Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

CONCURRENT EXECUTION OF TIMED PETRI NETS *

Alois Ferscha

Institut fiir Angewandte Informatik und Informationssysteme
Universitat Wien
Lenaugasse 2/8, A-1080 Vienna, AUSTRIA
Email: ferscha@ani.univie.ac.at

ABSTRACT

The dynamics of discrete event systems can be effec-
tively described and analyized using the timed Petri
net formalism. The aim of this paper is to compre-
hensively present the achievements attained in ac-
celerating Petri net executions by using parallel or
distributed multiprocessing environments. The basic
problem is to generate concurrent Petri net execu-
tions insuring correctness in the sense that the partial
ordering of transition firings produced is consistent
with the total event ordering that would be produced
by a (hypothetical) sequential execution. Two lines
of thought have been followed: in parallel simulations
transition firings evolve as governed by a SIMD it-
eration mechanism. Distributed simulations aim at
a proper synchronization of firings in spatially dif-
ferent net parts to avoid timing inconsistencies and
alterations of the execution behavior. In both cases,
structural properties of the underlying Petri net can
be efficiently used to simplify and/or accelerate con-
current execution implementations.

1 INTRODUCTION

General PNs can be classified with respect to the com-
plexity of structure they employ. With decreasing
restrictiveness in allowing structural constructs, the
modeling power of the resulting PN class increases,
and so does its analysis complexity. While analyti-
cal quantitative evaluation methods are feasible and
tractable for less expressive PN classes and mainly ex-
ponential timing, simulation tends to be the only ap-
plicable method for analyzing general PN classes and
versatile timing. Since simulation can become quite
aggressive in the use of computational resources, par-
allel and distributed simulation techniques used with
multiprocessors or distributed computing environ-
ments can still be a promising approach for the exe-
cution of complex simulation models. In this work
we shall give a thorough background on PNs and
how they describe time dynamic discrete event sys-

*This work was supported by a grant from the Academic
Senate of the University of Vienna, Austria.

229

tems. We show how qualitative properties of PNs
are obtained, and how they can be used to realize
their parallel or distributed execution. Since realiza-
tions of these concurrent executions are always im-
plementation (software) and technology (hardware)
dependent, we shall avoid presenting absolute execu-
tion performance here, and will study just the sources
of parallelism which make speedup possible.

2 BACKGROUND

Petri Nets A Petri net (PN) (as reviewed by Murata

(1989)) is usually denoted by a tuple (P, T, F, W, u(®))

where P is the set (pi1,p2,...pp) of places, T is

(t1,t2,...t7), the set of transitions, and F C (P x

T)U(T x P) defines an input-output relation to and

from transitions, represented by a set of directed arcs.

(The introduction of inhibitory arcs or transition pri-

orities raising the expressive power of PNs to that of

Turing machines is straightforward and will not be

presented here.) The set of input places to t € T

is denoted by I(t), analogously O(t) is its set of

output places. I, O are used in a similar way for
places. W : F — IN*T assigns weights w((p,t)) to

arcs (p,t) € F to denote their multiplicity. u(®) is a

marking (vector) generated by the marking function

: P — IN?, expressing for every p the number of
tokens p(®)(p) initially assigned to it. The dynamic
behavior of a PN is described in terms of two rules:
(7) (enabling rule) A transition t € T is enabled in
some marking p iff each of its input places holds
a “sufficient” amount of tokens, i.e. iff Vp € I(t),
p(p) > w((p,t)) in p. E(p) is the set of all tran-
sitions enabled in p. Every t € E(u) may or may
not fire.

(7) (firing rule) When a transition ¢t € T fires in y it
creates p' by removing a certain amount of to-
kens from its input places and depositing a cer-
tain amount of tokens in its output places: Vp €
I UO() H(p) = ulp) — wl(p,t)) + wl((t.p)).
The firing of ¢ in the marking p() (reached after
i other firings) is denoted by u(?) L p(i+1),

Let w;':p = w((t, p)) be a shorthand for the multi-
plicity of the arc pointing from t to p, and Wy, =

