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ABSTRACT

The simulation community has used metamodels to
study the behavior of computer simulations for over
twenty-five years. The most popular techniques have
been based on parametric polynomial response surface
approximations. In this state of the art review, we
present recent developments in this area, with a
particular focus on new developments in the
experimental designs employed.

1 INTRODUCTION

Complex computer simulation models of proposed or
existing real systems are often used to make decisions on
changes to the system design. These models themselves
may be quite complex, and so simpler approximations
are often constructed; models of the model, or
metamodels (Kleijnen, 1987).

This state of the art review will follow the focus of
Barton (1992) on general purpose mathematical
approximations to input - output functions.  The
'general purpose' excludes metamodels such as Little's
law and approximations based on perturbation analysis
or likelihood ratios.

The mathematical representation of a simulation
model input - output function will be represented as

y=g(v). 1

Here, y and v are vector valued, and will usually
include random components. The v vector for a
manufacturing simulation might include the following
components: the number of machines, machine
processing times, machine breakdown time probability
distribution parameters, and perhaps all the
pseudorandom quantities used in the simulation run.
The vector y might include the average work in process,
the average daily throughput, and the average daily
operating expenses.

We will restrict out attention to input - output models
where: i) y has one component, ii) the random
component, if present, is additive, and iii) the list of
parameters is restricted to those that will be in the
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argument list of the metamodel:
y=g(x)+e. [¥))

The metamodeling task involves finding ways to
model g and ways to model e. We will generally denote
the metamodel as f and the predicted output responses as

4}

f(x)or y .
g =fx)= 9 ©)

The major issues in metamodeling include: 1) the
choice of a functional form for f, ii) the design of
experiments, i.e., the selection of a set of x points at
which to observe y (run the full model) to adjust the fit
of fto g, the assignment of random number streams, the
length of runs, etc., and iii) the assessment of the
adequacy of the fitted metamodel (confidence intervals,
hypothesis tests, lack of fit and other model diagnostics).
The issues of experiment design and metamodel
assessment are related since the selection of an
experiment design will be determined in part by its effect
on assessment issues.

This review will augment the results reported in
Barton (1992), with a focus primarily on recent research
on experimental designs and the choice of smoothing
parameters. The most popular techniques for
constructing f have been based on parametric polynomial
response surface approximations. While we review
recent developments for polynomial metamodels, we
also review research related to alternative modeling
approaches from the current literature:

« splines,

» radial basis functions,

» kernel smoothing,

» spatial correlation models, and

« frequency-domain approximations.

The review is organized to cover each of the
modeling techniques in sequence, beginning with
traditional response surface methodology. The
discussion will focus on recent advances: for more
background and additional metamodeling techniques, see
Barton (1993).
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2 RESPONSE SURFACE METAMODELING

Response surface methods have been used effectively
for over thirty years as metamodels. These methods are
the topic of entire texts (see Box and Draper (1987),
Khuri and Comell (1987), Myers (1976)), but our review
must be brief.

Polynomial regression models were developed for the
‘exploitation’ of response surfaces (1), that is, for
optimization. This approach fits first or second order
polynomial models to y, the system response. The
model is of the form (3) with y a scalar and € a scalar,
although these quantities are often viewed as vectors by
considering multiple observations simultaneously.

2.1 Mathematical Form for RS Models

Lety =(yq, .., ¥p) represent a set of (univariate)
outputs of the simulation model run under input
conditions Xy, ..., X, , respectively. The ¢; for the
multiple observations are assumed to be independent,
identically distributed Gaussian quantities with variance
o2. The basis functions are usually taken as the products
of the power functions, 1, Xj, sz, ..., giving

f(x) = ZBypi ) @)

Here py(x) is a product of univariate power functions,
such as (x;), (x1)%, (x32(x,), etc. Alternatively, the
basis may be orthogonal polynomials, ¢ (x), providing
the same polynomial for f but a different representation:

f(x) = oy 9, (x) - (%)

The coefficients B, or oy are estimated from
observed (x;, y;) data points, i=1,..., n via least squares
or maximum likelihood estimation. The advantage of
(5) over (4) is that the coefficient estimates for the oS
will be uncorrelated and will be robust to small changes
in the observed data.

