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ABSTRACT

We review fast simulation techniques for estimating
various performance measures and their derivatives
of highly dependable systemis. We consider methods
for steadv-state and transient perforimance measures
of Markovian and non-Markovian systeins.

1 INTRODUCTION

Many systems arising in techuological fields need to
be highly dependable. For example, consider com-
munications systems and transaction processing sys-
tems. Before actually constructing such a system, a
designer usually will build a mathematical model to
determine if the system will have acceptable perfor-
mance. Performance measures of interest for these
types of svatems include the steady-state availabil-
ity (which is the long-run fraction of time that the
system is available), the mean time to failure, or the
system reliability (which is the probability that the
system does 1ot fail before sore fixed time).

Because of the size and complexity of most real-
world systeims, analytic methods typically are not ap-
plicable for analyzing the models. Thus, the designer
must resort Lo simulation. Ilowever, standard simula-
tion (i.e., without the usc of variance reduction tech-
niques) is not efficient for these problems because of
the rarencss of system failures, and so some variance
reduction techuique must he employed.

One sucli method which has proven useful is im-
portance sampling; c.g., see Hanmersley and Hand-
scomb (1964) or Glynn and lIglehart (1989). The ba-
sic idea of the technique is to change the underlying
dynamics (i.c., the probability distributions) of the
system so as (o cause the “important” events (in our
case, system failures) to occur more frequently. This
is called a “change of measure.” ‘To recover unbiased
estimates, we nultiply the estimates by a correction
factor known as the likelihood ratio.
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The main focus of the research in importance sam-
pling is in determining an appropriate change of mea-
sure. This is somewhat problem-specific, and if done
properly, then variance reductions of orders of mag-
nitude can result. On the other hand, the variance
may increase (or even become infinite) if one is not
careful. In the context of sunulating highly depend-
able systems, the approach for importance sampling
is known as “failure biasing,” which we review in this
paper. Importance sampling has also been applied to
the simulation of other types of systems, most notably
in the estimation of probabilities of rare events aris-
ing in queueing models. These importance sampling
methods typically are based on the theory of large
deviations; see Heidelberger (1993) for a review.

The rest of the paper is organized as follows. In
Section 2 we present our model of a highly dependable
systemn. Section 3 reviews the basic ideas of impor-
tance sampling and why it is needed in our setting.
We review the work on fast simulation methods for
Markovian dependability models in Section 4 and do
the same for non-Markovian systems in Section 5. We
present importance sampling schernes for estimating
steady-state and transient performance measures. Fi-
nally, it should be mentioned that in this paper we do
not attempt to list all of the references for each tech-
nique presented; for a more complete list, see Nicola,
Shahabuddin, and Heidelberger (1993).

2 MODEL OF HIGHLY DEPENDABLE
SYSTEMS

The types of systern we consider are a class of gen-
eralized machine repairman models which can be de-
scribed by the System Availability Estimator (SAVE)
package developed at IBM Research (see Goyal and
Lavenberg 1987). We assume the system consists of
a finite number of components (e.g., processors or
disks) and some number of repairmen divided into
classes. As time evolves, the components randomly
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fail, where the time to failure of the different com-
ponents may follow different distributions. After a
component [ails, it may be replaced by a spare, if
available. Bach repairman class fixes certain failed
components according to some repair strategy. We
assume that a repairman is always busy if there are
any components [ailed.

A component can fail in several different failure
modes, where cach mode has associated with it a re-
pairman class, a repair time distribution, and a (pos-
sibly empty) set ol affected components. For exam-
ple, a processor may have two failure modes, corre-
sponding to hardware and software failures. When a
component [ails, all of the components in its list of
affected components also fail with some probability.
This is known as “failure propagation.” For example,
if a processor [lails, it may then contaminate some
data, thereby causing a disk to fail.

We allow for operational and repair dependencies
between the components. Operational dependencies
specify how one component’s operating behavior de-
pends on the states of other components in the sys-
tem. For cxmmnple, if there is a processor which has
a power supply that is currently failed, then the pro-
cessor cannol operate. lowever, the processor itself
is not considered to be failed but is rather in the
“dormant” state, which correspondly has a (possi-
bly) different failure time distribution than the op-
erational stale. Similarly, a repairman may not be
able to repair a component unless some other compo-
nents are in certain states. In our previous example,
if the power supply and processor are both currently
failed, then the repairman iay not be able to fix the
processor until its power supply is operational.

