(w), and that

MSE(X) = /Q(h(w) — p)¥dP(w).

Modifying the estimator means modifying the func-
tion h without altering the probability law P, or
perhaps modifying P itself, or both. Nelson (1985,
1986, 1987a, 1987b) proposed a decomposition of

the transformation h into several levels, say, h(w) =
T3(T2(T1(w))). In his framework, the random vari-
ables (or vectors) Ty, T, and T3 are called the in-
puts, the outputs, and the performance statistics, and
are defined (directly) over probability spaces called
the probability spaces of inputs, outputs, and per-
formance statistics, respectively. Variance reduction
techniques can then be classified according to the
level(s) at which the transformation is modified. Nel-
son identified six mutually exclusive classes of elemen-
tary transformations (two classes at each level) and
showed that any VRT is a composition of such ele-
mentary transformations. That framework was devel-
oped with the hope that (a) fundamentally new VRTs
could be found by playing with those building blocks
and that (b) this decomposition would facilitate the
“automation” of variance reduction by enabling the
construction of general software for that purpose. It
appears that reaching these long term objectives is
still far ahead.

The remainder of this paper is devoted to a discus-
sion of several VRTs. The common random numbers
(next section) are used for comparing two or more
“related” systems, whereas the other methods can
be used for estimating the performance measure of
a single system. The methods discussed in the next
four sections are correlation-based: correlation is in-
duced and exploited between different random vari-
ables. Some of the others (like importance sampling
or stratification) may be called importance methods:
they improve the efficiency by concentrating the sam-
pling effort in the most critical regions of the sample
space.

2. COMMON RANDOM NUMBERS

The common random numbers (CRN) method is nor-
mally used when estimating the difference between
the expected performance measures of two (or more)
systems. It is perhaps the most widely used VRT
method in practice. Suppose we want to estimate
p1 — p2, where py and po are two unknown quan-
tities, estimated by X; and X,, respectively. Let
Z = X1 — X7 and suppose that E[Z] = p; — po.
The variance of Z is then

Var[Z] = Var[X1] + Var[.X5] — 2Cov[.Yy, 5.

If X; and X3 are generated independently, the co-
variance term disappears. But if we manage to in-
duce a positive covariance between X; and X, with-
out changing their individual distributions, then the
variance (and MSE) of Z will be reduced. The stan-
dard way of inducing such a covariance is to use the
same underlying uniform random numbers to drive
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the simulation for both X; and X5, and to make sure
that these random numbers are used at exactly the
same place for both systems (the latter is called syn-
chronization). If both systems react in a similar way
to these uniforms, then that should work. The ra-
tionale is that with the same uniforms, the random
noise (or “experimental conditions”) will be the same
for both systems; so the observed differences will be
due only to the differences between the systems, and
not to the fact that one has been more lucky than
the other in picking its random numbers. As an anal-
ogy, using CRNs is like comparing two fertilizers by
using each of them on the same piece of land, at the
same time (this is impossible in real life, but simula-
tion makes it possible). With the CRNs, independent
replicates of Z can be obtained by simulation and a
confidence interval for p1 — py computed as usual.

Example 1 Suppose we want to compare the FIFO
service policy with another policy, in a single-server
GI/GI/1 queue, with regards to the average wait-
ing time. Here, X; and X3 may represent the ob-
served average waiting times under each of the two
policies. If the interarrival and service time distri-
butions are the same for both systems, then using
CRNs with proper synchronization implies that both
systems will see the same customers arriving at the
same times and with the same service requirements
(the service requirements may be permuted between
the customers if they are generated when the service
begins, but not if they are generated when the cus-
tomer arrive). To facilitate the synchronization, one
may use here two different random number genera-
tors: one for the interarrivals and one for the service
times. In general, having several generators available,
as well as software tools for resetting a generator to a
previous state and for jumping ahead, is very handy
for the application of CRN and other VRTs. A soft-
ware package offering that is provided by L’Ecuyer
and Coté (1991). Several other examples of CRN ap-
plications (with numerical illustrations) are given in
Bratley, Fox, and Schrage (1987), Law and Kelton
(1991), and the references therein.

CRNs do not always work: using the same uni-
forms does not guarantee that Cov(X;, X3) > 0. In
practice, the uniforms are transformed in very com-
plicated ways and at several levels to produce the
estimators, making that covariance extremely hard
to evaluate a priori. A sufficient (but by no means
necessary) condition for the covariance to be positive
1s that X; and X, are both monotone (both increas-
ing or decreasing) with respect to any given underly-
ing uniform (see Heidelberger and Iglehart (1979) and
Theorem 5.1 of Bratley, Fox. and Schrage 1987). If

the monotonicity condition is satisfied only for some
of the uniforms, then one can use CRNs only for
those, and independent random numbers for the other
uniforms. However, the monotonicity conditions are
not always easy to check. If the covariance turns out
to be negative, then the variance of Z will actually
be increased. In the best case, if the correlation is
perfect, the variance is reduced to zero. In the worst
case, the variance could be doubled compared with
independent simulations.

A well-known heuristic for trying to keep the mono-
tonicity is to generate all the nonuniform random
variables in the model by inversion. If these nonuni-
form variables have different distributions for the two
systems, inversion will ensure that they remain mono-
tone. However, the further transformations applied
to these variables for producing the estimates X; and
X» may be non-monotone. For complex real-life mod-
els, to assess whether CRNs would work, one may
make a pilot study: perform a number of replications
with CRNs and check whether or not the (estimated)
variance of Z is smaller than the sum of the variances
of .'Yl and X'_;.