2.2 Design of Experiments for RS Models

The recent developments for polynomial response
surface models have been in the area of experimental
design. To introduce these advances, we first describe
the design problem. The coefficient vector B in (4) is
determined by

B=XXylixy, ©)

where X = (1, x,, .., xp)' for a first degree (linear)
polynomial, and includes products of these columns for
higher order polynomials. From (2), we see that, since y
is a random vector, B will be random.

Some recent research relates to two properties of B.
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First, one would like to minimize the variance of B. This
will make the approximating function f less sensitive to
the random perturbations introduced by €. Second, one
may want to estimate some of the coefficients in the B
vector without making the number of simulation runs
needed to estimate all of the coefficients in B. By
leaving terms out of the metamodel (4), the fitting
process may produce biased estimates for the remaining
coefficients. Both of these properties are affected by the
choice of the experimental design strategy. Each is
discussed briefly below.

With independent g; values the variance-covariance
matrix for the coefficient vector B is

S, =0*(X'X)! Q)

When the €; values are dependent, with covariance

matrix ¥, the variance-covariance matrix for B is
Sy= X)Xz xxx)1 ®)

Schruben and Margolin (1978) exploited (8) to
produce a reduced variance-covariance matrix for B by
inducing correlation in the g; values. The Schruben-
Margolin strategy induces positive correlation between
runs within a block, and negative correlations between
blocks. The usual statistical analysis must be modified
for this strategy, as described by Nozari, Amold, and
Pegden (1987) and Tew and Wilson (1992). Tew and
Crenshaw (1990) and Tew (1994) discuss the
implications when all of the random number streams
are used as common or antithetic streams across the
experiment (N0 pure error erm remains).

The second experiment design issue receiving
attention in simulation designs is bias. If there is
concern that higher order terms may be present in (2)
that are not modeled in (4), then simulation runs over the
design space must be chosen differently. Donohue et al.
(1993b) develop two-level factorial designs that protect
against bias in the presence of polynomials of order two.
Optimal designs are found for three pseudorandom
number generation strategies: independent streams,
common random numbers, and Schruben/Margolin
CRN/ARN in orthogonal blocks.

Response surface metamodels for discrete event
simulation models must often contend with
nonhomogeneous variance. Cheng and Kleijnen (1994)
develop optimal design of experiments for fitting
metamodels when the response is some output function
of a nearly saturated queuc. Kleijnen and Van
Groenendaal (1994) develop sequential experimental
designs for weighted least squares regression
melamodels.

Donohuc ct al. (1993a) propose a sequential strategy
for fitting polynomial mectamodels to discrete event
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simulation models. Stage zero is a pilot study to check
the magnitude and homogeneity of variance. The stage
one design permits fitting a first order model and
estimating bias from unfitted quadratic terms. Stage two
augments the first order design to minimize the mean
squared error of response or of slope. If bias error is still
significant, stage three further augments the design to
permit the estimation of a full second order model.
These designs are considered for the three
pseudorandom number assignment strategies mentioned
above. Ordinary least squares and generalized least
squares models are considered, and generalized least
squares with the antithetic pseudorandom assignment
strategy performs best on a Monte-Carlo study of an
open Jackson queueing network.

3 SPLINE METAMODELS

Any polynomial approximation represented by (4)
can be constructed from linear combinations of the
functions I1 Xj,» Where the product is over k, and the
index j, may take the same value more than once. This
choice for a basis has drawbacks, as mentioned earlier.

The high order polynomial achieves a good fit by
adjusting coefficients to achieve cancellation of large
oscillations over most of the range. This reliance on
cancellation makes high order polynomial fits non-
robust. If a quadratic approximation to the function is
adequate, then global polynomial basis functions can be
used to build the approximating metamodel. If a more
accurate representation is needed, the simulation
modeler should consider other basis functions from
which to build the metamodel.

