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ABSTRACT

We review techniques for optimizing stochastic
discrete-event systems via simulation, for both dis-
crete and continuous parameters. For discrete pa-
rameters, we focus on the techniques for optimiza-
tion from a finite set: multiple-comparison proce-
dures and ranking-and-selection procedures. For con-
tinuous parameters, we discuss sequential response
surface methodology procedures and stochastic ap-
proximation gradient-based procedures, and describe
gradient estimation based on perturbation analysis,
likelihood ratio and frequency domain experimenta-
tion. We then discuss two applications: an inventory
control problem with a“noisy” constraint and a call
option pricing problem in finance.

1 INTRODUCTION

The problem under consideration is the following
parametric optimization problem:

min J(9), (1)
where J(0) = E[L(f,w)] is the performance mea-
sure of interest, L(6,w) is the sample performance,
w represents the stochastic effects of the system, @
is a controllable vector of p parameters, and O is
the constraint set on 6. Define the optimum by
6, = arg mingee J(0). In the experimental design lit-
erature, the performance measure is usually referred
to as the response and the parameters as factors. In
this paper, we consider only the single response prob-
lem. For expository purposes, we will often discuss
application of the various techniques to the following
two discrete-event system simulation models (cf. Law

and Kelton 1991, Cassandras 1993).

Example 1. For a GI/G/1 queue, find the mean
service time of the server that minirnizes a cost func-
tion which trades off the expected mean time in sys-
tem and the server speed:
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where T; is the ith system time, N is the number
of customers served, c¢q and ¢; are given costs, 6
1s the mean service time, A is the arrival rate, and
© = [6,1/A — 8], for some § =~ 0. For the M/M/1
queue in steady state, the optimum can be deter-
mined analytically as . = (A + \/co/c1)7?.

Example 2. For an (s, S) inventory control system,
find the values of s and ¢ = S — s to minimize a cost
function on holding, ordering, and backlogging.

(3)

where X; is the inventory level (and inventory posi-
tion, as well, under zero lead time) at review epoch
i, N is the number of periods in the horizon, C(z) =
hz* +pz~+I{z < s}[K+¢(S—z)], h,p, K, and c are
the holding, backlogging, order set-up, and order per-
unit costs, respectively, § = (s,q), and ® = R x R*.

The best possible convergence rate with “pure”
stochastic optimization algorithms is generally
O(n=1/2), where n represents (roughly) the compu-
tational effort. However, we point out that this is an
asymptotic convergence rate, and that O(n~1/2) is
also the best convergence rate obtainable for simula-
tion estimation (vs. optimization) of any (non-trivial)
output random variable.

2 OPTIMIZATION OVER A FINITE SET

Oftentimes, the number of choices in the parame-
ter set is finite. This mmay be due to the nature of
the problem itself, or it may be due to a reduction
through other analyses, or it may be a simplifying
step due to practical considerations. If the number
of choices is not too large, then statistical procedures
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based on ranking and selection or multiple compar-
isons can be applied. Roughly speaking, ranking-and-
selection procedures specify some criterion, such as
choosing the best with some pre-specified confidence
level, and then derive a statistical procedure, usu-
ally sequential, that meets the criterion. Multiple-
comparisons procedures, on the other hand, specify
the use of certain pairwise comparisons to make infer-
ences in the form of confidence intervals; they are not
inherently sequential procedures. A simple example
comparing and contrasting different techniques can
be found in Goldsman et al. (1991).

Again, we wish to solve the parametric optimiza-
tion problem (1), where now the parameter set is fi-
nite: © = {1, s, ..., Ak}, l.e., we wish to find ),
st. A; = 0,. Let us denote the estimate of per-
formance from the jth sample path (replication) at
Ai by Lij. Thus, our estimate of J(A;) over n sam-
ple paths (replications) is simply the sample mean:

i=Li= 330 Lij.

Procedures based on multiple comparisons are of
very basic importance in statistical inference, since
applications inevitably require comparisons. Like
most statistical techniques, the two major assump-
tions underlying the procedures are independence and
normalily. The former directly conflicts with some of
the advantages of discrete-event simulation, e.g., the
implementation of powerful variance reduction tech-
niques such as common random numbers (CRN) and
control variates. We will sketch the main ideas of
three multiple-comparisons procedures: (1) a “brute
force” paired-t, Bonferroni, all-pairwise comparisons
approach that works particularly well when CRN ap-
ply; (2) an all-pairwise multiple comparisons (MCA)
approach; (3) a multiple comparisons with the best
(MCB) approach more tailored to optimization pur-
poses than the previous two approaches, and requir-
ing far fewer comparisons.