A situation where CRNs would work extremely
well, even in the absence of monotonicity, is when
a system 1s parameterized by some continuous pa-
rameter 6, reacts similarly to similar values of 8, and
we want to compare the performance under two val-
ues of # that are close to each other. More specifi-
cally, if the response is a “smooth” function of § when
the values of the underlying uniforms are fixed, and
if X; is the value of the response evaluated at 6;,
j = 1,2, then the correlation between .X; and .Y, will
approach 1 as |#; — 0| approaches 0, so the CRNs
will reduce the variance if #; and 6, are close enough
to each other. This (and related issues) is studied by
Glasserman and Yao (1992). One important applica-
tion of this property is the estimation of derivatives
(or gradients) by finite differences. In that context,
with independent random numbers, the variance of
the derivative estimator increases to infinity as the
size of the finite-difference interval shrinks to zero.
But with CRNs and under appropriate smoothness
conditions, the variance remains bounded; L’Ecuyer
and Perron (1994) give formal proofs and numerical
examples. This is important because making the size
of the finite difference interval converge to zero is gen-
erally required to make the bias converge to zero.

CRNs are also effective for comparing multiple
(more than 2) systems; however, the induced de-
pendence makes the statistical analysis more difficult
(e.g.. for selecting the best system with high prob-
ability or for computing a simultaneous confidence
region for all differences). There exist simple analy-
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sis methods, such as using the Bonferroni inequality
to compute confidence intervals, but these are very
conservative. Consider the specific problem of multi-
ple comparisons with the best (MCB): perform simul-
taneous statistical inference on all the p; — p;, for
J # J«, where p; is the (unknown) performance mea-
sure of system j and j. is the best system. For MCB,
Yang and Nelson (1991) and Nelson and Hsu (1993)
proposed linear regression models trying to “explain”
the effect of CRNs on the output via control variates
which are functions of the simulation inputs. Their
analysis assumes that all of the dependence induced
by the CRNs is explained by the control variates and
that the residuals are iid normals. Such control vari-
ates that account well for the dependence are not al-
ways easy to select in practice. Nelson (1993) pro-
posed another (more robust) approach, that can be
used with or without the control variate model, and
for which the control variates are not assumed to cap-
ture all of the dependence.

CRNs are not useful only for estimating a differ-
ence such as py; — pg, they could be effective more
generally for estimating a function of several means:
g(p1, .-, pa), where each p; is a mathematical ex-
pectation estimated by X;. Inducing correlations
between the X;’s by using CRNs may reduce the
variance of the estimator g(Xi,...,X4). A spe-
cial case is when estimating a ratio of expectations:
9(pu1, p2) = p1/pa.

Besides the variance reduction, there are situations
where the CRNs also make the computations less
costly. The idea is that the random numbers need
to be generated only once. When comparing similar
related systems, the lower-level transformations (e.g.,
the generation of interarrival and service times in a
queue) are sometimes exactly (or almost) the same for
all systems of interest, and the systems differ only at
a higher level. Then, a significant amount of compu-
tation may be common to all systems and could be
performed only once. L’Ecuyer and Vézquez-Abad
(1994) show how this idea could be exploited to ef-
ficiently estimate an entire function of a univariate
continuous parameter.

3. ANTITHETIC VARIATES

The idea of antithetic variates (AV) resembles that of
CRNs. Now, we want to estimate a single mathemat-
ical expectation u, using a pair of unbiased estimators
(X!, X?). The (unbiased) estimator of y will be the
average: X = (X! + X?)/2, whose variance is:

Var[X1!] 4 Var[X?] N Cov[X!, X7

Var[X] = , 2

Assume that Var[X!] = Var[X?. If X! and X?
are independent, then Var[X] = Var[X!]/2. But if
Cov[X!, X?] < 0, then X has a smaller variance. A
standard way (but not the only way) of inducing the
negative correlation is to use a sequence of under-
lying iid uniforms wy = {Ux, k > 1} to drive the
simulation for computing X!, and use the antithetic
sequence 1 —w; = {1 — Uk, k > 1} to drive the simu-
lation when computing X2. The two estimators can
then be written as X; = h(w;) and X2 = hA(l —w)).
The rationale is that disastrous events in the first sim-
ulation should be compensated by “antithetic” lucky
events in the second one, thus reducing the variance
of the average.

As with CRNs, that does not guarantee a negative
covariance neither a variance reduction in general. A
sufficient condition for a negative covariance is that h
be monotone with respect to each underlying uniform
(Bratley, Fox, and Schrage 1987; Avramidis and Wil-
son 1994). In fact, if A is monotone only with respect
to a subset ¥ of its (uniform) arguments, then vari-
ance reduction is still guaranteed if we take AVs only
for uniforms that are in ¥ and independent random
numbers for the others. Proper synchronization is
again important. The best possible situation occurs
when the response is a linear function of all under-
lying uniforms: the variance is then reduced to zero.
The worst case is when X! and X? are perfectly cor-
related: the AV method then doubles the variance.

More general versions of the AV method are
anaylzed in Cheng (1982), Cheng (1984), Fishman
and Wang (1983), Wilson (1983) and Wilson (1984).