3.1 Mathematical Form for Spline Models

The difficulties with polynomial basis functions are
avoided if: i) they are applied to a small region and, ii)
only low order polynomials are used. This is the
motivation for metamodels based on piecewise
polynomial basis functions. When continuity restrictions
are applied to adjacent pieces, the piecewise polynomials
are called splines. The metamodel can be written as

f(x) = X ¢;B;(x) )

where the B; are the quadratic or cubic piecewise
polynomial basis functions. The basis functions can be
described most simply for the univariate case. The
domain is divided into intervals [t;, t,), [t;, t3).[ 1, L)
whose endpoints are called knots. Two sets of spline
basis functions are commonly used, the truncated power
function basis and the B-spline basis (deBoor 1978).
The truncated power funcuon basis for cubnc splines
consists of 1, x, and {(x- tj) 1, where (x- l) denotes the

one-sided function that is (x- t) for x > tj and 0 forx <
t..

1

This set of basis functions are easy to describe and
understand, but computationally not robust. Numerical
difficulties arise when there are many intervals and
consequently many basis function coefficients to
estimate. Since the basis functions have infinite support,
a change in one observed value will affect the
coefficients of all the basis functions. The second set of
basis functions, called B-splines, are more difficult to
describe. They can be derived from divided differences
of the power function spline basis elements. Their great
advantage is that they have nonzero support over only k
intervals: B:(x) = O unless x €[t;, t;,}). The parameter k
is determined by the order of polynomials used in the
spline model; k = 4 for cubic splines. A natural choice
for ¢ is g(tj) giving f([ )= (t ), i.e. an interpolating
function.

Since most simulation model output functions will
not be deterministic, another approach is necessary to
estimate the spline coefficients. The motivation for
smoothing splines is based on an explicit tradeoff
between the fit or accuracy of the approximation at
known points and smoothness of the resulting
metamodel. The smoothing spline functions arise as
solutions to the following optimization problem, where
the relative importance of fit vs. smoothness is
controlled by the smoothing parameter A:

min A7+ A ESP2 A, (10)
fxe Ck~2

The function that minimizes (10) will be a spline of
order k, which is in C*2 (continuous derivatives up to
the (k-2)th derivative) and is a piecewise polynomial
with terms up to x*'. The knots will occur at points in x
corresponding to the observed data, x ..

An important issue is the selectidn of the value for
the smoothing parameter A. The value may be chosen by
visual examination of the fit (e.g. figure 3), or by
minimizing cross validation (like residual sum of
squares), or generalized cross validation (GCV) (an
adjusted residual sum of squares). These approaches are
discussed by Eubank (1988) and Craven and Wahba
(1979).

Three classes of spline metamodels can be described
as solutions to special cases of the objective (10): spline
smoothing, spline interpolation (described earlier), and
least squares or regression splines. The key differences
are summarized below.

Smoothing Splines: k is chosen by the user, knots
will occur at the x; values in the optimal solution (i.e., t;
=X;j), A can be chosen based on the user's preference or
by generalized cross validation.

Spline Interpolation: k is chosen by the user, knots
will occur at the x; values in the optimal solution, A = 0.




240

Regression Splines: k is chosen by the user,
preferably near local maxima/minima and inflection
points, knots are chosen by the user, A = 0.

3.2 Multivariate Splines

The extension of the univariate spline metamodels to
multivariate situations has been an active area of recent
research. Tensor products of univariate splines can be
used for multivariate metamodels (deBoor 1978).
Tensor product approximation requires a full factorial
experiment design to estimate the parameters of the
metamodel. Univariate splines are fit for each factor, for
each level of every other factor. There is no requirement
for equal numbers of levels across all design factors, nor
equal spacing within one factor. Because tensor product
splines require many experimental runs on a complete
rectangular grid, and because there are numerical
difficulties in calculating the spline coefficients for
metamodels with many input parameters, several
alternative multivariate spline models have been
proposed. The first, interaction splines, were presented
by Wahba (1986). These models are linear combinations
of products of at most two univariate splines. Gu (1990)
gives an application to further generalize the generalized
linear model by replacing (9) with an interaction spline
metamodel.

