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ABSTRACT

In large-scale computer simulation models it is often
necessary to perform a screening experiment to reduce
the number of factors to be examined in subsequent
analysis. This study evaluated the results of a Plackett-
Burman screening design using three different analysis
strategies: 1) an approach due to Box and Meyer (1993);
2) an approach due to Hamada and Wu (1992); and 3) a
standard Response Surface Methodology (RSM)
approach. These strategies or methodologies were used
to identify the active/significant factors across 17
different model outputs. The results from these three
methodologies were then compared against each other
for any notable differences in the identified significant
factors. In one instance, where there was a notable
difference, further analysis was performed in an attempt
to ascertain which methodology was the best predictor
for that specific response. A Resolution V design was
used in this subsequent analysis to produce a validation
model, which was then used to compare the three
initial analysis strategies. The strategy/methodology
that produced the model with the smallest mean
absolute percent error (MAPE), the measurement
criteria, was selected as the best for that response.

1 INTRODUCTION

Ideally, the practitioner can identify the significant
factors for a large-scale simulation with a relatively
small number of runs using a screening design. We
assume the practitioners ultimate objective is the
development of a linear model with emphasis placed on
identifying the active main effects and two-factor
interactions.  Therefore, in an effort to perform an
initial screening of inputs , an experimental design of at
least Resolution III should be used. A Resolution III
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design is a design in which the main effects are not
confounded or aliased with other main effects but are
confounded with two factor interactions (or higher).
Plackett-Burman designs are Resolution III with the
additional attribute of requiring the fewest number of
runs of any classical design type, but do not allow the
estimation of interactions between factors (RS/Discover
Reference Manual, 1992:3-10). Although Plackett-
Burman designs do not allow the estimation of factor
interactions, they have the advantage of parceling out
the two factor interactions over many of the main
effects, which will limit the amount of bias in any main
effect due to the confounded two factor interactions
(RS/Discover Reference Manual, 1992:XV). Although
the Plackett-Burman design does not allow estimation of
interactions between factors, it can identify the
significant main factors that make up the possibly
significant interactions. Further analysis of the
important main factors allows the analyst to identify and
estimate the significant interaction terms. Therefore,
the use of a Plackett-Burman design is appropriate for
screening.

1.1 Simulation Model

The large-scale computer simulation model used in this
analysis was THUNDER, Version 5.8. THUNDER is a
two-sided computer simulation model that simulates air
and ground combat, logistics, and limited airlift at the
theater level. It was developed by the Air Force Studies
and Analyses Agency (AFSAA) and is the Air Force’s
premier theater level model. THUNDER is written in
Simscript I1.5 and has in excess of 700,000 lines of
code. The purpose of THUNDER is to provide a
detailed comparative analysis of tactical warfare.

The unclassified data base scenario provided with
THUNDER, enhanced to more evenly match the
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opposing forces, was used as the initial input data set or
baseline. See Webb, 1994, for the changes to the data
base scenario provided with Version 5.8.

1.2 Experimental Design

There are 13 factors and 17 Measures of Outcome
(MOOs) considered in the analysis for this paper. Table
1 gives the uncoded settings for the 13 input factors.
For a complete definition of the files in Table 1 see
Appendix A.

Table 1: 13 Input Factors with Uncoded Settings

FILE/CODE-SIDE LOW BASE HIGH

advsac.dat

A - Blue 0.75 1.0 1.25

B - Red 0.75 1.0 1.25

airairpk.dat

C - Blue 0.9 1.0 1.1

D - Red 0.9 1.0 1.1

airgrdpk.dat

E - Blue 0.9 1.0 1.1

F - Red 0.9 1.0

detect.dat

G - Both 0.75 1.0 1.25

airplan.dat

(CAS/BAI factors)

H - Blue 2=failure 3=equal l=success

I - Red 2=failure 3=equal l=success

airrules.dat

(GCI Ranges)

J - Blue(Hi) 90,000 120,000 150,000
Blue (Low) 22,500 30,000 37,500

K - Red(Hi) 60,000 80,000 100,000
Red (Low) 15,000 20,000 25,000

squadron.dat

L - Blue -.25 no change +.25

M - Red -.25 no change +.25

In a two-level, Resolution III design it would require
32 runs ("7 fractional factorial). However, by using
a Plackett-Burman screening design the number of runs
required for a Resolution III design is 20 (a multiple of
4 greater than 17). The coded design used in this
analysis is given below in Table 2.