4. LATIN HYPERCUBE SAMPLING

Avramidis and Wilson (1994) describe a negative
correlation-induction framework that generalizes the
AV method. In their framework, n dependent repli-
cations are performed, the ith replication using a
sequence of iid uniforms denoted, say, by w; =
{Ui k, k > 1}. Negative correlation is induced across
the components of the different w;’s as follows: for
each index k in some finite subset ¥, the vector of
random numbers U*) = (U} x, ..., Uy, &), which con-
tains the kth random number of each replication, fol-
lows a multivariate distribution with the following
properties: (a) each univariate marginal is U(0, 1)
and (b) each bivariate marginal is negatively quad-
rant dependent (nqd). (A bivariate random vector
(Y1,Y3) is called nqd lfP[Y1 <y, Yo < yg] < P[Yl <
Y1) - P[Y2 < yo] for all y; and y5.) Variance reduction
is again guaranteed if h is monotone with respect to
each of the arguments that have been included in V.
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Special cases of that correlation-induction frame-
work include AV and the latin hypercube sampling
(LHS) method (Avramidis and Wilson 1994), which
we now describe. Select a finite subset ¥ as above
and for each k € ¥, generate a random permutation
of the integers {1,...,n} (independently for the dif-
ferent indices k), and let m; x denote the ith element
of that permutation. Then, for each (¢, k), generate
U; x uniformly over the interval ((mix—1)/k, mix/k).
The other U;k’s, for k ¢ ¥, are generated indepen-
dently from the U (0, 1) distribution. It is easily seen
that each w; = {U;x, k > 1} is then a sequence of
iid uniforms. On the other hand, for each k € ¥, the
interval (0, 1) is partitioned into n equal pieces and
across the n replications, the U; ’s form a stratified
sample over (0,1).

5. CONTROL VARIABLES

The control variates (CV) method exploits auxiliary
information to figure out whether the random events
have been more favorable or less favorable than usual
in influencing the sample performance, and makes
appropriate corrections. Let X be the default per-
formance estimator and Y = (Y(!) ... [ V(@) (the
prime means “transpose”) be a vector of ¢ other ran-
dom variables, presumably correlated with X, with
known expectation E[Y] = v = (v),...,v@)) and
called the CVs. Define the controlled estimator

q
Xe=X=f(Y-v)=X=Y B(Y® —vk),
k=1

where 8 = (f1,...,0,) is a vector of con-
stants. Let ¥y = Cov[Y], a matrix whose element
(3,7) is the value of Cov[Y®),YU)], and oxy =
(Cov(X, Y1), ..., Cov(X,Y(@)). Then, E[X.] =
E[X]) = p and

Var[X.] = Var[X] + f'Zy B — 28 oxy.
That variance is minimized with
B=pB =%yloxy,
in which case
Var[X.] = (1 - R%y)Var[X],
where .
R2. = TxyZy oxy
Xy Var[X]

1s the coefficient of determination (the square of the
multiple correlation coefficient) between X and Y.
So, the variance could be reduced by either positive or
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negative correlation, and Ry indicates the fraction
of the variance that is reduced. In the best possible
case, if the multiple correlation is +1, the variance
is reduced to zero. In the worst case, there is no
correlation and the variance is unchanged.

A major difficulty with the CV method is that 3
is typically unknown (sometimes ¥y may be known,
but practically never Exy). Suppose that n inde-
pendent replications of the simulation are performed.
Then, Ly and Exy may be estimated by their sam-
ple counterparts Yy and Txy, and B replaced by
8 = i;l&xy. Let Xcei, @ = 1,...,n denote the
n replicates of the controlled estimator: Xce; =
X; — B(Y,- — v), where (X;,Yi) is the ith replicate
of (X,Y). Let X.e and s, be the sample average
and sample variance of those X¢. ;. The CV estima-
tor of u is then X.e. Estimating g and 3* that way
turns out to be equivalent to fitting a least-squares
regression model of the form X = p+ #'(Y —v) + ¢
to the simulation data.

If we assume that (X,Y) is multinormal, then
V(Xee — 1)/sce follows the Student ¢ distribution
with n —q — 1 degrees of freedom (which implies that

Xece 1s unbiased), and

Var[Xce]  n—2

Var[X]  n-— q—2(1 ~ Rxv)-

The latter ratio indicates that the number ¢ of control
variables must remain small relative to n.

Unfortunately, the multinormality assumption is
not always realistic in practice. Without that as-
sumption, the CV estimator is generally biased and
may have a larger variance than the standard one for
small n. However, it is generally true that \/H(Xw —
p)/sce = N(0,1) and s2, 23 (1 — R%y )Var[X] as
n — oo (Nelson 1990). Therefore, asymptotically,
X, always has a smaller MSE than X and there is
no loss in having to estimate $*. Techniques for re-
ducing the bias for small n include jackknifing and
splitting; see Avramidis and Wilson (1993), Bratley,
Fox, and Schrage (1987) and Nelson (1990).

For more details and further developments on
CVs, recommendations, and applications, see also
Avramidis, Bauer Jr., and Wilson (1991), Bauer Jr.
and Wilson (1992), Fishman (1989), Lavenberg and
Welch (1981), Lavenberg, Moeller, and Welch (1982),
Porta Nova and Wilson (1993) and Tan and Gleser
(1993). The above setup is easy to generalize to the
case where g and the response X are vectors; the vari-
ance is then replaced by the generalized variance, i.e.,
the determinant of the covariance matrix (Rubinstein
and Marcus 1985). Nonlinear control variate mod-
els could 'also be considered; however, Glynn (1994a)
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shows that from the standpoint of asymptotic effi-
clency (as n — 00), there is no loss in restricting
ourselves to linear schemes as above.

6. IMPORTANCE SAMPLING

Importance sampling (IS) amounts to changing the
probability law(s) in order to concentrate the sam-
pling effort in the most important parts of the sam-
ple space. It is particularly effective for dealing with
rare events, by concentrating the sampling in the ar-
eas where the rare events are most likely to occur.
IS received much renewed attention recently for esti-
mating the probability of certain rare (but expensive)
events in two classes of applications: (a) failures in
highly dependable systems and (b) buffer overflows
and long waiting times in queueing systems. In these
application settings, standard estimators are highly
inefficient because of the huge amount of simulation
time that is typically required to observe a sufficient
number of those events.