230

w((p,t)) respectively. Clearly, a;p, = w?:p - Wy,
is the “amount of change” in the number of tokens
in p caused by the firing of t. The set of all a;p
(t € T, p € P) defines the “amount of change” for
PN in the incidence matriz A = [a;p). Now the
enabling of t € T can be verified by the condition
w;, < p(p) Vp € I(t), and consecutive firings can be

described as i
uD = p®O 4 AT (1)

k=1

We read p(*) here as a P x 1 column vector show-
ing the current number of tokens in p; in its j-th
component (ugl) = p®(p;)). AT is the transposed of
the 7 x P matrix A, and uy is 7 x 1 column vector
having 1 in a single component and 0 in all others.
Assume the firing vector uj to have the 1 in row [.
Then the operation ATu; “selects” the I-th column
of AT (row of A) containing the “amount of change”
caused by firing t;, and the change in the marking
can be simply determined by adding the vector a;e to
. Repeated transition firings can be represented by
cumulating firing vectors u to a firing count vector
z = Z;::l ug, i.e. ¢ counting in its {-th row the num-
ber of firings of t; € T that must occur to generate
p). Consequently, pl) — 5@ = Ap = ATz is the
marking difference imposed by firing transitions with
respect to z starting from p(*) and ending up in pl).
A vector z with strictly positive integer components
that solves 0 = ATz does not impose any difference
on any p when executing the corresponding firings
(since Ap = 0). z is called a T-invariant of PN, ex-
pressing that by firing t; € T for z; times starting
in p, the PN ends up in p again, given that all the
firings encoded in z are actually realizable.

A dual interpretation exists for a P x 1 vector y,
which by its components y; “weighs” the changes
caused by firing t; € T (encoded in row [of A)
in such a way, that the overall change zeroes out
(0 = Ay). An integer solution y to Ay = 0 is called
a P-invariant, expressing that the weighted number

of tokens 1 = E;P=1 ,ugj)y,- in the respective places
p; is invariant over any reachable marking p). In
other words, the firing of transitions does not change

7i. The set of places p; for which ugj) > 0 is called the
support of the invariant, and is said to be minimal if
no subset of it is a support. A minimal support P-
invariant can always be found if a P-invariant exists,
and any linear combination of a P-invariant is still
a P-invariant. Many properties of PNs (useful in the
context of parallel and distributed simulation) can be
verified using invariants, they may however not exist
for the particular PN under study. Practically, vec-
tors y can be found by rewriting Ay =0 as

Y |P—rx1|]

AlllrxP—rl 7 Il
A2|17'—rx7’—r| A2|2T—rxr|

Ferscha

where A is a submatrix of A having full rank r, and
[Y1Y2] is the respective decomposition of Y. Then
from A,1Y: + A12Y2 = 0 (the linearly independent
part of (2)) we get Yo = —A AuYi, which, by
combining Y; to the left-hand and right-hand side,
gives

Porxl I |P—rxP—r|
Y1| lx [_ '\ Irxp] Yll‘P—rxll.
Y, ! - T
(3)

Here I is a P — r x P — r identity matrix (Y1 =
IY;). Thus we get all possible P-invariants as vec-
tors Y with integer coefficients. A marking p) is
said to be reachable from marking p(¥) if there ex-
ists a sequence of transitions o = (tk,ti,...) such
pld) L pG+D) L, pli+2) im @) or p® L pl) for
short. The set of all markings reachable from p) is
conveniently denoted by RS(u()), and we must rec-
ognize that |RS(u(?)| can be exponential as a func-
tion of P and the number of tokens in u(®). A PN is
conservative over a set of places P’ C P if the number
of tokens is “conserved” over P’ despite transition fir-
ings. As we can conclude from (2), a necessary and
sufficient condition for conservativeness is the exis-
tence of a P-invariant y, Ay = 0, with positive com-
ponents refering to places p € P’. A PN is persistent
over a subset of transitions 7/ C T if any t € T" can
loose enabling only by its own firing, but not by the
firing of some other transition t' € T'.