Although THUNDER produces numerous output
variables, only a small subset of these are to be
examined for this paper. The 17 MOOs examined in
this paper are provided in Table 3.

Table 2: Twenty Run Plackett-Burman Screening
Design (Coded Values)

A B C D E F G H I J K L M

1-1 1 1-1-1-1-1 1-1 1-1 1
1-1 1 1-1-1-1-1 1-1 1-1

1-1-1 1 1-1 1 1-1-1-1-1 1
1-1-12 1 1-1 1 1-1-1-1-1
1-1-1 1 1-1 1 1-1-1-1

1 1-1-1 1 1-1 1 1-1-1

-1 1 1-1-1 -1 1 1-1
1-1 1 1 1-1-1 1-1 11
-1 1-1 1 1 1-1-1 1 1-1 1
1-1 12-11 1 1 1-1-1 1 1-1
-1 1-1 1-1 1 1-1-1 1 1
-1 -1 1-1 1-1 1 -1 -1 1
-1 -1-1 1-1 1-1 11 1-1-1
-1-1-1-1 1-1 1-1 1 1 1-1
1-1-1-1-1 1-1 1-1 1 1 1 1
11-1-1-1-1 1-1 1-1 1 11
-11 1-1-1-12-1 1-1 1-1 1 1

Table 3: Measures of Outcome

Blue/Red Aircraft Inventory
Blue/Red Sorties Flown
Blue/Red Ending Strength (% authorized)
Blue/Red Aircraft Losses by Mission
Air-to-Ground
Air-to-Air
Defense Suppression
Blue/Red Aircraft Losses by Defense
Surface-to-Air
Air-to-Air
Blue Cumulative FLOT Movement (km)

2 ANALYSIS METHODOLOGIES

Three methodologies are used to identify the significant
or active factors in analyzing the results of the
experiment described in the previous section. The first
is an approach developed by Box and Meyer, the next is
an approach developed by Hamada and Wu, and the last
is a typical Response Surface Methodology (RSM)
approach. Note that examining all 17 MOOs with these
three methodologies requires 51 total analyses.

The Box/Meyer and Hamada/Wu screening
approaches are both based on the concept that of "the



Analysis Strategies for Screeing Designs 307

many potentially important variables, it is often the case
that only a few are truly important” (Box and Meyer,
1993: 94). This condition is known as the Pareto
Principle or factor (or effect) sparsity. Furthermore,
the Hamada/Wu approach assumes "that when a two-
factor interaction is significant, at least one of the
corresponding factor main effects is also significant”
(Hamada and Wu, 1992: 132). This is known as effect
heredity. For example, if the AB interaction term is
significant then either factor A or factor B is also
significant (or possibly both).

Given these different approaches, it is anticipated
that different significant factors or models can be
identified, especially with the complex aliasing of the
Plackett-Burman design used for this experiment.
Therefore, an attempt to ascertain a “truth” model for
one of the MOOs that display differing important inputs
is to be performed using a Resolution V design. This
“truth” model can be used as a vehicle for comparison
for the three methodologies. These three methodologies
are described in more detail in the following
subsections.

2.1 Box and Meyer Approach

This screening methodology improves the likelihood of
identifying significant factors that might be overlooked
when using typical or conventional methods of analysis,
such as an RSM approach. "This is particularly true of
Plackett-Burman designs where the number of runs is
not a power of two” (Box and Meyer, 1993: 94).