The idea of IS is to replace the probability measure
P by another law @ such that @ dominates P over
the region where h(w) # 0; that is, for all B € B,
[ Mw)dP(w) > 0 implies Q(B) > 0. Then, the like-
lthood ratio L(P,Q,w) = (dP/dQ)(w) exists and one

can write:
E[h(w)] = /nh(w)dP(w)

- /n (h(w)(dP/dQ) (w)] dQ(w)
= Eg[h(w)L(P,Q,w)].

where Eg is the expectation corresponding to Q.
This means that an alternative unbiased estimator
for p = E[X] is Xis = h(w)L(P,Q,w), where w is
generated from Q.

The optimal @ is given by Q*(dw) = |h(w)|
P(dw)/p*, where p* = [, |h(w)|dP(w) is a normal-
ization constant. This Q* yields the estimator X
= (I[h{(w) > 0] = I[h(w) < 0])u*, where [ is the in-
dicator function. Note that if P[X > 0] = 1 or if
P[X < 0] = 1, then X}, is equal to yu with probabil-
ity one, so the variance is reduced to zero! Unfortu-
nately, finding Q* is typically much too complicated
in practice; it is generally as hard as computing g it-
self. This result nevertheless indicates that we should
try to construct a @ which is roughly proportional
to |h|P, and that can often be exploited in practical
applications. Is the variance always reduced 7 No.
Perhaps the worst thing about IS is that the method
is often extremely sensitive to the choice of Q. A bad
choice may easily increase the variance to infinity!

Example 2 Suppose that we want to estimate p =
P[A] where A € B is a rare event. The stan-
dard estimator is X = I[A], whose variance (and
MSE) is u(1 — p), and whose absolute error (the
square root of the variance) is \/p(l — p). Since
p is very small, both of these quantities are small.
However, obtaining a small MSE is trivial here; for
example, one might as well just take 0 as an esti-
mator and the MSE would be u2. So, it appears
more meaningful in this case to consider the relative
MSE, defined as MSE[X]/u?, or the relative error,
RE[X] = /MSE[X]/u. For this example, one has
RE[X] = /(1 — p)/u, which goes to infinity as u ap-
proaches zero. Of course, the relative error would be
divided by y/n by making n independent replications
of the simulation, but keeping it under control when
i is very small is often much too costly. For instance,
if £ ~ 1071% then we would need n = 10'2 for a 10%
relative error.

Here, the optimal @ (which gives zero variance) is
Q*() = I[A]P[]/P[A] = P[- | A], the conditional
distribution given that A has occured. This Q* re-
allocates all of the sampling effort to the area where
the rare event A occurs. In practice, one would seek
a @ that resembles @* and which is easy to sample
from. For a general Q, one has Var[X;,] = Eg[(I[A]-
L(P, va))z] - “2 = EP[(I[A] ’ L(Panw))] - /"2’ SO
the variance will be reduced if the likelihood ratio
tends to be small when A occurs.

Let us parameterize our model by a rarity param-
eter ¢, so that h, P, u, X, and X;; now depend on
€. Suppose that the events or interest get rarer and
that RE[X(¢)] = oo as ¢ — 0. The IS estimator
Xis (or another alternative estimator) is said to have
bounded relative error if RE[X;;(¢)] remains bounded
as € = 0. If a probability measure @(¢) can be found
such that Varge)[Xis(€)] < Kp?(¢) for some constant
K, then RE[X;,] < VK as ¢ = 0. In the previ-
ous example, that will happen if L(P(e), Q(¢),w) <
Kp(e) whenever A occurs.  The latter implies
Eq(e)[I[A]] = Ep[I[A]/L(P(¢), Q(¢),w)] > 1/K; that
is, A is no longer a rare event under @Q(¢). Observe
that since the variance is non-negative, Eq¢)[.YZ ()]
cannot approach zero faster than p?(¢). When
log Eq(e)[ X2 (€)] ~ log p?(¢), the IS scheme is some-
times called asymptotically optimal or asymptotically
efficient. This means that the relative error grows
slower than exponentially fast as ¢ — 0; it is weaker
than having a bounded relative error. Knowing that
a given IS estimator has bounded relative error does
not mean that it minimizes the variance for any given
value of ¢ (and even asymptotically as € — 0), but it
is certainly a large step in the right direction.
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Often, h depends on w only through a sequence of
independent random variables (g, (1, ...,{r that are
generated during the simllation, where 7' = T'(w) is
a stopping time for {¢;, j > 0}, with P[T < o0] = 1,
and (; has density f;. (To be more general, one can
also replace f;(¢;) by fj(¢; | Co,-..,¢j=1).) One can
then replace each f; by another density g; with the
same support, and the likelihood ratio becomes

_ fo(Co) - - - fr(Cr)
90(Co) - - - 97 (¢T)

The formula is similar if the (;’s are discrete, with
the densities replaced by probability mass functions.

In several rare event contexts, it turns out that
the (sometimes only) asymptotically optimal change
of measure is the so-called exponential twisting: take
gj(z) = K(0) exp(fz)f;(x) for some constant  and
with the normalization factor K (6) = Elexp(6¢;)].
Finding the right value of # and proving asymptotic
optimality can often be done using large deviations
theory (Bucklew 1990; Glynn 1994a; Heidelberger
1993).