P P3 t3 Ps

Figure 1: PN1: Comm. Processes with Contention

Example The net PN1 in Figure 1 models the be-
havior of a system of four computational (c-)processes
(ps). operating in parallel to each other and to
one I/O process (ps). Two c-processes after hav-
ing done local computations (¢{5) compete with an-
other c-process pair and the I/O process for two
shared communication devices (e.g. channels, pr) to
be able to communicate (¢3). We obtain the follow-
ing properties: PN1 is not conservative over P, but
over (pz2,pa,ps) and (ps, pa, p7). It is persistent over
(t;;1 ta,t5,%6), while t; and ¢, are not persistent: firing
ty in g = (2,1,1,0,0,0,1)T will disable ¢; and vice
versa. We find the minimum support P-invariants
Y1 = [1)01 2)0) 1,0,0 Ta Y2 = [ana 1, 110|0)]-]T and
ys =1[0,1,0,1,0,1,0)7, saying that irrespective of any

transition firing p(li) + Q”gi) + “(si) =4, pgi) i N(:) N

Concurrent Execution of Timed Petri Nets 231

w9 =2 and “(21) +uf) +u§;” =1lin p® € RS(p®).
Two T-invariants exist: z; = [1,0,1,0,2,0] and
ry = [0,1,0,1,0,1], expressing that if in ﬂ(i) there
exists a sequence to (exclusively) fire ¢;, t3 and two
times ts yieldin§ plt9) or to fire ¢5, t4 and tg yielding
pl+3) “then p() = p(+4) op L) = (43,

T¥Y¥

@
Figure 2: Structural Restricitions that classify PNs

PN classes Restricting the input-output relation F
in a general PN to allow for transitions constructs
only like those in Figure 2 (a) (|I(t)] = |O(t)| =
1 Vt € T') yields a class of nets known as state ma-
chines (SMs). Since transitions can neither create
nor destroy tokens, transtitions can be removed from
a SM yielding the classical representation of a finite
state automaton, which it is. SMs can model concur-
rency and conflict (choice), but not synchronization.
If F is restricted for places to structures like in Fig-
ure 2 (b) (|I(p)] = |O(p)] = 1 Vp € P), then PN is
called a marked graph (MG). Places are redundant in
MGs, and their removal yields what is well known as
series parallel (task-)graphs. MGs can model concur-
rency and synchronization, but no conflict. The ex-
tension to MGs that allows multiple input to places
but only single output from places as in Figure 2 (¢)
(|O(p)| =1 Vp € P)is commonly called conflict free
nets (CFNs). A PN that allows both constructs in
Figure 2 (a) and (b), but not the construct in (d)
(O(pi)NO(p;) # 0= |O(p:)| = |O(p;)| = 1 Vpi,p; €
P,i # j) is called a free choice net (FCN), which uni-
fies (and extends) the power of SMs and MGs, but
does not allow situations called confusion. In a FCN
if two transitions have an input place in common,
there is always a “free choice” of which one to fire,
i.e. no marking can exist in which one is enabled and
the other is not. (PN1 exhibits confusion around p7).
Finally we refer to a PN that does not impose any of
the restrictions in Figure 2 as a general net GN.

Timing A PN executes transition firings instanta-
neously, i.e. no time is consumed, which is certainly
sufficient for reasoning about the gquality of system be-
havior (causalities, synchronization, etc.). To make
the PN formalism adequate also for guantitative (i.e.
performance) analysis, finite timing of activities can
be expressed by associating a time concept to places,
transitions, arcs, tokens, or any combination of them.
Ramchandani (1974) assigned firing times to transi-
tions representing the time interval during which a
corresponding activity is going on, whereas Sifakis
(1977) associated holding times with places modeling
the time expired between the occurrence of events (an
arriving token has to reside in the place for the hold-
ing time before it can enable a transition). Several

equivalences among timing notions have been proven,
see e.g. David and Alla (1992). Probably the most
popular time extension to PNs are Stochastic Petr:
Nets (SPNs), assigning exponentially distributed fir-
ing rates to transitions for continuous time (CT) sys-
tems, or geometrically distributed firing rates in case
of discrete time (DT) systems. In both cases an
isomorphism among the markings RS(u(®)) and the
states in a Markov chain (MC) can be proven, which
allows the evaluation of models in terms of CTMC or
DTMC steady state or iransient analysis. PN1 is a
Generalized SPN (GSPN) (see Ajmone Marsan et.al.
(1987)), allowing a combination of nontimed (bars)
and stochastically timed transitions (empty boxes),
while still supporting embedded MC analysis. We
shall consider mostly transition timing when talking
about timed PNs (TPNs).