A component may be in any one of a number of
states (operational, failed, spare, or dormant), which
defines itx current operating and repair characteris-
tics (e.g., failure rate or repair rate). The states of
the individual coniponents, along with any relevent
information on the queueing of failed components,
define the state of the system. We decompose the
state space S of the stochastic process into two sets:
U, the set of system configurations (i.e., states) in
which the systen is considered available, and F, the
set of states in which the systenn is considered to be
failed. For examnple, in a computer systen consisting
of a number of processors and disks, the systemn must
have at least one processor and disk operational to be
available. Also, we let 0 denote the state in which all
components are operational, and we assume that the
systemn always starts in this state,

We consider systems which achieve high depend-
abililty throngh (simall) redundancies of highly reli-
able cotponents. By a “highly reliable component,”

we mean one with an expected lifetime which is orders
of magnitude smaller than its expected repair time.
In the Markovian case (in which all failure and re-
pair times are exponentially distributed), this means
that the failure rate ); of each component i is much
smaller than its repair rate p;. Shahabuddin (1994)
modeled this mathematically by introducing a “rarity
parameter” ¢ and letting

M o= age”, (1)

where a; > 0 and b; > 1 are independent of ¢ and
¢ is small. We assume that the repair rate p; of
each component 7 is independent of ¢. By letting
the b; be different for different i, we can model sys-
tems in which certain components are much more re-
liable than others. For non-Markovian systems (i.e.,
systems with some failure or repair times which are
non-exponential), Heidelberger, Shahabuddin, and
Nicola (1994) proposed the natural generalization of
(1) by assuming that for each component i, the haz-
ard rate h;(s) of its failure time distribution is small
(i.e., a function of ¢) and that of its repair distribu-
tion is independent of the rarity parameter. More
precisely, recall that h;(s) = fi(s)/(1 — Fi(s)), where
fi is the density function of the failure time distribu-
tion F; of component i. Then we assume that

hi(s) < a;e™ (2)

for some constants a; > 0 and b; > 1. Many dis-
tributions satisfy (2); e.g., hyperexponential, Erlang,
Weibull with increasing failure rate over a finite in-
terval, and more general Markovian phase-type dis-
tributions.

3 IMPORTANCE SAMPLING

In this section we review the basic ideas of impor-
tance sampling and why we need to use it in our set-
ting. For the moment, consider a real-valued random
variable X which has probability density function f.
Suppose our goal is to estimate y = E;[1{X € A}] =
fA f(z)dx, where 1{ - } is the indicator function, A
is some set of real nuinmbers, and the subscript f on
the expectation operator denotes that the expecta-
tion is computed using the density f. Note that 7
is the probability that X lies in the set A. To es-
timate v using standard sirmulation, we collect i.i.d.
samples X', Xo, ..., X,, where each X} is generated
using the density f. Then, letting I = 1{X, € A},
our estimator of v is ¥(n) = L 3°0_ | Iy.

Let us now see why the above method of standard
simulation is not efficient in our context of highly
dependable systems (or, more generally, rare event
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simulation). Suppose the event {X € A} is rare un-
der the densily f; ie., v is close to zero. For ex-
ample, i the random variable X denotes the time
the system fails and the set A4 is the interval (0,t),
then v is the unreliability for time ¢, the probabil-
ity that the systemn fails before time t, which should
be small. Our estimator y(n) is unbiased and has
variance Var,[I{.\' € A}]/n = v(1 — v)/n, where the
subscript f denotes the variance is computed using
density f. Thus, an approximate 100(1 — )% confi-
dence interval for y is y(n)x 2, /(1 — v)/n, where z,
is the 1 — 1/2 quantile point of the st,andaxc] normal
distribution. In many instances, we want a sample
size n which will result in our estimator having a pre-
specified relative precision 8, for example, 10%. To
achieve this. we need n & 27 Varf[I{X € A}])/(67)* =
z,",’(l — )/ (#%5), which grows as v decreases. In par-
ticular, il we define the “relative error” of our estima-
tor to be the standard deviation of 1{.\" € A} over
its mean (i.c., \/7(1 = v)/7), then for a fixed relative
precision and confidence level, the sample size grows
as the squarc of the relative error, which diverges to
infinity as 7 — 0. In this case, we say that our es-
timator has “unbounded relative error.” Practically
speaking, as the event of interest becornes rarer (i.e.,
as 7 — 0), it gets more difficult to estimate its prob-
ability using standard simulation.