L(P,Q,w)

Example 3 Consider a GI/GI/1 queue where A; is
the interarrival time between customers 7 and 7 4 1,
while B; and W; are the service time and waiting time
of .customer i, respectively. Suppose that we are in-
terested in estimating u = P[W > {], where W is the
steady-state waiting time and ¢ is a fixed constant.
Here, the rarity parameter could be taken as e = 1/¢.
Let S, = Zle(Bi — Ai). It is well known that W
has the same distribution as M = max{Sk, k > 0},
the maximum of a random walk with negative drift
(assuming that the queue is stable). Let T be the
smallest k£ for which S¢ > £. Finding out whether
or not M > { by simulation normally requires sim-
ulating the first 7" customers, and T' = oo whenever
the event {M > ¢} does not occur. We would like
to change the probability laws to make that event
occur with probability one and, ideally, have the
system evolve according to the original distribution
conditioned on the event {M > (}. Large devia-
tions theory tells us how to approximately achieve
that. Let M(0) = Elexp(f(Bi — A;))] and choose
6* > 0 such that M(6*) = 1 (such a 6* exists if
M (0) is finite in a neighborhood of 0). Let A; and B;
have densities f4 and fg, respectively, and replace
those densities by the exponentially twisted densi-
ties ga(z) = exp(—0~z)fa(z)/E[exp(—6*A;)] and
gB(z) = exp(8*z) fg(z)/E[exp(6* B;)]. Observe that
Elexp(—6* A;)]Elexp(6* B;)] = M (6*) = 1, so after T
customers, the likelihood ratio becomes:

L(P,Q,w) = exp(—0*S7).
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That likelihood ratio is the estimator of P[M > {]
under the probability measure @ which corresponds
to the twisted densities. It can be proved not only
that this IS scheme is asymptotically optimal, but
also that it is the only asymptotically optimal one
within a large class of alternative distributions Q.

For more details on the previous example, and for
other related examples, see Glynn (1994a), Heidel-
berger (1993), and the references therein. These
references discuss in particular other types of rare
events in single server queues, multiple server queues,
queues with correlated arrival processes (such as
Markov modulated queues), and reliability models.
Additional recent references on queueing applications
(and analysis) include Anantharam (1992), Chang
et al. (1993), Chang, Heidelberger, and Shahabuddin
(1993), Devetsikiotis and Townsend (1993), Frater,
Lenon, and Anderson (1991), Frater and Anderson
(1994), Glasserman and Kou (1994), Kesidis and
Walrand (1993), Parekh and Walrand (1989), Sad-
owsky (1991), and Sadowsky (1993). Ross and Wang
(1993) and Ross, Tsang, and Wang (1994) have de-
signed a variant of IS for estimating the normal-
ization constants involved in the solutions of (mul-
ticlass) product-form closed queueing networks. IS
for reliability models is studied more extensively
in Goyal et al. (1992), Heidelberger, Shahabuddin,
and Nicola (1994), Nakayama (1994a), Nakayama
(1994b), Shahabuddin (1994) and the references
therein. Andradéttir, Heyman, and Ott (1993a),
Glynn and Iglehart (1989) and Glynn (1994b) ana-
lyze IS for Markov chains in general.

7. CONDITIONAL MONTE CARLO

The general idea of CMC (also called the method
of conditional erpectation) is to replace the estima-
tor .X' = h(w) by its conditional expectation given
another random variable Z. Roughly, if Z contains

much less information than X, then the CMC esti-

mator
def

Xem = E[X | 2]
should have much less variability than X. More
specifically, one has (Bratley, Fox, and Schrage 1987)
E[Xcm] = E[X] and Var[X.,] = Var[X] — E[Var[X |
Z]], so the variance can only decrease. The variance
will be reduced to zero if Z tells us no information
about X and will remain the same if X can be ex-
pressed as a function of Z alone. More generally, Z
can be a vector or even a stochastic process. From
a variance point of view, it is best to select a Z that
contains as little information as possible, but from a
computational point of view, X., may become too
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expensive or impossible to compute if Z contains too
little information. Therefore, in terms of efficiency,
there is a tradeoff to be made.

As an interesting special case, if the system of in-
terest is a continuous-time Markov chain and if the
response .Y can be expressed as the integral over time
of a stochastic process whose value at any time de-
pends only on the state of the chain at that time, then
one can condition on the sequence of states visited by
the chain, i.e., replace the holding times (which are
exponential in this case) by their conditional expec-
tations. This can also be generalized to semi-Markov
processes and is called discrete-time conversion (Fox
and Glynn 1986; Fox and Glynn 1990).

In several practical situations, h(w) can be written
as a sum of the form h(w) = Z,t':x hi(w;) where ¢ is
fixed (say), w; represents a “part” of w that is ob-
servable at step 7, and h;(w;) is a “cost” incurred
at step ¢. Instead of conditioning on the same Z
for all 7, it is often much more convenient to re-
place each h,’(w,') by .Xecm’,' = E[h,-(wi) | Z,-(w,-)];
that 1s, to use a different filter Z; at each step,
based only on the information available at that time.
This is called extended CMC'. 1t is always true that
Var[Xecm, i) < Var[h;(w;)] for each 7, but not necessar-
ily true that Xeem = Z:=1 Xeem,i has lower variance
than X = h(w), because of the possible correlation
between the different terms of the sum. Fortunately,
in most situations of practical interest, it turns out
that Var[X..m] < Var[X]. Sufficient conditions for
that to happen are given in Glasserman (1993b) and
Glasserman (1993a).