LPI t P2 t2
&——
(L) U

A A,

Figure 3: PN2: A TPN with Model Parallelism

Timed Enabling and Firing Semantics Impor-
tant for modeling, analysis and simulation is how the
timing concept attached to PNs modifies the enabling
and firing rule of PNs: If Vp € I(¢t), u(p) > c w((p,t))
¢ > 1 in p then ¢ is said to be multiply enabled at
degree c. If t can only “fire” (serve) one enabling at
a time, we talk about single server (SS) (enabling)
semantics, and infinite server (IS) semantics if any
amount of enablings can be served at a time. If ¢; in
the SPN in Figure 3 followed SS, then the occurrence
time ot(t1(e;)) of t; with the i-th token out of the four
in p; would be ot(t;(e;)) = ot(t1(ei-1)) + X;, where
Xi ~ exp(A1) is an exponential variate. If ¢; applied
IS, then ot(t;(e;)) = X; Ve;, expressing a notion of
parallelism among the tokens. The latter is useful in
our interpretation of PN2 where tokens model ma-
chines subject to failure (¢;) and repair (¢3). Note
that for memoryless distributions, a ¢ with IS can be
modeled as an appropriately “faster” SS transition by
choosing a marking dependent rate, e.g. p3A; for ty.
In a PN with IS, SS can always be modeled by as-
signing to transitions a loop-back place marked with
a single token.

Both the enabling and the firing can be timed in
a TPN. Timing the firing is straightforward. If the
enabling is timed, then for SMs, FCNs and GNs (but
not for MGs and CFNs) two questions arise related
to timing: () should it be allowed to preempt the en-
abling, and if so, (77) how should intermediate “work”
be memorized. In a policy with non-preemptive en-
abling semantics, once ¢ becomes enabled it is decided
whether it should fire. If ¢ fires, it removes tokens
from I(t) (start-firing event), “hides” tokens during
the firing period, and after that releases tokens to
O(t) (end-firing event). This policy is know as pres-

232

election (PS), since in cases of conflict among ¢ and
t' one of them is preselected for firing. Atomic fir-
ing (AF) refers to a policy where t, once it becomes
enabled, its firing is delayed to the instant when the
enabling time 7(¢) has expired. If ¢ is still enabled at
that time, it fires exactly like in a PN. For the case
where t looses enabling during that period, either a
new, resampled 7(t), or the non expired part of 7(¢)
(age memory) is used for the eventual new enabling
of t. While with PS conflicts (among timed tran-
sitions) are resolved by predefined mechanisms like
random switches or priorities (from “outside”), AF
resolves (timed) conflicts always and entirely by the
race condition (from “inside“). Real systems with
race conditions, like timers controling activities, can-
not be modeled by TPNs with PS.

Discrete Event Systems The execution of a TPN
can now be interpreted as a time dynamic discrete
event system in various different ways. If oriented
along the places p € P, the token arrival and de-
parture events characterize the dynamic behavior of
a system. More natural is the transition oriented
view, where transition firings are related to event oc-
currences, while places represent the conditions that
need to hold for the event to occur; e.g. in Figure 3
the firing of ¢; represents the occurrence of a “ma-
chine failure” event, etc.

3 PARALLEL SIMULATION OF TPNs

Parallel discrete event simulation (PDES) of TPNs
aims to exploit the specific features offered by SIMD
operated environments, especially the hardware sup-
port for fast communication in a static, regular inter-
connection network of processors controlled by a cen-
tralized control unit. Not only the one-to-all broad-
cast operation is possible in O(logN) time, N being
the number of processors, but also the reduction of
data values d; from the N processors with respect
to any binary associative operator o (e.g. +, min,
etc.), and, most importantly, the N partial products
Oj-1d; i=1...N (parallel prefiz operation).