This method examines the possible hypotheses and
identifies those that best fit the data. For example, if
there are three factors (A, B, and C), then the various
hypotheses considered are that a single factor is
responsible, that two factors are responsible, and that all
three factors are responsible for what is going on. In
the single factor hypotheses, only single factors are
included in the model. In the hypotheses that two and
three factors are responsible, the models considered
include the main factors along with all possible
interactions, e.g., under the hypothesis that A, B, and C
are active, only the subset of these main factors with
interactions AB, AC, BC, and ABC are considered.
This screening methodology can also be modified to
allow the analyst to assume, for example, that three-
factor interactions are negligible and thus the models
considered would contain at most two-factor
interactions.

"A Bayesian framework is used to assign an
appropriate measure of fit to each model considered
(posterior probabilities) that can be accumulated in
various ways (marginal posterior probability)" (Box and

Meyer, 1993: 95). "It is analogous to all-subsets
regression in that all possible models are evaluated”
(Box and Meyer, 1993: 95).

The Bayesian approach to model identification is as
follows (see, e.g., Box and Tiao (1968)). We consider
the set of all possible models labeled My, ..., My, Each
model M; has an associated vector of parameters 6; so
that the sampling distribution of data y [or output
responses], given the model M;, is described by the
probability density f{yIM;,8;). The prior probability of
the model M; is p(M;), and the prior probability density
of §; is f(6iM;). The predictive density of y, given
model M, is written f{ylM;), and is given by the
expression

FOIM) = [f (1M, .8,)d8; .

R
i

where R; is the set of possible values of 6; The
posterior probability of the model M;, given the data y,
is then

p(M1y)= p(M)f(yIM;) |
ZP(M,,)f(yIMh)
h=0

The posterior probabilities p(Mily) provide a basis for
model identification. Tentatively plausible models are
identified by their large posterior probability.
Computationally one calculates p(M))f(yIM;) for each
model M; (the numerator in the above expression) and
then scales these quantities to sum to one. The
probabilities p(M;ly) can be accumulated to compute the
marginal posterior probability P; that factor j is active as

P, = ZP(Mil}’)-

M;: factor j active

The probability P; is just the sum of the posterior
probabilities of all the distinct models in which the
factor j is active. The probabilities {P;} are thus
calculated by direct enumeration over the 2* possible
models M;, where k is the number of factors (Box and
Meyer, 1993: 95-96).

Large values of P; indicate that factor j is significant
while small values indicate that factor j is not
significant. For a more in depth explanation of this
method see Box and Meyer, 1993. Box and Meyer
developed a software program called MBJQT92 that
performs the calculations described in their article and
above. By using this program, the analyst does not have



308 Webb and Bauer

to do the calculations manually and is provided with
output that indicates which factors are active. An
example of this output is provided below in Figure 1.
In analyzing the results of the MBJQT92 program, it is
up to the analyst to determine what signifies a large
posterior probability. "In practice there is no harm in
interpreting the posterior probabilities liberally” (Box
and Meyer, 1993: 102). For example, from Figure 1,
the analyst might conclude that factors 3, 5, 7, and 8 are
active. Further analysis on these factors can produce a
model that contains these main effects along with any
significant interactions.

Posterior

Factor Probabilities
None 0.001 + .
1 0.136 +** .
2 0.143 +** .
3 0.573 4 kkshkkhhhkhrn +
4 0.245 4**x*x .
5 0.513 SRk Rk k ok ok k ok .
6 0.272 ph Rk ok kk .
7 0.894 4**kH*rhkhhhhhrhnhhn |
8 0.704 4**rshkrnrhnhns .
9 0.095 +* .
10 0.276 +**x*x .
11 0.229 4xww¥ .
12 0.053 +* .
13 0.248 4*r** .