8. INDIRECT ESTIMATION

Suppose that the mean p of interest can be expressed
as a (known) function of some other quantity 7, say
p = f(n). Then, it may be more efficient to estimate
n instead of p, then apply f to the estimator of 7.
This is called indirect estimation. For example, to
estimate the average sojourn time per customer in a
single queue (including service), one can estimate the
average waiting time in the queue, say wg, (exclud-
ing service) and then add the expected service time,
assuming that the latter is known. (This example
is also a case of extended CMC.) Suppose now that
we want to estimate the (steady-state) average queue
size Lq. For the standard estimator, we simulate the
system for a long time horizon and take the sam-
ple time-average. An alternative indirect estimator 1s
based on Little’s law Lq = Awg, where A is the arrival
rate: if A is known, take the standard estimator of wq
and multiply it by A. The same can be done with
L = Aw. where L is the average number of customers

in the system and w the average sojourn time. Under
mild conditions, this reduces the variance asymptoti-
cally (Glynn and Whitt 1989). On the other hand, if
) is unknown and must be estimated from the data,
then both the indirect and direct estimators (based
on Little’s law) are equally efficient asymptotically.

9. STRATIFICATION

The general idea of stratification is to partition the
sample space into disjoint strata, in such a way that
the variance within the individual strata tends to be
smaller than the general variance. A nice and con-
vincing illustration of the method is the “bank ex-
ample” of Bratley, Fox, and Schrage (1987). Suppose
that we perform N simulation runs, that there are
S strata, and that N, runs fall into strata s, where
N = Zf=1 N;. Let X ; denote the ith observa-
tion from stata s. If p, is the probability of falling
into strata s under the original distribution, then the
stratified estimator is

S 1 N,
-Xs = Z;Ps (E;Xs,i> .

If the simulations are performed as usual, then each
N, is a random variable with expectation E[N,] =
ps N. This is called poststratification.

In some contexts, it 1s easy to fix the N,’s a pri-
ori; that is, to decide in advance to which stratum
each run will belong (for example, if the stratum
can be determined easily from a few random vari-
ables generated at the beginning of the simulation).
Then, one may want to choose the N,’s that minimize
the variance of X;. It turns out that the variance
i1s minimized when N, = Npsa,/z]szlpjaj, where
02 = Var[X, ;] is the variance within stratum s. (This
solution neglects the fact that N, must be an integer;
but an approximately optimal integer solution can
easily be built from it in general). One problem here
is that the o,’s are typically unknown; however they
can be estimated from pilot runs. See Bratley, Fox,
and Schrage (1987) and Nelson (1985).

10. COMBINED METHODS

To obtain more variance reduction, one may want to
use several VRTs simultaneously in the same simula-
tion experiment. For example, to compare two sys-
tems, one may perform n pairs of simulation runs for
each system, with CRNs across the systems and AVs
within each pair for each system. However, even if
both CRNs and AVs are individually effective, their
combination could conceivably be worse than using
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only one of them, due to the cross-correlations be-
tween the response for the first system and the cor-

responding antithetic response for the second system
(see Kleijnen 1975; Law and Kelton 1991).

Schruben and Margolin (1978) proposed a strategy
for combining the CRN and AV methods in an ex-
perimental design scheme based on the idea of block-
ing, for estimating a linear (regression) metamodel
of a response expressed as a function of several de-
sign variables for the system of interest. They gave
conditions under which variance reduction is guar-
anteed. Several extentions have then been made to
that scheme, including the incorporation of control
variables, consideration of second-order metamodels,
and so on (Donohue, Houck, and Myers 1993; Tew
and Wilson 1994).

Avramidis and Wilson (1994) study the pairwise
combinations of CV, AV, LHS, and conditional Monte
Carlo (CM) for estimating a single response in a
finite-horizon model, establish sufficient conditions
for the combinations to outbeat each of their con-
stituents alone, and provide asymptotic variance com-
parisons, which turn out in favor of the combination
of LHS with CM. They report large gains in a numer-
ical illustration with a stochastic activity network.
Andradéttir, Heyman, and Ott (1993b) and Kwon
and Tew (1994) also analyze combined methods.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada
grant # OGP0110050 and FCAR-Québec grant #
93-ER-1654.

REFERENCES

Anantharam, V. 1992. On fast simulation of the
time to saturation of slotted ALOHA. Journal of
Applied Probability, 29:682-690.

Andradéttir, S., D. P. Heyman., and T. J. Ott. 1993a.
Potentially unlimited variance reduction in impor-
tance sampling of Markov chains. Technical Re-
port 93-5, Department of Industrial Engineering,
University of Wisconsin—Madison.

Andradéttir, S., D. P. Heyman., and T. J. Ott.
1993b.  Variance reduction through smoothing
and control variates for Markov chain simulations.
ACM Transactions on Modeling and Computer
Simulation, 3(3):167-189.

Avramidis, A. N., K. W. Bauer Jr.., and J. R. Wil-
son. 1991. Simulation of stochastic activity net-
works using path control variates. Journal of Naval

Research, 38:183-201.

Avramidis, A. N., and J. R. Wilson. 1993. A splitting
scheme for control variates. Operations Research
Letters, 14:187-198.

Avramidis, A. N., and J. R. Wilson. 1994. Inte-
grated variance reduction strategies for simulation.
Operations Research. To appear.

Bauer Jr., K. W., and J. R. Wilson. 1992. Control-
variate selection criteria. Naval Research Logistics,
39:307-321.

Bratley, P., B. L. Fox., and L. E. Schrage. 1987.
A Guide to Simulation. second ed. New York:
Springer-Verlag.

Bucklew, J. 1990. Large Deviation Techniques in
Decision, Simulation and Estimation. New York:
John Wiley and Sons.

Chang, C.S., P. Heidelberger., S. Juneja., and P. Sha-
habuddin. 1993. Effective bandwidth and fast sim-
ulation of ATM intree networks. In Proceedings
of the Performance’93 Conference, ed. G. lazeolla
and S. S. Lavenberg, 41-58, Roma, Italy. Elsevier
Science.