The idea of the “brute force” approach is simple:
1. Calculate a difference estimate for each possible
pair of replications.

2. Form the usual (1 — «)100% confidence intervals
for each difference.

3. Apply the Bonferroni inequality to arrive at a lower
bound on the overall confidence level.

After forming all K (K —1)/2 confidence intervals, one
would simply look to see if there is a “clear winner,”
1.e., a A; such that the confidence interval for the dif-
ference with all other pairs is strictly negative. If not,
one can crudely eliminate some candidates, estimate
the number of additional replications needed to make
conclusive inference, and repeat the process with the
smaller set.

MCA works in principle similar to the above, ex-
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cept that instead of constructing separate confidence
intervals and using Bonferroni to determine an over-
all confidence bound, a simultaneous set of confidence
intervals at an overall (1 — a)100% level is formed
by calculating a single confidence half-width via the
pooled sample variance. Although the original ver-
sion of MCA requires independence between the repli-
cations, a control-variate variation allowing the use of
CRN was derived in Yang and Nelson (1991).

The intent of multiple comparisons with the best
(MCB) procedures is to reduce the number of com-
parisons, since we are interested in the optimization
goal of picking only the best. The procedure is as
follows (Hsu and Nelson 1988):

1. Form K confidence intervals for each choice with
the best of the rest.

2. If only one of the confidence intervals falls on the
negative side of 0, then the A; corresponding to that
interval would be declared the optimum; otherwise,
all of the A; with intervals having some part on the
negative side of 0 could potentially be the optimum.
In practice, the pooled variance could be used to es-
timate the additional number of replications needed
to make a more conclusive determination. Hsu and
Nelson (1988) demonstrate the procedure for Exam-
ple 2, the (s,S) inventory system; see also Yang and
Nelson (1991).

In terms of ranking-and-selection procedures, two
approaches have been taken: indifference zone and
subset selection. The method of Dudewicz and Dalal
(cf., Law and Kelton 1991) falls into the indifference-
zone approach. It has two strong points that make
it particularly suitable for optimization of discrete-
event simulations: the variances do not have to be
equal and they do not have to be known. However,
independence must be maintained, thus precluding
the use of CRN. The procedure guarantees that with
user-specified probability at least P* the selected );
will guarantee that J();) is within é of the opti-
mal value J(0.), where é represents the “indifference
zone,” Le., P{J(A;) = J(0.) < 6} > P*, including the
possibility that \; = 4,.

The basic idea of the procedure is the following:
1) Take a first-stage set of replications for each of the
different parameter settings to calculate first-stage
sample means and sample variances. 2) Use the first-
stage sample variances to determine the number of
second-stage replications needed for each of the differ-
ent parameter settings. 3) Use the second-stage repli-
cations to get second-stage sample means. 4) Take a
weighted average of the first-stage and second-stage
sample means. 5) Choose the \; with the smallest
weighted average estimate of J();).

A subset-selection procedure would be algorithmi-
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cally similar, with the notable exception being the
last step, where instead of selecting a single \;, a sub-
set of all A; having the weighted average estimate of
J(A;) within some preselected distance is selected, up
to some maximum number. Although very powerful
tools, at present the major disadvantage of ranking-
and-selection procedures for simulation optimization
is the requirement of independence over competing
designs, which precludes the use of most variance re-
duction techniques such as CRN.