Figure 1: Example Output from MBJQT92

2.2 Hamada and Wu Approach

This method "works well when effect sparsity and effect
heredity hold and the correlations between aliased
effects (i.e., aliasing coefficients) are small to moderate"
(Hamada and Wu, 1992: 132). Hamada and Wu
specifically state that this methodology is useful in
analyzing the result of a Plackett-Burman design by
taking advantage of the complex aliasing pattern of a
Plackett-Burman design. In analyzing the results of a
screening design to identify the significant factors the
following steps should be performed (Hamada and Wu,
1992: 132):

Step 1: Entertain all the main effects and interactions
that are orthogonal to the main effects. Use
standard analysis methods such as analysis of
variance or half-normal plots to select
significant effects. Go to Step 2.

Step 2: Using effect heredity, entertain (i) the effects
identified in the previous step and (ii) the two-
factor interactions that have at least one
component factor appearing among the main
effects in (i). Also, consider (iii) interactions
suggested by the experimenter. Use a forward
selection regression procedure to identify
significant effects among the effects in (i)-(iii).
Go to Step 3.

Step 3: Use a forward selection regression procedure to
identify significant effects among the effects
identified in the previous step as well as all the
main effects. Go to Step 2.

Iterate between Steps 2 and 3 until the selected
model stops changing. (Effect sparsity
suggests that only a few iterations will be
required.)

The proposed method, however, does have a
limitation. Significant main effects can be overlooked
when several significant interactions are aliased with a
nonsignificant main effect and cause it to appear
significant (Hamada and Wu, 1992: 135). To overcome
this problem, Hamada and Wu offer two extensions to
the above steps (136):

1) Relax the criterion for significance in Step 1 so
more main effects are included.

(2) Replace Step 1 with Step 1' below.

Step 1 For each factor X, entertain X and all its
interactions XY with other factors. Use a
forward selection regression procedure (o
identify significant effects from the candidate
variables and denote the model by Mx. Repeat
this for each of the factors and then choose the
best model from all the Mx's. Go to Step 3.

Then iterate between Steps 3 and 2 as before.

By using this approach, it is possible to identify
significant effects (either main or two-factor interaction)
that explains most of the variance.

For a more detailed explanation and example of its
use see Hamada and Wu, 1992. This paper makes use
of the second extension provided above ( Step 1" in
analyzing the results of the screening design. This
method should produce better results than the standard
analysis techniques normally performed. "Note that the
standard analysis of PB [Plackett-Burman] designs ends
at Step 1" (Hamada and Wu, 1992: 132). This standard
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analysis is the final method used in analyzing the results
of the screening design experiment, which in this paper
will be termed the Response Surface Methodology
(RSM) approach.

2.3 RSM Approach

This method uses the standard analysis methods found
in many experimental design texts or response surface
methodology texts, such as, Box and Draper (1987).
These standard analysis methods include: (1) examining
the effects of the main factors and identifying which are
large compared to the others; (2) examining the analysis
of variance (ANOVA) tables; (3) using normal
probability plots; or (4) the use of Pareto charts (a chart
consisting of bars whose length is proportional to the
absolute value of the estimated effects). In this study,
all of these are used to identify significant factors from
the results of the screening experiment.

The approach used to determine the significant
effects is an iterative one. That is, the first step is to
identify the significant main effects using standard
analysis methods as discussed above and then, if enough
degrees of freedom are left for such an analysis,
examining the interactions between these significant
main factors to determine if any of these are significant.
A step-wise regression approach is used to identify the
final model, containing the identified significant main
factors and any significant two-factor interactions.

3 RESULTS

The output from the THUNDER model is analyzed
using the three methodologies described above. Where
possible, the analysis was divided into two steps: the
first step identified only the significant main effects and
the second attempts to incorporate two-factor
interactions.

The first step of the analysis produced notably
different significant factors for each method, especially
when comparing the Hamada/Wu screening method
with the RSM and Box/Meyer screening methods. A
possible reason for this difference is that at the first step
of this analyses, the two-factor interactions are not taken
into account for both the RSM and Box/Meyer
screening methodologies. This helps explain why they,
the RSM and Box/Meyer techniques, produced similar
significant effects when compared against the
Hamada/Wu screening method.