Chang, C. S., P. Heidelberger., and P. Shahabuddin.
1993. Fast simulation of packet loss rates in a
shared buffer communication switch. Technical Re-
port No. 93-79, ICASE, NASA Langley Research
Center, Hampton, VA.

Cheng, R. C. H. 1982. The use of antithetic variates
in computer simulations. Journal of the Opera-
tional Research Society, 33:229-237.

Cheng, R. C. H. 1984. Antithetic variate methods
for simulation of processes with peaks and troughs.
European Journal of Operational Research, 15:227-
236.

Devetsikiotis, M., and K. R. Townsend. 1993. Statis-
tical optimization of dynamic importance sampling
parameters for efficient simulation of communica-
tion networks. IEEE/ACM Transactions on Net-
working. To appear.

Donohue, J. M., E. C. Houck., and R. H. Myers.
1993. A sequential experimental design procedure
for the estimation of first- and second-order simula-
tion metamodels. ACM Transactions on Modeling
and Computer Simulation, 3(3):190-224.

Fishman, G. S. 1989. Monte Carlo, control variates,
and stochastic ordering. SIAM Journal on Scien-
tific and Statistical Computing, 10:187-204.

Fishman, G. S., and V. G. Kulkarni. 1992. Improv-
ing Monte Carlo efficiency by increasing variance.
Management Science, 38:1432-1444.

Fishman, G. S., and B. D. Wang. 1983. Antithetic
variates revisited. Communications of the ACM,
26:964-971.



Efficiency Improvement and Variance Reduction 131

Fox, B. L., and P. W. Glynn. 1986. Discrete-time
conversion for simulating semi-Markov processes.
Operations Research Letters, 5:191-196.

Fox, B. L., and P. W. Glynn. 1989. Simulating dis-
counted costs. Management Science, 35(11):1297-
1315.

Fox, B. L., and P. W. Glynn. 1990. Discrete-time
conversion for simulating finite-horizon Markov
processes. SIAM Journal on Applied Mathemat-
tes, 50:1457-1473.

Frater, M. R., and B. D. O. Anderson. 1994. Fast
simulation of buffer overflows in tandem networks
of GI/GI/1 queues. Annals of Operations Re-
search, 49:207-220.

Frater, M. R., T. M. Lenon., and B. D. O. Ander-
son. 1991. Optimally efficient estimation of the
statistics of rare events in queuing networks. [EEE
Transactions on Automatic Control, AC-36:1395-
1405.

Glasserman, P. 1993a. Filtered monte carlo. Mathe-
matics of Operations Research, 18:610-634.

Glasserman, P. 1993b. Stochastic monotonicity and
conditional Monte Carlo for likelihood ratios. Ad-
vances in Applied Probability, 25:103-115.

Glasserman, P., and S.-G. Kou. 1994. Analysis of an
importance sampling estimator for tandem queues.
Submitted.

Glasserman, P., and D. D. Yao. 1992. Some guide-
lines and guarantees for common random numbers.
Management Science, 38(6):884-908.

Glynn, P. W. 1994a. Efficiency improvement tech-
niques. Annals of Operations Research. To ap-
pear.

Glynn, P. W. 1994b. Importance sampling for
Markov chains: Asymptotics for the variance.
Stochastic Models. To appear.

Glynn, P. W., and D. L. Iglehart. 1989. Importance
sampling for stochastic simulations. Management
Science, 35:1367-1392.

Glynn, P. W., and W. Whitt. 1989. Indirect estima-
tion via L = Aw. Operations Research, 37:82-103.

Glynn, P. W., and W. Whitt. 1992. The asymptotic
efficiency of simulation estimators. Operations Re-
search, 40:505-520.

Goyal, A., P. Shahabuddin., P. Heidelberger., V. F.
Nicola., and P. W. Glynn. 1992. A unified frame-
work for simulating markovian models of highly re-
liable systems. IEEE Transactions on Computers,
C-41:36-51.

Hammersley, J. M., and D. C. Handscomb. 1964.
Monte Carlo Methods. London: Methuen.

Heidelberger, P. 1993. Fast simulation of rare events
in queueing and reliability models. In Performance
Evaluation of Computer and Communication Sys-

tems, ed. L. Donatiello and R. Nelson, volume 729
of Lecture Notes in Computer Science, 165-202.
Springer Verlag.

Heidelberger, P., and D. L. Iglehart. 1979. Com-
paring stochastic systems using regenerative simu-
lations with common random numbers. Advances
in Applied Probabability, 11:804-819.

Heidelberger, P., P. Shahabuddin., and V. F. Nicola.
1994. Bounded relative error in estimating tran-
sient measures of highly dependable non-markovian
systems. ACM Transactions on Modeling and
Computer Simulation, 4(2):137-164.

Kesidis, G., and J. Walrand. 1993. Quick simula-
tion of ATM buffers with on-off multiclass Markov
fluid sources. ACM Transactions on Modeling and
Computer Simulation, 3(3):269-276.

Kleijnen, J. P. C. 1975. Antithetic variates, com-
mon random numbers and optimal computer time
allocation in simulations. Management Science,
21:1176-1185.

Kwon, C., and J. D. Tew. 1994. Combined corre-
lation induction strategies for designed simulation
experiments. Management Science. To appear.

Lavenberg, S. S., T. L. Moeller., and P. D. Welch.
1982. Statistical results on multiple control vari-
ables with application to queueing network simula-
tion. Operations Research, 30:182-202.

Lavenberg, S. S., and P. D. Welch. 1981. A per-
spective on the use of control variables to increase
the efficiency of Monte Carlo simulations. Man-
agement Science, 27:322-335.