Now consider another density function g for which
g(z) > 0 whenever f() > 0. Then

/ Jr)de = / j.('u)g(.l:)(lw

J A A g(r)

/ Lx)g(x)de /55,[1{,\' € A}L], (3)
J A

where L(r) = [(z)/g(z) is known as the likeli-
hood ratio (or Radon-Nykodym derivative). Note
that the expectation on the right side of (3) is com-
puted using the density g.  This is known as a
“change of mecasure.”  We form a new estimator of
v based on (i3) by collecting n ii.d. pairs of sam-
ples (X1, i) (NuLu)ooo o (Nn, Ly), where each X
is generated nsing density g and Ly = f(Ne)/g(Nk).
Letting, I = H{.\p € A}, we obtain the new estima-
tor ¥(n) = ' Z,_, I Ly which is unbiased. This is
how import: m( e sampling is hnplemented.

Now we observe llml Var, [I{X € A}L] =
E[(0{X € ML) —* = EfI{Y € A)L] - 7%
Hence, to obtain a variance reduction over standard
simulation, we need E [I{N € A}L] < Ef[I{X €
A}]. A sufficient. condition to ensure this is that for
allz € Awith f(u ) > 0, the likelihood ratio L{x) < 1,
or equivalently. y(r) > [(r). Thus, we want to choose
the new density g so that it increases the probability
of the important events (i.c., r € A).

¥

Now suppose that we can choose g such that
E;[1{X € A}L] ~ v, where we use the notation that
a~bifa/b— casb— 0, where ¢ < oo is some con-
stant. Then, Var,[1{X € A}L] ~ ¥? and the relative
error of our new estimator is \/Varg[1{X € A}L]/y ~
v/v ~ 1, which remains bounded as ¥ — 0. We then
say that the estimator has “bounded relative error.”
.From a practical standpoint, this means that we only
need a fixed number of samples to obtain an estima-
tor with a fixed relative precision and confidence level,
independent of the how small 7 is.

Although we have thus far only considered apply-
ing importance sampling to a single random vari-
able which has a density, the technique can be ap-
plied much more generally to stochastic processes. In
particular, many importance sampling schemes have
been developed to simulate highly dependable sys-
tems. These typically fall into the class of “failure
biasing” schemes. The basic idea behind these meth-
ods is to first fix p, > 0, which is known as the “bi-
asing parameter.” (Experimental results of Goyal et
al. 1992 suggest that we should select 0.25 < p, <
0.9.) Then from any state in which both component
failures and repairs are possible, we increase the total
probability that some component fails to p. (and cor-
respondingly decrease the total probability that some
component completes its repair to 1 —p.). This makes
the system fail more frequently. The various failure
biasing schiemes differ in the way they increase the
probabilities of the individual comnponent failures.

4 MARKOVIAN SYSTEMS

If we assume all component lifetimes and repair times
are exponentially distributed, the resulting stochastic
process X = {X; : t > 0} representing the evolu-
tion of the system is a continous-time Markov chain
(CTMC) on some state space S. We denote its gen-
erator matrix by @ = {q(z,y) : 2,y € S}, and define

z) = Z:;”q(;n,:). Let ¥ = {¥,, : n > 0} be the
embedded discrete-time Markov chain (DTMC) of X,
and let P = {P(z,y):z,y € S} be its transition ma-
trix. Recall that P(z,y) = ¢(2,y)/q(z) if y # =, and
P(x,z) = 0. We simulate the CTMC by first gener-
ating a transition of the embedded DTMC, and then
given that the system is currently in some state Y,
we generate the holding time in that state as an ex-
ponential random variable with (conditional) mean
1/q(Yn)