3 RESPONSE SURFACE METHODS

Broadly speaking, response surface methodology
(RSM) attempts to fit a polynomial (possibly after
some initial transformation on the variables) of ap-
propriate degree to the response of the system of in-
terest. The application of RSM to simulation opti-
mization falls into two main categories: metamod-
els and sequential procedures. In the context of op-
timization, it usually takes the form of the latter,
whereby through successive experimental stages, one
attempts to “home in” on the optimal region where a
“final” (usually quadratic) polynomial is fitted and
the optimum determined through the usual deter-
ministic means. We will briefly outline the general
approach in the context of discrete-event simulation.
Instead of exploring the entire feasible region,
which may be impractical or computationally pro-
hibitive, small subregions are explored in succession,
where successive subregions are selected for their po-
tential improvement. A point, e.g., the center of the
subregion currently being explored, “represents” the
current “best” @ value. The basic algorithm consists
of two phases:
e Phase I
In this phase, first-order experimental designs are
used to get a least-squares fit. Then, a steepest de-
scent direction is estimated from the model, and a
new subregion chosen to explore via

0n+l =0n_anv=lnv (4)

where 6, is the representative point of the nth ex-
plored subregion, VJ, is the estimated (from the fit-
ted linear response) gradient direction, and a, is a
step size deterrnined by a line search or sorne other
means. This is repeated until the linear response sur-
face becomes inadequate, which is indicated when the
slope is “approximately” zero, when the interaction
eflects become larger than the main effects.

e Phase II

A quadratic response surface is fitted using more de-
tailed second-order experimental designs; the opti-
mum is then determined analytically from this fit.

From the algorithm, one can see that Phase II is done
just once, whereas Phase I is iterated a number of
times. Thus, for each iteration of Phase I, one should
strive to expend fewer replications, whereas in Phase
11, the region should be explored quite thoroughly by
using a large number of replications.

RSM sequential procedures provide a very general
methodology for optimization via simulation. RSM'’s
biggest advantage is its generality, but its biggest
drawback if applied blindly is its computational re-
quirements. Other techniques or analyses based on
the nature of the system of interest which can be
used to improve the efficiency of RSM are crucial.
For example, efficient gradient estimation techniques
may be used to complement the sequential aspects of
RSM by reducing the number of simulation points.

4 STOCHASTIC APPROXIMATION

In this section, we consider gradient-based stochastic
optimization algorithms, where the “best guess” of
the optimal parameter is updated iteratively based on
an estimate of the gradient of the performance mea-
sure with respect to the parameter. Actually, the se-
quential RSM procedure also implements a gradient-
based algorithm in Phase I, where the gradient is
found from the regression model.

The basic underlying assumption of stochastic ap-
proximation is that the original problem given by (1)
can be solved by finding the zero of the gradient, i.e.,
by solving VJ(6) = 0. Of course, in practice, this
may lead only to local optimality. The general form
of the stochastic algorithm takes the following formn:

01 = Mo (60 — 4y ), Vo = [T - T,007,
(5)
where 6, is the parameter value at the beginning of
iteration n, VJ, is an estimate of VJ(4,) from it-
eration n, a, is a (positive) sequence of step sizes,
and Ilg is a projection onto ©. When finite differ-
ences are used to estimate VJ(6,), (5) is called a
Kiefer-Wolfowitz algorithm; when a direct (possi-
bly unbiased) estimator is used for VJ(8,), (5) is
called a Robbins-Monro-like algorithm (cf. Kush-
ner and Clark 1978). The usual requirements needed
for the convergence of (5) to the optimum are that
(i) the step size go to zero at a rate not too fast
to lead to convergence to the wrong value and not
too slow to avoid convergence to a value at all, and
(11) that the bias of the gradient estimate go to zero.
One set of common assumptions on the step sizes is
S on@n =00, a2 < oo, which for example the har-
monic series a, = a/n (for some constant a) satisfies.
In terms of practical implementation for discrete-
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event simulation, one must select various parameters
in the algorithm such as the initial step size a and the
observation horizon, as well as a projection rule and
a stopping rule for the algorithm.

We discuss four gradient estimation techniques:
finite differences (FD), perturbation analysis (PA),
the likelihood ratio (LR) method, and frequency do-
main experimentation (FDE). FD and FDE tech-
niques alter the input and analyze the resulting out-
put, whereas PA and LR involve an “add-on” to the
simulator itself, which involves additional accumu-
lations and calculations. However, the underlying
simulator (by which we mean the event-generation
scheme) is not altered, and as a result both LR and
PA can also be implemented for on-line gradient es-
timation and optimization.

The most obvious way to estimate the gradient is
to run multiple simulations to estimate some secant
as an approximation to the tangent. We call this
the finite difference (FD) estimate. The symmetric
difference version is given by

J(0 + cne;) —
2¢,

V g = J(0n — cne;)

o (6)

where e; denotes the ith unit vector. Note that this
estimate requires 2p sirnulations. The forward differ-
ence would simply replace J(0 — cpe;) with J(Gn)
and hence would require only p+ 1 simulations; how-
ever, the convergence rate when used in a stochastic
approximation algorithm is worse.