The next step in this analysis attempts to identify the
significant two-factor interactions within the RSM and
Box/Meyer techniques. The results from this second

step produced similar models for each measure of
outcome or MOQ; that is, they are substantially more
consistent in identifying the significant factors across all
three methodologies.  However, there are a few
exceptions; of these exceptions, the MOO that provided
the best opportunity for further analysis is Blue Aircraft
Losses from Surface-to-Air Defenses, which is the
number of Blue aircraft lost from Red surface-to-air
defenses (i.e., surface-to-air missiles). For example,
THUNDER accumulates Blue aircraft losses over time
caused by Red surface-to-air defenses, in this particular
instance THUNDER is accumulating the losses over a
period of 30 days. This particular MOO produced
slightly different models (or identified slightly different
significant factors) for the Box/Meyer method
(Equation (1)) compared against the Hamada/Wu and
RSM methods (Equation (2)).

The Box/Meyer method concluded that the following
factors are significant (at an o = .10): A, B, J, L, AB,
and AI; which produced the following model

¥=1395-165-A+4436- B—2291-J
+1818- L—2228- AB—2432- Al

These significant factors can be identified by using
Table 1. For this method, “A” (Blue Air Defense to
Red Air Probability of Kill or Damage), “B” (Red Air
Defense to Blue Air Probability of Kill or Damage), “J”
(Blue Ground Control Intercept Radar Ranges), “L”
(Blue Sortie Rate), “AB” (the “A” and “B” interaction),
and “AI” ( the “A” and “I” (Red CAS/BAI Planning
Factors) interaction).

The Hamada/Wu and RSM methods concluded that
the following factors, defined in Table 1, are significant
(at an o = .10): B, AB, AL, BG, CE, and EJ; which
produced the following model

Y =1395+4454- B—2294- AB—244- AL

-2118-BG +437-CE-059- EJ. @
In order to determine which of these models best
predicts or estimates the actual MOOQ, a number of runs
needs to be completed to provide a validation or “truth”
model to compare these different models against. By
creating this “truth” model, a measurement criterion
can be used to check the accuracy of these models
produced from these different methodologies. The
measurement criterion decided on for this study is the
mean absolute percent error (MAPE); which is defined
by the following equation
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100 O le;l
MAPE =— . ) ——,
n o lX

where X; = (the actual observation), X ; = (the estimate
of X; using Equations (1) and (2) for each model), and e;
= (the difference between X; and X ), and n = (the
number of runs). A design of at least Resolution V is
needed in the validation of the fitted models to ensure
that the two-factor interactions are not confounded with
main effects or other two-factor interactions, which
would might confuse the results of the validation
dataset. For the Blue Aircraft Losses from Surface-to-
Air MOQ, five of the original main effects or factors
can be dropped since they are not included in either
model as either a main effect or interaction. Therefore,
eight main factors are left which allows a Resolution V
design with sixty-four runs (2v** fractional factorial).
When the sixty-four run validation dataset is
completed, the better methodology can be decided by
examining each model (Equations (1) and (2)) against
this dataset. The measurement criterion for the
Hamada/Wu & RSM screening methodologies is

MAPE 1y rsy = 43778

and for the Box/Meyer screening methodology is

MAPE ,,,, =31393.

Equation (3) is the model produced from the Resolution
V design (using the forward selection option in SAS),
assuming three-factor interactions and higher are
negligible.

¥=1395+443 B—0.02-G-2.74-J +2.04- L

(3)
-209-AB-238-AI-090-BI +052- BL
Assuming that the best MAPE value possible is obtained
from the model produced from the Resolution V design,
Equation (3) produces the following MAPE value

MAPE,, ,, =28452.

Comparing the other models' MAPEs, it is apparent that
the Box/Meyer screening methodology is almost as
accurate as the model produced from the actual
validation dataset.