We assume that each transition (z,y) with
P(z,y) > 0 corresponds to either a failure transition
(i.c., some components failing) or a repair transition
(i.e., some components completing repair). For each
state z € 9, let Ap(z) denote the set of states y
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for which (,y) is a failure transition, and let Ag(z)
denote the sct of stales y for which (z,y) is a re-
pair transition. Now consider any state z for which
Ap(z) # 0 and Ag(z) #£ 0. If (z,y) € Ap(z), then
by (1), q(+.y) ~ b"y’ for some b(z,y) > 1. Also,
if (z,y) € Ap(x), then g(z,y) is mdepenclent of .
Thus, since both failure and repair transitions are
possible from state «, q(z) ~ ¢° (i.e., its order of
magnitude is independent of ¢). This implies that if
(z,y) € Ap(x), Pla,y) ~ &9 Also, P(z,y) ~ ¢°
if (z,y) € Ag(x). Hence, from state z, the DTMC
1s very unlikely to take a failure transition when ¢ is
small. Furthermore, we assuime that for any failure
transition (0,y) with y € I, P(0,y) ~ €*(°¥) where
b(0,y) > 1. Therefore, the system fails infrequently.

4.1 Stcady-State Performance Measures

We first study the estimation of steady-state perfor-
mance mcasures by considering the mean time to
failure (M'I'T'F). (Although the MTTF is typically
thought of as o transient measure since it depends
on the initial state of the system, for our purposes,
we will consider it as a steady-state measure since
we only necd to simulate the embedded DTMC to
estimate it.) Let 74 = inf{n > 0 : Y, € A} for
some set. of states A, which is the hitting time of the
DTMC to the set A, and let ayq = "—l 1/q(Ye).
Then the MTTF s Eplap], where Ep (Ienoles the
expectation operator under . [t can be shown
(e.g., see Goyal et al. 1992} that the MTTF satis-
fies Ep[(r/,-] = /’.’/)[(Y“ N (r/:-]//':p[l{(l‘p < (Yo}], where
a Ab = min(a,b). It turns out that we can efli-
ciently estimate the numerator Eplag A ap] using
standard simulation. lence, we now focus our atten-
tion on estimating the denominator v = Ep[l{ap <
ag}]. If we use standard sinlation to estimate this
quantity, then generate nii.d. samples of the sam-
ple path (Yi..... Y7) using the transition matrix P,
where Yy = 0 and 7 = 1o A 7. Il 7p < 19 On the
k-th sample. then we generate a statistic [ = 1; oth-
erwise, /; = 0. Our standard simulation estimator
of v is ; ey leo o study the efficicency of this ap-
proach, we need an asymptotic expression for v in
terms of the rarity parameter ¢ Shahabuddin (1994)
showed that under certain conditions,

7~ (1)

for some constant # > 1, which depends on the sys-
tem. Also, Varp[l{np < ag}] = y—v =y~ ¢, and
so the relative error of our standard simulation esti-
mator of 7 is /Varp[l{apr < ay}]/y ~ ¢/ — o0
as ¢ — 0. Thus, the standard simulation estimator of
v has unhounded relative error.

Now we examine how to use importance sampling
to estimate y. First, define a new transition ma-
trix P for our DTMC for which P(z, y) > 0 when-
ever P(z,y) > 0. Then, using P, we generate n i.i.d.
samples of the sample path w = (Yo, ...,Y:), which
we use to evaluate the likelihood ratio

T PG Y
L(w) = AP LS LAY (5)
=1 55,50

This yields (11, L1),...,(In, Ls), and our estimator
is 1 5°7_ | ItLi. (Note that we are using standard
simulation to estimate the numerator of our ratio ex-
pression for the MTTF, and importance sampling to
estimate the denominator. This is known as “measure
specific importance sampling”; see Goyal et al. 1992.)

We now describe some different approaches for con-
structing the new transition matrix P. The first
method is known as sinple failure biasing, which was
developed by Lewis and Béhm (1984). Since this is
a failure biasing method, from any operational state
from which there are both failure and repair transi-
tions possible, we increase the total probability of a
failure transition to p. (and correspondingly decrease
the total probability of a repair transition to 1 — p.).
We allocate the p, to the individual failure transitions
in proportion to their original transition probabilities
and do similarly for the repair transitions. More pre-
cisely, for any state z, let pr(z) = 3°,crp(z) P(2,9)
be the total probability of taking a fallure transition
from x, and let pr(r) = ZyeAR(x) z,y) be the to-
tal plol)alnhty of taking a repair transition from z. If
z €U and pp(z) > 0 and pr(z) > 0, then we let

4 p. P(z,y)/pr(z) if (z,y) € Ar(z),
P(z,y)= ¢ (1 =p)P(z,y)/pr(x) if (z,y) € Ag(z),
0 otherwise.