Time Stepping Obviously, TPNs with DT and PS
find a straightforward parallel execution implementa-
tion, since start-firing and end-firing events can only
occur at instants kA;, k=0,1,...of simulated time.
Denote the state of such a TPN by (u, 0), where L is
the marking and g is a 7 x 1 vector holding for every
t € T the remaining time to nexrt event (start-firing or
end firing), then the algorithm at time kA, executes
events related to t; € T for which g; = 0 in paral-
lel (as long as there are ¢; € T with g; = 0). After
that, for all g; > 0 it sets g; = 0;i — A and steps
to time (k 4+ 1)A,. Clearly, time gaps containing no
event occurrences can be “overjumped” employing a
min-reduction over g to determine the earliest next
event time. In principle, the same execution strategy
applies to TPNs with AF and/or CT. but is likely
to be less effective due to handling the descheduling
with AF, and the far smaller probability of two or

Ferscha

more events occuring at exactly the same instant of
time (parallelism) with CT. Time stepping will per-
form best for TPNs with a very high concentration
of events at certain points in virtual time, and finds
an efficient implementation for SMs, MGs, and CF Ns.
A distributed conflict resolution scheme necessary for
FCNs and GNs can severely complicate the imple-
mentation and degrade performance.

P b P2 t P4 ts P3
3

l A Ay Ay Ay l

Figure 4: PN3: MG with Stochast. Holding Times

Recurrence Equations A more general way to ex-
ecute certain classes of TPNs concurrently was de-
veloped by Baccelli and Canales (1993), describing in
terms of recurrence equations how the TPN dynami-
cally evolves. Consider exponential holding times as-
sociated with places p; as h;(1), hs(2),..., and (for
simplicity) zero enabling/firing times in the MG in
Figure 4. Then the occurrence of the k-th firing of
t; €T, ot;(k) = ot(t;(ex)) can be written as:

Otl(k) = hl(k') ® 0t3(k - 1),

OtQ(k) = h3(k) ® Otg(k - 1),

otz(k) = ha(k) @ ot1(k) & ha(k) @ ota(k),

where @ denotes maz as an associative infix op-

erator, and ® denotes the + operator. This set of
equations together with ot1(0) = ot5(0) = ot3(0) = 0
defines the evolution of PN3, and can, with ots(k) =
ha(k)®hi(k)®ota(k—1)® ha(k) © hs(k) @ ota(k — 1),
be written in matrix form as:

ot(k) =ot(k — 1) ® A1 (k) @ (E @ Ao(k)), (4)

€ € ho(k) € € €
Ao(k): (€ € h4(k)) Al(k) = < € € € >
€ € € hi(k) ha(k) ¢
where ® and @ are operations in the semiring
(R,®, ®) with null elements e = —oo for @ and e = 0

for ; E is the identity matrix in (R, ®,®). Indeed,
(4) is a special form of

ot(k) = (ot(k—1)@ Ai1(k)®--- @ ot(k — M) @ An(k))
B(E® Ao(k)® Ao(k)> @ -+ @ Ao(K)Y) (5)

where A, (k) are matrices representing with their
elements ij the holding time of the k-th token in
p € P with O(t;) = I(t;) = p having n tokens in
#® L is the maximum number of places on a di-
rected cycle in MG not having a token in u(%), and
M is the maximum number of tokens in any p € P
in p®, By appropriately rewriting (5) and using
the associativity of @ in (R,®,®), the underlying
MG can be executed either in a spatially decomposed
way (parallelism from the MG size), or in a tempo-
rally decomposed way by executing matrix multipli-
cations that simulate the evolving of MG in distinct
epochs of time, the results of which are parallel pre-
fized with ® eventually. Bachelli and Canales (1993)

Concurrent Execution of Timed Petri Nets 233

Communication Subsystem |

Figure 5: Logical Process simulation of TPNs

achieved excellent performance for MGs with DT or
CT for both transitions and places, and FIFO token
arrival /consumption. The extension of the approach
to higher net classes is possible in principle, but not

within (R, ®, ®).
4 DISTRIBUTED SIMULATION OF TPNis

Opposed to PDES, distributed discrete event simu-
lations (DDES) execute TPNs as a spatially decom-
posed event system dispersed over processors that op-
erate asynchronously in parallel (but not necessarily;
note the implementation of a DDES scheme for MGs
on a SIMD platform by Sellami et.al. (1994)). As
such, DDES of TPNs is more general than the time
stepping approach, since also transition firings occur-
ing at different instants of virtual time are considered
for parallel execution. However, DDES potentially
induces higher overheads for event list management
and complex synchronization protocols not present in
PDES.