Multivariate Adaptive Regression Spline (MARS)
models (Friedman (1990)) use a stepwise procedure to
recursively partition the simulation input parameter
space. The univariate product degree and the knot
sequences are determined in a stepwise fashion based on
the GCV score. The MARS model uses truncated power
basis functions, which are not as numerically robust as
B-splines.

The IT model (Breiman 1991) also uses a stepwise
procedure for selecting a linear combination of products
of univariate spline functions to be included in the
metamodel. This method begins with a large number of
knots for each variable, and uses a forward stepwise
procedure based on the GCV score to select terms for the
product, and to select the number of products. The
backwards elimination step is also based on the GCV,
and is used to delete knots (or, equivalently, univariate
basis elements).

For all of these regression spline methods, the authors
assume that the set of data values {(x{, y;)} to be fit are
given. There is no discussion about the design of the
simulation experiment to provide the best fit of f to g.
There has been recent work, however, on the placement
of the knots for optimal fit.

3.3 Optimal Knot Distribution for Regression Splines

Dyn and Yad-Shalom (1991) consider the optimal
distribution of knots for tensor product spline
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approximations. They find distributions for each axis
that are asymptotically optimal as the number of knots
approaches infinity. For thin plate regression splines,
the knots need not occur at data points. McMahon and
Franke (1992) select knot locations to minimize the sum
of squared distances from each data point to the nearest
knot point. This knot selection method can be applied to
the location of multiquadrics for radial basis function
approximation discussed in the next section.

4 RADIAL BASIS FUNCTION METAMODELS

Radial basis functions (RBF) provide an alternative
approach to multivariate metamodeling. In an empirical
comparison, Franke (1982) found radial basis functions
to be superior to thin plate splines, cubic splines and B-
splines, and several others.

4.1 Mathematical Form for RBF Models

The original development by Hardy (1971)
introduced, among others, simple 'multiquadric’ basis
functions

f(x) = 2 a; IIx-x;l , an

where the sum is over the observed set of system
responses, {(x;, yi)] and ll+ll represents the Euclidean
norm. The coefficients a; are found simply by replacing
the left hand side of (11) with g(x), i=1, ..., n, and
solving the resulting linear system.

4.2 Design of Experiments for RBF Models

Unfortunately, the condition number of the linear
system deteriorates rapidly with increasing dimension
and increasing numbers of data values to be fitted. Also,
since this is an interpolation method, its direct
application to simulation metamodeling is limited. Dyn,
Levin, and Rippa (1986) and Dyn (1987) solve both of
these problems by finding effective preconditioners for
the linear system, and by executing only the first few
iterative steps in solving the system of equations to
provide a smooth fit to noisy data.

The issue of solvability has been addressed recently
by Ball et al. (1992) and Sun (1993). Ball et al. provide
upper and lower bounds on the /9 norm of the matrix of
equation coefficients (Hardy matrix), and Sun gives
necessary and sufficient conditions on the location of the
design points for the Hardy matrix to be nonsingular.

The so called thin plate splines have radial basis
functions of IIx-xilzlogllx-xilL Like smoothing splines,
the radial basis functions, as well as their coefficients in
the “best fit” metamodel, depend on the location of the
observed values X;.
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5 KERNEL SMOOTHING METAMODELS

All of the estimation methods described above
produce predicted values, f(x), that are linear functions
of the observed y; values, with coefficients determined
by the basis functions and their coefficients. The kernel
smoothing metamodel uses this representation explicitly,
without developing an explicit representation for f in
terms of basis functions. A value, f(x), is computed
directly as a weighted sum of the observed y; values,
where the weights are determined by a kernel function.