For any other state z € S, let P(z,y) = P(z,y) for all
y € 5. In particular, P(0,y) = P(0,y) forally € S
since there are no repairs taking place in state 0.

Now we examine the efficacy of simple failure bias-
ing on the following exaniple.

Example 1.  Consider a system which consists of
two different types of components. The first type of
component has a redundancy of two and failure rate
A1 = ¢, The second type has a redundancy of one
and failure rate Ay = ¢3. There is a single repairman
who fixes all failed components at rate 1 using a pro-
cessor sharing discipline. The system is available if
and only if at least one component of each type is op-
erational. Consider the sample path wq of the DTMC
which starts out in state 0 and has a single failure
transition in which the component of type 2 fails.
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This samiple path satisfies 70 < 7y and has probabil-
ity €3/(2¢34+3) ~ ¢ under the original measure P. All
other paths lur which 70 < 79 have probability o(¢)
under P. We can show that the order of magnitude of
v is determined by the most likely path to failure (wq),
soy ~ € and r = 1. The probability of the path wq
does not change under simple failure biasing, which
implies that L(wg) = 1. Consequently, Es{(1{ar <
ao}L)?] = Ep[l{ar < ap}L] > L(wo)P(wo) ~ ¢,
so the variance of our estimator is at least of order e.
The relative error of the simple failure biasing estima-
tor is then at least of order ¢='/2 which diverges as
e — 0. Thus, ax noted by Shahabuddin (1994), sim-
ple failure biasing may not always result in bounded
relative error. ]

We now describe another importance sampling
scheme knowu as balanced lailure biasing, which was
developed by Goyal et al. (1992) and Shahabud-
din (1994). e construct the transition rmatrix P
for this method as follows. As in simple failure bi-
asing, we increase the total probability of a failure
transition to p. and decrease the total probability of
a repair transition to | — p.. However, we now allo-
cate the p. cqually to cach of the individual failure
transitions. More precisely, for any transition (xr,y),
define [(a.y) = L il P(r.y) > 0, and [(z,y) = 0 if
P(z,y) = 0. For any state r, define np(z) to be the
number of [ailure transitions possible (under P) from
z. Ifz € U/ and pr(x) > 0, then we let

pd(e,y /nF if (z,y) € Ap(z),
(1= zu) (2,y) /PR(T)
) otherwise .

P(z,y) =

Itz el and pyla) =0 et Proy) = 1 y)/np(r)il
(z,y) € Ap(r). and P(e,y) = 0 otherwise. IfrekF,
let ]:)(;L',‘l/) = (. y) forall y€5.

Shahabuddin (1994) proved that the estimator of
v obtaincd using halanced failure biasing will have
variance Varp[l{ap < ag}l] ~ &7, where Varp
is the variance operator under P and r is as de-
fined in (1). Thus, the estimator will have relative
error \/Varp[H{op < a0} L]/y ~ €°, which remains
bounded as ¢ — 0. Shahabuddin dlso showed that
we can cstitate the steady-state unavailability with
bounded relative error using halanced failure bias-

ing. (When estimating this performance measure, we
should use halanced failure biasing until a failed state
is hit; from this point, we revert back to using the
original transition matrix > until the system returns
back to state 0, and then we repeat the process. This
is known as “dynamic importance sampling.”)  Ex-
perimental results of Goyal et al. (1992) show that

if (z,y) € Ag(z),

balanced failure biasing works well in practice, re-
ducing the variance by orders of magnitude.