A potentially more efficient version of finite dif-
ferences is the simultaneous perturbation (SP) finite
difference estimate proposed by Spall (1992). Let
{A1,...,A,} be a set of i.i.d. perturbations satisfy-
ing the conditions given in Spall (1992), and define

the vector A = [A,...A,]. Then, the SP estimator is
given by

< J 011 nl) — J on YA

Gidp= Wt end) = Il —cnd) g

2611 Ai

Note that whereas in the finite-difference estimators,
there is a pair of numnerators for each parameter, thus
requiring 2p simulations, here the same pair is used in
the numerator for all parameters, and the denomina-
tor changes; thus, only two simulations are required.
This method was applied to a variation of Example 1,
an M/U/1 queue, with a two-dimensional vector pa-
rameter in the service time distribution, in Hill and
Fu (1994).

Kiefer-Wolfowitz algorithms require ¢, — 0 (at
an appropriate rate) for convergence, and generally
the best asymptotic convergence rate achievable is
O(n~1/3), versus O(n~/?) when an unbiased es-
timate 1s used. Although this procedure has the
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dual disadvantages of being computationally more in-
tensive and having a slower convergence rate, it is
straightforward to implement and the most generally
applicable.

Perturbation analysis is one technique for obtain-
ing unbiased gradient estimates efficiently. The books
by Ho and Cao (1991) and Glasserman (1991) con-
centrate on the two most developed forms: infinites-
imal perturbation analysis (IPA), which is simply
the derivative of the sample performance dL/df,
and smoothed perturbation analysis (SPA), which is
based on the “smoothing” property of conditional ex-
pectation and covers cases where IPA does not apply.

In terms of our two examples, for the GI/G/1
queue, an unbiased gradient estimator for mean
steady-state system time T is given by the IPA es-
timator

ar
d0 ) 1pa

where n,, is the number of customers served in the
mth busy period, M is the number of busy peri-
ods, N = Z"Mwl N, 1s the total number of custorners
served, and X(; ) is the service time of the jth cus-
torner in the mth busy period. An unbiased estima-
tor for the second derivative can be easily derived via
SPA. For the (s,S) inventory system example, SPA
can be used to derive consistent estimators (Fu 1994).
In Fu and Healy (1992), the estimators were applied
to the optimization problem of Example 2.

Another technique for obtaining unbiased gradient
estimates is the likelihood ratio (LR) method, also
known as the score function (SF) method (cf. Rubin-
stein and Shapiro 1993). The basic idea of the method
is to differentiate the underlying probability measure
of the system, but it can more generally be viewed
as a special case of importance sampling. Because
the LR method requires the differentiation of a prob-
ability measure, the technique is not usually applica-
ble to structural parameters such as s and S in the
(s,S) inventory system. We present a brief informal
overview of the LR technique, and derive estimators
for Example 1. We assume that the dependence on
¢ enters only through a random vector X with Joint
cumulative distribution function F(6,-) and density
f(8,-) depending on a parameter (or vector of param-

eters) 0: E[L(X)] = [ L(z)dF(0,z). Differentiating,
we have

OE(L 0 x
OL] ao/L(;L‘)f((),.L')d;L’:/L( )%h

= [ @202 4 2y

dx(: m)

NZZZ ,

m=1i=1j=1

(8)

aln £(0, X)
a6
(9)

E [L(X)
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Thus, in a single simulation, one can estimate the
derivative of the performance measure along with the
performance measure itself. Higher derivatives can be
handled in a similar manner. However, the “naive”
estimator for (9) leads to unbounded variance for
steady-state performance measures. For the GI/G/1
queue, where the interarrival times and the service
times comprise the random vector, the natural esti-
mator would be given by

dT 1 N, dlnf
((Te)w‘ﬁgn 39 (10)

where X; is the ith service time. For example, for ex-
ponential service times, ﬂ Z, 1 (,)2 — %). The
problem with these estlmators is that if they are used
to estimate sieady stale quantities by increasing the
horizon length N, then it is obvious that the variance
of the estimator will increase linearly. On the other
hand, a regenerative estimator does not suffer from
this problem, although in practice regenerative cycles
could be very long.