Law, A. M., and W. D. Kelton. 1991. Simulation
Modeling and Analysis. second ed. New York:
McGraw-Hill.

L’Ecuyer, P. 1992. Convergence rates for steady-
state derivative estimators. Annals of Operations
Research, 39:121-136.

L’Ecuyer, P., and S. C6té. 1991. Implementing a ran-
dom number package with splitting facilities. ACM
Transactions on Mathematical Software, 17(1):98-
111.

L’Ecuyer, P., and G. Perron. 1994. On the conver-
gence rates of IPA and FDC derivative estimators.
Operations Research. To appear.

L’Ecuyer, P., and F. Vazquez-Abad. 1994. Func-
tional estimation with respect to a threshold pa-
rameter. Submitted.

L’Ecuyer, P., and G. Yin. 1994. Convergence rate
of stochastic optimization algorithms with budget-
dependent bias. Submitted.

Nakayama, M. K. 1994a. A characterization of the
simple failure biasing method for simulations of
highly reliable markovian systems. ACM Transac-
tions on Modeling and Computer Simulation. To



132 L’Ecuyer

appear.

Nakayama, M. K. 1994b. Fast simulation methods
for highly reliable systems. In Proceedings of the
1994 Winter Simulation Conference. IEEE Press.
(these proceedings).

Nelson, B. L. 1985. An illustration of the sample
space definition of simulation and variance reduc-
tion. Transactions of the Society for Computer
Simulation, 2:237-247.

Nelson, B. L. 1986. Decomposition of some well-
known variance reduction techniques. Journal of
Statistical and Computer Simulation, 23:183-209.

Nelson, B. L. 1987a. A perspective on variance re-
duction in dynamic simulation experiments. Com-
munications in Statistics—Simulation and Compu-
tation, B16:385—-426.

Nelson, B. L. 1987b. Variance reduction for simula-
tion practitioners. In Proceedings of the 1987 Win-
ter Simulation Conference, 43-51. IEEE Press.

Nelson, B. L. 1990. Control-variate remedies. Oper-
ations Research, 38:974-992.

Nelson, B. L. 1993. Robust multiple comparisons un-
der common random numbers. ACM Transactions
on Modeling and Computer Simulation, 3(3):225-
243.

Nelson, B. L., and J. C. Hsu. 1993. Control-variate
models of common random numbers for multiple
comparisons with the best. Management Science,
39(8):989-1001.

Parekh, S., and J. Walrand. 1989. A quick simula-
tion method for excessive backlogs in networks of
queues. IEEFE Transactions on Automatic Control,
AC-34:54-56.

Porta Nova, A., and J. R. Wilson. 1993. Selecting
control variates to estimate multiresponse simula-
tion metamodels. European Journal of Operational
Research, 71:80-94.

Ross, K. W., D. H. K. Tsang., and J. Wang. 1994.
Monte Carlo summation and integration applied to
multiclass queueing networks. Journal of the ACM.
To appear.

Ross, K. W., and J. Wang. 1993.  Asymptot-
ically optimal importance sampling for product-
form queueing networks. ACM Transactions on
Modeling and Computer Simulation, 3(3):244-268.

Rubinstein, R. Y., and R. Marcus. 1985. Efficiency
of multivariate control variates in Monte Carlo sim-
ulation. Operations Research, 33:661-667.

Sadowsky, J. S. 1991. Large deviations and effi-
cient simulation of excessive backlogs in a GI/G/m
queue. [EEE Transactions on Automatic Control,
AC-36:1383-1394.

Sadowsky, J. S. 1993. On the optimality and stabil-
ity of exponential twisting in Monte Carlo estima-

tion. [EFEE Transactions on Information Theory,
1T-39:119-128.

Schruben, L. W., and B. H. Margolin. 1978. Pseu-
dorandom number assignment in statistically de-
signed simulation and distribution sampling exper-
iments. Journal of the American Statistical Asso-
ciation, 73:504-525.

Shahabuddin, P. 1994. Importance sampling for the
simulation of highly reliable markovian systems.
Management Science, 40(3):333-352.

Tan, M., and L. J. Gleser. 1993. Improved
point and confidence interval estimators of mean
response in simulation when control variates are
used. Communications in Statistics—Simulation,
22:1211-1220.

Tew, J. D., and J. R. Wilson. 1994. Estimating sim-
ulation metamodels using combined correlation-
based variance reduction techniques. IEE Trans-
actions. To appear.

Wilson, J. R. 1983. Antithetic sampling with multi-
variate inputs. American Journal of Mathematical
and Management Sciences, 3:121-144.

Wilson, J. R. 1984. Variance reduction techniques
for digital simulation. American Journal of Math-
ematical and Management Sciences, 4:277-312.

Yang, W., and B. L. Nelson. 1991. Using com-
mon random numbers and control variates in mul-

tiple comparison procedures. Operations Research,
39(4):583-591.

AUTHOR BIOGRAPHY

PIERRE L’ECUYER is a professor in the depart-
ment of “Informatique et Recherche Opérationnelle”
(IRO), at the University of Montreal. He received a
Ph.D. in operations research in 1983, from the Uni-
versity of Montreal. From 1983 to 1990, he was with
the computer science department, at Laval Univer-
sity, Québec. His research interests are in Markov re-
newal decision processes, sensitivity analysis and op-
timization of discrete-event stochastic systems, ran-
dom number generation, and discrete-event simula-
tion in general. He is the Departmental Editor for
the Simulation Department of Management Science
and an Area Editor for the ACM Transactions on
Modeling and Computer Simulation.