We now want to gain more insight into why bal-
anced failure biasing always leads to bounded rela-
tive error. First, let A be the set of sample paths
of the embedded DTMC for which 77 < 79, and let
A, be the set of paths in A which have probability
of the order ¢™ under P, where m > r and r is de-
fined in (4). Now consider any path w € An. For
any transition (z,y) on the path w, P(:c y) ~ €, so
the probability of the entire path w is of order 60 un-
der balanced failure biasing. Thus, L(w) ~ €™ by
(5). It then can be shown that Ep[l{ar < ag}L] =
Zm rZwEA L(w P(w Z m=r ZwEA €me™ ~
€¥ . so Valp[l{ap < ag}L] ~ €2". Hence, the key to
why balanced failure biasing works is the following.
First, note that any path in A must have probabil-
ity of order no greater than €. Also, recall that for
importance sampling to work well, the new probabil-
ity measure should increase the probability of each
of the important events, which, in our case, are the
sample paths in A. Balanced failure biasing does this
by making all sample paths (regardless if they are in
A or not) have probability of order ¢°.

As we previously saw in Example 1, the most likely
paths to failure plays a key role in the study of
highly dependable systems and importance sampling
schemnes for them. By “most likely paths to failure”
we mean the set of paths in A,. Nakayama (1991)
formalized the notion of most likely paths to failure
by establishing a conditional limnit theorem for the
sample paths of the DTMC, given that 7p < 79.

However, the most likely paths to failure do not
tell the whole story, as we cannot ignore the other
paths in A. Specifically, consider any valid change
of measure P; e, P(w) > 0 whenever P(w) > 0.
Nakayaina (1993) established that a necessary condi-
tion for P to have the bounded relative error property
is that for each w € A, and m > r, P(w) ~ €d®),
where d(w) < 2m — 2r. This basically ensures that
all sample paths in A are sampled enough under P.
Moreover, if we assume more structure on P (viz., it
is a failure biasing scheme), then the condition is only
needed for sample pathsw € A, withr < m < 2r—1.
Also, this condition is then both necessary and suf-
ficient. For example, if r = 2 (and so v ~ ¢2), a
necessary and sufficient. condition for P correspond-
ing to some failure biasing method to give rise to an
estimator of 7 having bounded relative error is that
P(w) ~ ¢**) with d(w) = 0 for each w € A, and
d(w) < 2 for each w € Agz. Although these results
may be difficult to apply in practice, they demon-
strate that secondary paths to failure (i.e., paths in
A, with m > 7) also play a role in determining the
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effectivencss of an importance sampling methodology.

Nakayama (1991) showed that balanced failure bi-
asing also is clfective in reducing the variance of esti-
mates of derivatives of ¥ with respect to lailure rates
of componeuts when using the likelihood ratio deriva-
tive method (see Glynn 1990). In particular, if bal-
anced failure hiasing is employed, the derivative esti-
mates will have bounded relative error. For empirical
results, see Nakayama, Goyal, and Glynn (1994).

There are other importance sampling methods
available for simulating the embedded DTMC of
Markovian dependability systerns.  These include
bias2 failure biasing (Goyal et al. 1992) and failure
distance biasing (Carrasco 1991). Nakayama (1993)
showed that neither of these is guaranteed to yield
estimators ol 5 having bounded relative error. How-
ever, for a given system, one ol these methods (or
simple failure biasing) may yicld estimators having
(slightly) simaller variance than balanced failure bi-
asing; sce Nakayama (1994). Also, see Juneja and
Shahabuddin (1992) and Strickland (1993) for other
importance sampling schemes.

4.2 Transient Performance Measures

Now we consider estimating transient performance
measures such as the unreliability or the interval un-
availability, which is the expected [raction of time
that the system s not available during the inter-
val (0,(). For estimating these quantities, we no
longer can consider only the embedded DTMC and
must take into account the random holding times in
each of the states.

Recall that the system starts out in state 0, the
state with no flailed components.  Given that the
system is in state 0, the holding time in that state
is exponcutially distributed with rate ¢(0). How-
ever, since no components are failed in state 0, there
are no repair transitions possible from this state, so
q(0) ~ " where b(0) > 1. Thus, the probability
that the systen makes at least one transition belore
the time horizon £ expires is | = e7 10 =~ (0} — 0
as € — 0. llence, even il we use failure biasing to
move the cinbedded DTMC towards a failed state, the
probability that the C'TMC fails before tirne ¢ is still
small. This leads us to use anotlier change of measure
known as “forcing™ for generating the holding times
in certain states: see Lewis and Bohm (1984). In this
method, we sample the mitial holding time from the
density fo(s) = ¢(0)c =9 /(1 =9 " which is the
(conditional) exponential distribution with rate ¢(0),
given that 1t s less than 0 (The distribution of the
holding tinnes ol subsequent visits to state 0 similarly
can be changed.)