5.1 Mathematical Form for Kernel Models

There are many forms that this weighting or kernel
function may take, and there are several ways to use the
weighting function to calculate f(x). To simplify the
discussion, we will first discuss kernel smoothing in the
setting of a single design parameter, i.e., x = x. We
present only one way to use the weighting function to
compute f(x), the Nadaraya-Watson formula, because it
is popular and easy to understand, and it reduces the bias
of the kernel metamodel near the borders of the region
over which model outputs have been computed (see the
discussion below). Details on other kernels and kernel
smoothing formulas are in Eubank (1988) and
Hirdle(1990).

Given a set of completed simulation runs with data
(X;,y;) the Nadaraya-Watson formula for the metamodel
is

2 w((x-x)/N)y,

i=1

00 = (12)

L w((x-x)/M)

where w(e) is the kernel function. Common choices for
the kernel include

uniform w(u) = 1/2 -1<u<l,
triangular w(u)=1 - lul -1<u<l,
quadratic  w(u) = (3/4)(1-u?) -1su<l,
quartic w(u) = (15/16)(1-u*)* -1<u<l.

The approximation formula also depends on a smoothing
parameter A, which controls the size of the neighborhood
over which y values are averaged. When A is small, few
points will be included in the range of u, producing a
nonsmooth metamodel f(x). When A is large, many
points are included in the weighted average, and f(x) will
be a slowly varying function, with greater bias.

The natural extension of (12) to the multivariate case
would replace (x-x;)/A with llx-x;l/A (Il « Il is the
Euclidean norm). This form is symmetric about x;. As a
consequence, asymmetric boundary modifications of the
kernel are not possible. Furthermore, individual A; are
not possible. Instead, (x-x)/A is replaced by

4
(,1:[1 W((Xj’xij)/)»j))i

n g
£,00= é (,H=1 W((Xj-xij)/lj))yi

T d (13)
Z I w(xjxipng

i=1

The value of the smoothing parameter A affects both
smoothness and bias, and so must be chosen to balance
these properties of the fitted metamodel. The method of
least squares might be applied to choose the value of A.
However, lim f,(x) = y; so that least squares will drive
the choice of A 10 zero. An alternative to eliminate this
behavior is to leave (x;, y;) out of the metamodel when
calculating the difference between the metamodel and y;.
The cross validation estimate for A minimizes this
quantity. Wahba proposed another technique for
choosing A called generalized cross validation (GCV).
This includes an adjustment to the sum of squared
residuals, and is discussed in Wahba (1990) and Eubank
(1988).

5.2 Recent Developments for Kernel Models

Since kernel models are straightforward functions of
the observed data, it is possible to construct confidence
intervals for the true underlying function. Eubank and
Wang (1994) develop asymptotically valid confidence
intervals when the underlying function satisfies a
Lipschitz condition, and the the choice of the smoothing
parameter satisfies certain requirements. The GCV
estimator satisfies these requirements.

An alternative to the GCV method for estimating A
was proposed by Taylor (1994). A bootstrapping
method was used to choose the smoothing parameter
value, and the results were applied to image
reconstruction with a Gaussian kernel.

6 SPATIAL CORRELATION METAMODELS

Sacks, Welch, Mitchell, and Wynn (1989) and
numerous references therein develop a parametric
regression modeling approach that shares some common
features with spline smoothing and kernel
metamodeling. The expected smoothness of the function
is captured in a spatial correlation function.

6.1 Mathematical Form for Spatial Models
The model assumption is
y(x) = g(x) + Z(x) . (14)

Z is assumed to be a Gaussian stochastic process with
spatial correlation function
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Cov(Z(u), Z(v)) = R(u,v) = exp( -Zej(uj-vj)"). (15)

The value of p is sometimes fixed at 2, and g(x) is
usually approximated by a constant, or a linear function
of x. The values 6; are estimated by maximum
likelihood, and are used to calculate approximate
expected values of (15) to provide the metamodel f(x).
This metamodel family has been used to model
deterministic simulation models, but Sacks, et al. suggest
the addition of a stochastic term for nondeterministic
simulation metamodeling. Mitchell and Morris (1992)
discuss this extension, as well as other correlation
functions.