4.0 CONCLUSIONS

The three analysis methodologies used in this paper
eventually converged to similar models or identified
significant factors in most cases, however, in a few
instances, such as Blue Aircraft Losses from Surface-to-
Air, the models did not converge for all three
methodologies. In this instance, the validation set of
sixty-four runs (Resolution V design) is used to compare
the different models produced; specifically, the
Hamada/Wu & RSM methodologies produced the same
model as contrasted with the model produced by the
Box/Meyer methodology. In this particular case the
screening methodology developed by Box and Meyer
(1993) provided the best predictor of the validation data.
However, all three methodologies are useful since the
purpose of a screening experiment is to reduce the
number of factors to be examined in further analyses.
The point to be noted here is that by using the screening
methodology developed by Box and Meyer, the results
are consistent with the other two methodologies and in
some cases better, but at a fraction of the cost or effort;
specifically, the number of iterations in refining the
final model produced by these different methodologies.

APPENDIX A: INPUT FILES
(AFSAA, 1992:6-3 to 6-8)

Air Rules (airrules.dat) data includes, for each side,
aircraft taxi times, main operating base, divert base
and dispersal base takeoff and landing delays, crater
repair times, rearming and refueling times, minimum
distances from FLOT of certain types of missions,
radar detection distances, lethality, loss value,
vulnerability, error, perception, target priority factors
of various facilities, priority and mutual support
factors, length of time a flight will wait for other
flights at a join point, over-the-FLOT defensive
counter air (ODCA) and fighter sweep (FSWP) orbit
time, ODCA minimum threats size, size ratio and
probability of detection, and mission supported by
ODCA.

Air-to-Air Probability of Kill (airairpk.dat) data
includes both killer and target ID, and the PK of the
killer ID against the target ID, and, for low resolution
for each target, the average percent killed per
engagement and the time this kill rate becomes
effective.

Probability of Detection (detect.dat) of each aircraft
type on each side by each aircraft type on the
opposing side.
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Air Defense to Air Probability of Kill or Damage
(advsac.dat) data includes target aircraft IDs for each
type of air defense site on each side and the upper
and lower limits for probability of kill and probability
of damage to the target by the site, and, for low
resolutino by side for each AD site, average percent
of enemy target types killed per engagement and the
time this kill rate becomes effective.

Air-to-Ground  Air  Munitions vs.  Target
(airgrdpk.dat) data includes air munition
effectiveness for each air munition on each aircraft
against each type component, type strategic target,
and type equipment, each anti-radiation missile
(ARM) and self-protect weapon (SPW) on each
aircraft against each radar type; and each mine
munition on each aircraft against each arc
construction type.

Fighter/Bomber Squadron (squadron.dat) data
includes mission class names; ID and name of each
squadron on each side, its owning command, main
operating base and dispersal base, mission class,
quantity and type of aircraft owned, the squadron's
relative effectiveness for each mission, and squadron
orders.

Air Planning (airplan.dat) data includes side
preplanned air tasking order (ATO) support flags and
flags that indicate, by side, whether a given
autoplanned mission will be supported by escorts.
Air planning factors are also contained in this file
and are determined by the air planning command and
by time. Different air planning factors include
squadron planning factors (escort to primary mission
aircraft ratios and time over target spacing);
battlefield air interdiction (BAI) planning factors
(target type priorities); barrier combat air patrol
(BARCAP) planning factors (value of assets to be
protected); close air support (CAS) planning factors
(CAS support planning rule); suppression of enemy
air defenses (SEAD) planning factors (depth, planned
effectiveness, and desired target drawdown
percentage); suppression and support jammer
planning factors (planned setback distances and
support depths); interdiction planning factors
(planned per-sortie effectiveness and desired target
drawdowns for each type of interdiction target and
depth factor curves); and offensive counter air (OCA)
planning factors (planned effectiveness and desired
target drawdown percentages).
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