The intuitive idea in frequency domain experimen-
tation (FDE) is to oscillate the value of the parameter
according to a sinusoidal function during the simu-
lation. The magnitude of the performance measure
variation gives an indication of the relative sensitivity
of the performance measure to the parameter. The
vectors of input parameters are modulated as follows:

6(t) = 6 + asin(&t), (11)

where 6 is the (vector) parameter of interest, a is the
vector of oscillation amplitudes, and @ is the vector of
oscillation frequencies called the driving frequencies,
which are assumed to be distinct in order to be able
to discriminate between the contributions of each pa-
rameter. Note that the “time” variable t is usually
not the simulation time. The application of FDE re-
quires the solution of the following problems:
e indexing problem — determination of “t”,
e frequency selection problem — determination of @,
e amplitude selection problem — determination of a.
For FDE, the gradient estimation problem is to es-
timate the gradient at 0(0) = o, i.e., V.J(f). By
approximating J around g using a second-order Tay-
lor series expansion, a quadratic dynamic polynomial
response surface metamodel (Jacobson and Schruben
1992), call it Y'(0(1)), leads to

ViY(6o) = lm;owl,lT o T ZY )sin(w;t), (12)

t=1

where V; denotes the partial derivative with respect
to6;,i=1,...,p. FDE estimators are usually referred

to as harmonic gradient estimators in the literature.
Thus, one simulation run can be used to estimate
the gradient. However, since true unbiasedness is
achieved only in the limits ® — 0,7 — oo, — 0,
there are implementation trade-offs in the selection
of these parameters, analogous to the choice of the
difference in the FD estimate.

For the GI/G/1 example, we can use the customer
index as the “time” variable and take w = 27/N,
where N is the number of customers served, to obtain

N
T 2 . )
(%)FDE == ,~§=1 T; sin(27i/N),

where the system is being simulated with the mean
service time of the ith customer given by (11). In this
example, the only decision that need be made is the
choice of a. Sensitivity to this choice is evident in
the experiments reported in Jacobson (1993) for an
M/M/1 queue (which included the arrival rate as a
parameter, as well); three values o = 0.001,0.01,0.1
led to very disparate mean-squared errors of 2.8,
0.028, 0.018, respectively. For the (s,S) inventory
system, FDE gradient estimators can also be derived.
The choice of oscillation index this time is quite nat-
urally simulation time as given by the discrete period
number. Choices for & and « still must be made.

In comparison with LR and PA, FDE gradient es-
timates require the additional selections of an oscil-
lation index, oscillation frequencies, and oscillation
amplitudes. The performance of the estimate will de-
pend heavily on these selections. Moreover, like FD
estimates, FDE estimates can never give an unbiased
estimate of the gradient in finite time, because the
limit @ — 0 can never be achieved. On the other
hand, FDE seems in principle to be more general than
IPA or LR, being more akin to the FD estimates. For
instance, FDE applies to both the GI/G/1 queue and
(s,S) inventory system examples, whereas IPA and
LR apply only to the former, although SPA can be
used for the latter. Overall, when it applies, IPA is
usually the most efficient estimator.

We now briefly describe the application of SA to
simulation optimization. One of the earliest applica-
tions was the work by Azadivar and Talmage (1980),
who implemented a version utilizing FD estimates
with a number of “practical” heuristics to improve
its performance. They empirically compared the per-
formance of their algorithm with an RSM sequential
procedure for a number of simple polynomial func-
tions with additive noise and a single discrete-event
system. According to their simulation results, for a
given computational budget, their algorithm domi-
nated the RSM procedure for every example.
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The first application of PA to optimization was con-
tained in the paper by Ilo and Cao (1983). An IPA
gradient estimate for throughput of a queueing net-
work was incorporated into a simple stochastic ap-
proximation algorithm on an objective function with
Lagrangian multipliers. The approach was to use long
simulation runs to get a good estimate of the gradient;
thus, the number of iterations was relatively small.
In contrast, the work of Suri and Zazanis (1988) in-
troduced the idea of “single-run” optimization using
IPA. Instead of completing a long simulation run be-
fore updating the parameter, and repeating the pro-
cedure for just a few iterations, the parameter was up-
dated after a very short observation horizon, and the
simulation continued; between iterations the simula-
tion mechanism was not reinitialized and restarted.
The single simulation run was terminated when it was
determined that the gradient was “close enough” to
zero according to a given stopping criterion. Thus, a
single run of approximately the same length it would
take to estimate the performance itself also yielded
an estimate of the optimal value of the parameter,
providing significant computational savings over the
previous implementation. The procedure was applied
to the steady-state version of Example 1 for various
interarrival time and service time distributions, and
empirically, the algorithm worked quite well. The
first theoretical convergence proof was provided in Fu
(1990) for the case where updates are done at the be-
ginning of regenerative periods.