The basic idea of a DDES is to separate topolog-
ical TPN parts to be simulated by logical processes
(LPs). A synchronization protocol provides for a
proper synchronization of intra and inter LP event
relations with respect to simulated time and causal
interdependencies. A DDES of a TPN is organized
as in Figure 5 (see also Chiola and Ferscha (1993a)),
where LPs comprise

R a spatial region of TPN: R, = (P, C P, T; C
T, F; C F) (all event occurrences in R; will be
simulated by LP;),

SE an event driven simulation engine maintaining
an event list (EVL), a local virtual time (LVT),
and a static subset of the state variables S; C S
defining the state of R; at any time LVT (we will
study cases with S; = Uju; Vp; € P;), and

CI a communication interface triggering the local
SE and synchronizing with other LPs. CI imple-
ments a synchronization protocol either based on
the Chandy-Misra-Bryant scheme described by
Misra (1986) (conservative), or on Time Warp
described by Jefferson (1985) (optimistic).

Event Driven Simulation Engines EVL in SE;
holds pending future event occurrences, organized in
increasing timestamp order. In case of e.g. AF seman-
tics, these are tuples (¢;@ot(t;)) denoting the sched-
uled firing of ¢; at time ot(t;). Once SE; gets permis-
sion from CI; to fire the first (lowest occurrence time)
transition t; in state S;, it (i) removes (¢;@ot(t;))

from EVL, (ii) modifies the state variables accord-

ing to S 5, S!, (iii) schedules new tuples (t;@ot(ty))
for all t, € E(S!), and (iv), removes tuples (t;@ot(1;))
which have lost enabling in S! (only in the AF policy).
Note that in target environments lacking a shared ad-
dress space, for performance reasons it is very impor-
tant to be able to verify t; € E(S;) without having
to consult data residing in remote LPs (implicitly as-
sumed here with the notation), thus restricting the
freedom in partitioning.

Partitioning Thomas (1991) has proposed R; =
(p € P) (P-LPs) or R; = (t € T) (T-LPs), setting up
P + T LPs. His “Transition Firing Protocol” (TFP)
operates in two phases: (i) verify tx € E(u), ty resid-
ing in LP,,, and (i) fire tx. A fairly communication
intensive double-handshake protocol is used for (),
involving the announcement of available tokens by
P-LPs, the requesting of a certain amount of tokens
necessary for enabling by T-LPs, the granting of the
requested amount of tokens by P-LPs, and the confir-
mation of absorbation of that amount of tokens again
by T-LPs. Basically TFP implements a (distributed)
token competition resolution policy, but not a conflict
resolution mechanism in the sense of the GSPN def-
inition, where user defined random switches for com-
peting transition selection can be specified. (i7) im-
plements the removal (deposit) of tokens from (to) P-
LPs. P-LPs and T-LPs employ different SEs, which
in combination behave conservatively (P-LPs do only
serve competing earliest requests).

Ammar and Deng (1991) allow a totally general
decomposition of TPNs into regions, but with re-
dundant proxy representations of places that are cut
away from their output transitions. A Time Warp
based communication interface managing five differ-
ent types of messages is used to maintain consistency
in the “overlapped” state representation (note that
here S; i1s not a pairwise disjoint partition of p).

It has been seen by Thomas (1991), Nicol and Roy
(1991) and Chiola and Ferscha (1993a), that for per-
formance reasons the generality of R; should be lim-
ited in such a way that conflicting transitions together
with all their input places should always reside in the
same LP, i.e. for t; € T}, tx € E(S;) can always be
verified without communication. A minimum region
partitioning and grain packing strategy was proposed
by Chiola and Ferscha (1993b), that uses two sources
of partitioning information: (i) the TPN topology
(P,T,F), and (%¢) structural properties of the TPN
in combination with u(®) (if available). Consider the
following relations among transitions:

SC t;,t; € T are in structural conflict (t; SC t;), iff
I{t) N I(t;) # 0

CC ti,t; € T are causally connected (t; CC t;), iff
t; € E(pu) and t; € E(p), p LN might cause
that t; € E(y').

ME t;,t; € T are mutually exclusive, (t; ME t;), iff
B[.l s.t. ti,tj € E(/l)