Shahabuddin (1993) proved that combining forc-
ing and balanced failure biasing leads to estimates of
the interval unavailability which have bounded rel-
ative error. Shahabuddin and Nakayama (1993) es-
tablished similar results for the unreliability and its
derivatives with respect to component failure rates.
Empirical work in Goyal et al. (1992) also shows that
this way of importance sampling leads to large re-
ductions in variance over standard simulation and
balanced failure biasing alone when the time hori-
zon t is fairly small; i.e., when t < 1/¢(0). How-
ever, when t is large, then the method does not
work well. Thus, Shahabuddin (1993) and Shahabud-
din and Nakayaina (1993) establish upper and lower
bounds, U(t) and L(t), for the interval unavailability
and unreliability and its derivatives which apply for
all time horizons. Also, they model the large time
horizon scenario by letting ¢ = ¢=%, where by > 0,
and show that in this case, the upper and lower
bounds are tight (i.e., L(¢)/U(t) — 1) as € — 0.

5 NON-MARKOVIAN SYSTEMS

In this section, we no longer assume that all of the
component lifetimes and repair times are exponen-
tially distributed. Thus, the resulting stochastic pro-
cess is not a C'TMC. It turns out that we can apply
a generalization of balanced failure biasing to simu-
late these systems efficiently. The basic idea is to use
“thinning” (Lewis and Shedler 1979).

First, we consider the estimation of the system un-
reliability for time horizon t. To simplify the nota-
tion, we will assume that each component only can
be in one of two states, operational or failed, and that
there is no failure propagation. (These assumptions
can be eliminated.) We assume that the system con-
sists of N components, where component i has failure
time distribution F; and repair time distribution Gj.
Let h;(-) and +;(-) be the hazard rates of distribu-
tions Fi(-) and G;(-), respectively. After a compo-
nent is repaired, it is considered to be new. Let O(s)
denote the set of components at time s which are op-
erational. For each component i € O(s), let A;(s)
denote the “age” of the component; i.e., the amount
of time which has elapsed since it was last new. Let
Ai(s) = hi(Ai(s)) be the failure rate of component i
at time s if i € O(s), and 0 otherwise. Also, let R(s)
be the set of components at time s which are cur-
rently undergoing repair. For a component i € R(s),
let Bi(s) be the “age” of the repair process of com-
ponent ¢ at time s; ie., the amount of time which
has elapsed since the repair began on the component.
Let y1i(s) = ri(B;(s)) be the repair rate of compo-
nent 7 at time s if / € R(s), and 0 otherwise. Recall
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that the failure rates of the components are assurmed
to be small: i.e., (2) is in force for 0 < 5 < {. Let
AR(S) = Yico Ails) and wr(s) = Xieps mils)
be the total lailure and repair rates, respectively,
at time s. ‘The total event rale at time s is then
A(S) = Ap(s) + pr(s).

One approach for simulating the system without
using importance sampling is as follows (see Nicola,
Heidelberger, and Shahabuddin 1992). First, assume
that A(s) < Jforall 0 < s <t w.p. |, where 8 < oo
is some constant. Note that this implicitly assumes
that the hazard rates of each of the failure and repair
distributions are hounded on the interval (0,1). Many
distributions satisfy this condition (e.g., hyperexpo-
nential, Erlang, and Weibull with increasing failure
rate), but others do not (e.g., constant and uniform).
(We will discuss another technique later which relaxes
this assumption to some degree.)  Then, we can use
a uniformization-based approach to simulate the sys-
tem. More specifically, let Ng = {Ng(s) : s > 0}
be a Poisson process with rate 4. We will simu-
late our dependability system by simulating the pro-
cess Ny and categorizing each event of Ny as one of
three types of events for our dependability system:
failure cvent, repair event, or pseudo event. I an
event of \'; ocenrs al thne s, it is a failure event
with probability Ap(s)/3, a repair event with proba-
bility jep(s)/3. and a psendo event with probability
1—A(s)//4. Given that an event at time s is a failure
event, we chioose component i € (O(s) to be the one
which failed with probability A;(s)/Ae(s). Similarly,
given that an cvent at time s is a repair event, we
choose component i € (s) to be the one which com-
pleted repair with probability p;(s)/pr(s). Pseudo
events have no cffect on the dependability system,