Examples incorporating LR estimators in SA al-
gorithms are presented in Rubinstein and Shapiro
(1993). In L’Ecuyer et al. (1994), a very compre-
hensive set of numerical experiments on the M/M/1
queue example are reported. Various algorithms uti-
lizing IPA, LR, and FD estimates with CRN are con-
sidered and compared, with the IPA-based algorithms
clearly superior. The nurnerous simulation results
also show the obvious eflect of step size selection.

5 CONSTRAINED OPTIMIZATION

Although a rich body of techniques are available
for the problem (1) when the constraint set © is
known, the literature on constrained optimization
with “noisy” constraints is limited. For instance, in
practice, managers are often uncomfortable with es-
timating backlogging costs in situations such as Ex-
ample 1, instead preferring to work with a cost func-
tion involving only ordering and holding costs com-
bined with an additional constraint of sorne type of
service level such as fraction of demand filled from
on-hand stock. This constraint then would itself re-
quire estimation by simulation. The only reported
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algorithm we know of that handles noisy constraints
is the Lagrangian approach in Kushner and Clark
(1978). One potential problem with this technique is
that it guarantees a feasible solution only in the limit.
In Bashyam and Fu (1994), an algorithm based on
the feasible directions approach from nonlinear pro-
gramming is proposed. The algorithm generates the
sequence {0,} as

bns1 = 0n + AnD(6r), (13)

with the normalized direction vector D(6,) given by

—Dc(9) if J(9) < By,
-Djy(8) if J(0) > Bu,
Dy(0) otherwise,

D(®) = (14)

with 8; < 8 < B, and the normalized feasible direc-
tions vector D; to be specified. The basic motiva-
tion of this algorithm is to generate a subsequence
{0n.} of feasible and improving solutions. To achieve
this, we force the {J(f,)} process to visit a suitably
constructed interval I = [§;, (] infinitely often.
The construction of I ensures that every § such that
J(8) € I is a feasible solution. Within this interval,
the direction of movement given by Dy(.) is such that
it points strictly towards the interior of the feasible
region, and represents a reduction in cost. Whenever
J(8) > By, the direction —D;(8) forces the process
back into the feasible region, whereas J(6) < f; in-
dicates that the process is well within the feasible
region, and the algorithm in this case, proceeds in an
unconstrained fashion. Given the observed values of
VC(8,) and VJ(6,) associated with ,,, a number of
options are available to determine a Dy (6,) with the
desired properties. One standard approach is to use
a linear program.

The proposed algorithm consists of three stages:
e Stage 1: analytical approximation;
e Stage 2: line search on s, with Q kept constant;
e Stage 3: update via (13).
Stages 1 and 2 are carried out once each, and are
considered preprocessing steps to Stage 3, which
is iterative. Computational experience reported in
Bashyam and Fu (1994) for the (s, S) inventory prob-
lem described at the beginning of this section was
very promising, showing substantial improvements
for cases where analytical approximations fare poorly.

6 FINANCIAL DERIVATIVES

In finance parlance, “derivatives” are financial instru-
ments (or contracts) that derive their value from some
underlying commodity, e.g., a call option on a stock
gives the right to buy the stock at a specified price
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(the strike price) within a specified period of time (the
ezpiration date). A European option can only be ex-
ercised at the end of the contract, whereas an Amer-
ican option can be exercised at any time up to and
including the end of the contract. Determining the
appropriate monetary values for these instruments —
derivative pricing — is a matter of very practical
concern, as well as a very active area of research in the
finance community. The focus in the research litera-
ture has been on numerical methods. However, due to
the complexity of the underlying commodities which
violate many of the assumptions of analytical mod-
els, simulation is often a practical alternative. Here,
we illustrate how simulation optimization techniques
can be used in derivative pricing by considering an
American call option, refuting the claim that “Monte
Carlo simulation can only be used for European-style
options” (Hull 1993, p.363). Basically, if the pricing
problem is viewed as an optimization problem, there
are American-style options which can also be priced
by using Monte Carlo simulation in conjunction with
gradient-based optimization techniques.