6.2 Design of Experiments for Spatial Models

Currin et al. (1991) discuss the design of simulation
experiments for estimating the p and 6. parameters in
(15). Factorial designs are not appropriate for fitting
these parameters. In the case of a factorial design on r
factors, if there are fewer than r factors active in the
model, the design will be projected effectively on the
remaining factors, giving duplicate points. For the
spatial correlation model, this leads to difficulties: the
covariance matrix R will not be full rank, and the
likelihood function will be impossible to maximize.
Latin hypercube designs avoid this problem, but often
provide a poor coverage of the space. Sacks, et al.
(1989) consider initial Latin hypercube experiment
designs followed by the sequential addition of points to
minimize mean squared error integrated over the region
of interest.

The spatial correlation model provides a very good fit
with relatively small designs. Orthogonal arrays of
strength r (see Owen 1992) are an attractive class of
sparse designs because they provide balanced (full
factorial) designs for any projection onto r factors.
Unfortunately, this kind of balance can lead to problems
for spatial correlation models. Tang (1993) replaces the
h entries which have value = k in a particular column
of the orthogonal array with a permutation of the set of
h values equally spaced between (k -1)+1/h and k.
Balance is maintained, but the design projection is no
longer a factorial; in fact it is a Latin hypercube.

Alternative approaches to improve on the coverage of
Latin hypercube designs are proposed by Handcock
(1992), Salagame and Barton (1993) and Corsten and
Stein (1994). All are hierarchical designs, in which the
design space is first subdivided into regions to maintain
balance, and sub-designs are constructed for a subset of
the regions.

Morris et al. (1993) expand the spatial correlation
model to consider the case where function and derivative
information is available. Considered example with latin
hypercube, D-optimal, and two hybrid design

procedures designed to have the properties of both lat.in
hypercube and D-optimality. One of the hybrid
methods provided the smallest prediction error.

7 FREQUENCY DOMAIN BASIS FUNCTIONS

Viewing variations of g over its domain in terms of
spatial correlation leads naturally to the idea of Fourier
basis functions for representing an approximation to g in
(1). While such an approach is possible, the Fourier
decomposition is based on basis functions with global
support. Close approximations of g by using a Fourier
basis depends heavily on cancellation to achieve the
desired form, so the model form may not be robust.

This is less of an issue when modeling dynamic
phenomena. Schruben and Cogliano (1987) use Fourier
decomposition to determine steady state input output
structure by deliberately varying input parameters
sinusoidally. There have been a series of papers since
then discussing the design of experiments for this class
of metamodels (see for example Morrice 1991, Buss
1990, Jacobson et al. 1992, and Morrice and Schruben
1993).

For static metamodels, wavelet basis functions
provide a decomposition in both location and frequency,
providing local rather than global basis functions. The
wavelet basis elements have finite support, and are
adjusted by dilation factors to achieve a good fit
(Daubechies 1988). This methodology is still in the
early stages of development. At present, applications of
wavelet models have been limited to functions of one or
two variables; in particular, to the construction of a
smoothed visual image from noisy image intensity data.

8 CONCLUSION

Developments for both response surface models and
nontraditional models provide increased efficiency and
applicability for these methods. In particular, recent
work in the areas of spatial correlation and radial basis
functions has clarified the importance of experimental
design for non-traditional models. While the fitting
capability of these alternative methods is exciting, at the
present time it is based on a small set of examples (see
Ilgenstein and Sargent 1994, and Laslett 1994). A more
extensive computational comparison of the methods is
needed, but this will have to wait for more generally
available computer codes for the newer metamodeling
methods.
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