Nicola, Heidelberger, and Shalhiabuddin (1992) pro-
posed the following tmiportance sampling scheme to
simulate the systent. Again simulate the Poisson pro-
cess Nj, bhut we now change the probabilities used to
determine il a Poisson event corresponds to a failure,
repair, or pseindo event of the dependability system.
We accomplish this by changing the failure and repair
rates of conponent i at time s to A;(s) and fi;(s), re-
spectively. Thus. the new total failure, repair, and
event repair rates ab time s are Ap(s) = D0 Ail8),
fi(5) = 5 i fui(s), and A(s) = Ap(s) + fi(s), respec-
tively. We :|ssunu-~l,lml. ;\,~ and ji; are chosen so that
for all 0 < s < . A(s) < ¢ wp. | and the change of
measure s valid (1o, ;\i(.s) > 0 whenever Ai(s) > 0,
fi(s) > 0 whenever ji(s) > 0, and =A(s) > 0 when-
ever 3 —A(s) > 0). Under importance sampling, il an
event of N4 ocenrs al time s, it is a failure of com-
ponent 7 with probability ;\,‘(h‘)/l’j\ a repair of compo-

nent i with probability fi;(s)/8, and a pseudo event
with probability 1 — A(s)/S.

Now we show how to choose ;\,- and fi; to approxi-
mate balanced failure biasing. Suppose that an event
of Ng occurred at time s. Under the new thinning
probabilities, it is not a pseudo event with probabil-
ity A(s)/B. Suppose that Ap(s) > 0 and pgr(s) > 0
so the event can be either a failure or a repair in the
original system, and we now have to decide which it
1s in the new system. Given that the event is not
a pseudo event, to approximate failure biasing, we
increase the probability that it is a failure event to
p. and correspondingly decrease the probability of a
repair event to 1 — p. by choosing Ap(s) and f(s)
such that Ap(s)/A(s) = p« and f(s)/A(s) = 1 — p«,
where p, is some constant. If the event is a fail-
ure, then we implement balancing by selecting com-
ponent i € O(s) to be the one that failed with proba-
bility 1/O(s). If the event is a repair, then we select
component ¢ € R(s) to be the one to complete its
repair with probability fi;(s)/ji(s), where we select
fi(s) so that fi;(s)/ji(s) = pi(s)/pur(s).

But, as in the Markovian setting, even though
we have now implemented a generalization of bal-
anced failure biasing, the probability that any com-
ponent fails before the time horizon ¢ expires is still
very small. Thus, we need to use some form of
forcing. To do this, we choose Ap(s) to be signifi-
cantly larger than Ap(s) when pg(s) = 0, and let
Ai(s) = Ap(s)/N. Hence, the probability that some
cormponent will fail before time ¢ is now much larger.
However, we are not guaranteed that some compo-
nent will fail before time t as in the Markovian case;
therefore, we call this “approximate forcing.”

Now we examine the likelihood ratio L arising from
this importance sampling scheme. We can decom-
pose L into a product of terms: L = LrLgrLp, where
Lf is the likelihood ratio corresponding Lo the fail-
ure events and Lg and Lp are the same for the re-
pair and pseudo events. Let T;; be the time of the
J-th failure of component i, and N;(t) be the num-
ber of times component i fails before time {. Then

Ly = ]'LN:] ]']J/.\;'(,t) /\i(Ti.j)/L(Y}J). We can similarly
express Lg and Lp.

lleidelberger, Shahabuddin, and Nicola (1994) es-
tablished that if the above importance sampling
method is used to estimate the system unreliabil-
ity for some fixed time horizon ¢, then the resulting
estimator will have bounded relative error. Nicola,
leidelberger, and Shahabuddin (1992) developed an-
other importance sampling scheme called “exponen-
tial transformation” which allows repair time distri-
butions (but not the failure time distributions) to
have unbounded hazard rates on (0, ¢). Heidelberger,
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Shahabuddin, and Nicola (1994) proved that this ap-
proach also has hounded relative error when estinat-
ing the unreliability.
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