We begin by defining the following variables:

S, is the stock price at time ¢, Sy is the initial stock
price, r is the annualized riskless interest rate (com-
pounded continuously), s, 0 are parameters of the
distribution of the underlying stock, A is the striking
price of the option contract, T is the lifetime (ex-
piration date) of the option contract, Jr is the net
present value return of the option on its expiration.
Aside from S; and Jr, the rest of the variables are
assumed to be constants.

We consider a stock which distributes dividend
D; at time t;,j = 1,...,n(T), where n(T) is the
number of ex-dividends distributed during the life-
time of the call contract. Following standard mod-
els, we assume that after each ex-dividend, the stock
price drops by the amount of the ex-dividend, i.e.,
S;+ =S,- = D;. For notational convenience, we also

dejnote t(: =0,tyry41 =T We will assume that the
ex-dividend arnounts {D; } are known (deterministic).
Although an American call option can be exercised
at any time before the expiration date T, under the
assumption of a frictionless market, it is well-known
that the option should only be exercised, if at all,
right before an ex-dividend date or at the expiration
date, i.e., only at one of the ¢;’s. Thus, we can assume
that a threshold exercise policy is adopted: there is
a stock price s;(> K) associated with ¢; such that
the option is exercised if (and only if) St]- > s;. The
European call option can be thought of the special
case of s; = oo for all j < #(T).

The sample performance can be written as

n(T) |i-1
Jr=e"T Zl 1-111{5‘1‘_ <55} S~ > si)
1= ]:
2(T)
. (St_ - K) er(T-1) 4 H 1{S,- <s;}Sr— K)*

i=1

The option pricing problem can then be viewed as
an optimization problem, whereby the option value
is the point at which the expected return E[Jr(8)] is
maximized with respect to the vector of threshold pa-
rameters 6§ = si,...,5,(7). To determine the optimal
setting of the threshold parameters, we incorporate
a gradient estimate 0 E[J7]/06 into a stochastic ap-
proximation algorithm, where the “best guess” of the
optimal setting is updated iteratively via (5), where
g(8) = V4E[Jr(0)]. The basic underlying assump-
tion of the stochastic approximation algorithm is that
the original problem can be solved by finding the zero
of the gradient, i.e., by finding 6., the optimal exer-
cise threshold level, such that g(8.) = 0. Of course, in
practice, this may lead only to local optimality. Since
the problem is a maxirnization problem, the stochas-
tic approximation iteration (5) is the positive version
of the recursion. The necessary unbiased gradient es-
timator is derived by using SPA in Fu and Hu (1994),
and then incorporated into the SA algorithm. Sim-
ulation results reported there indicate that the algo-
rithm converges quite quickly, using much less effort
than is needed to simply estimate an option payoff to
within a penny. In other words, the additional effort
needed to estimate an American option using Monte
Carlo simulation over what was needed to estimate a
European option was negligible.

7 OTHER RECENT WORK

Other approaches, some proposed recently, include:
o Utilizing non-gradient-based algorithms such as
pattern search methods and random search methods,
e.g., Jacobson and Schruben (1989);

o Using each sample to derive an entire performance
curve and optimize the resulting curve using deter-
ministic methods, e.g., Healy and Schruben (1991);
e Combining techniques, e.g., the proposed Gradient
Surface Method (GSM) by Ho et al. (1992a) com-
bines RSM and SA;

e Replacing cardinal optimization with ordinal opti-
mization (Ho et al. 1992b), i.e., instead of trying to
find the best in a possibly uncountable infinite state
space, just try to find better “satisficing” solutions;
e Employing massively parallel simulation for explor-
ing a response surface in parallel.
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For more in-depth reviews, the interested reader is
referred to Fu (1994) — which expands upon most of
the topics touched on here — Jacobson and Schruben
(1989), and Safizadeh (1990). Together these contain
a comprehensive literature review, the first concen-
trating on gradient-based methods, and the latter two
emphasizing response surface methods.
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