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ABSTRACT

We consider a queueing system with C customer
classes under a nonpreemptive service discipline. The
goal is to find gradient estimators for the stationary
average sojourn time per customer of each class un-
der admission control. Due to the service discipline,
IPA estimators are not applicable. We present the
idea of harmonic gradient (HG) estimation, based on
the Fourier decomposition of periodic functions. The
canonical estimators can be used to obtain consistent
estimators for all the control variables in a single run.
However, the large number of values for each param-
eter required in the estimation can greatly affect the
performance. We then describe the implementations
of the phantom RPA method. This method requires
evaluating, in parallel, the dynamics of as many phan-
tom systems as customers in each busy period. Since
this number is random, the implementation of the
method can be rather complex. We use the Fourier
decomposition ideas to construct a hybrid estimator
that we call the phantom HG method. We then give
simulation results to compare the performance of the
estimators and their complexity.

1 PROBLEM FORMULATION

This paper focuses on a single server queue with a
non-preemptive service discipline. Customers of class
¢ have priority over customers of class b > ¢, for b,¢ =
1...,C. In our general model, N(t),c = 1,...,C
are independent renewal processes representing the
arrivals of each customer class. The service require-
ments of customers of each class are represented by a
sequence of 4.i.d. random variables with bounded sec-
ond moments. We assume that the process operates
at values of the arrival rates, )., and mean service
times such that the queueing system is stable. By
this we mean that the invariant measure exists, and
that it is unique and ergodic.
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The customers in the system are labeled: = 1,2, ...
according to the order in which they depart from the
queue. Let 7; be the arrival epoch of customer i and
n(i) = 3 ;I{r;<n}- Then customer 7 is the n(i)-
th customer that arrives to the system. Clearly, if
i starts a busy period, then n(i) Indeed, all
customers arriving within a busy period also depart
by the end of it, although in different order. Call
I.(n) the indicator function that the n-th customer
that arrives to the system isof class ¢ =1,...,C. We
use the notation Z = {I;[n(:)]}c=1....c:i=1,..., N, Where
1 indexes the service completions.

The system operates under parallel admission con-
trol strategies, namely, each arrival demanding en-
try to the system may be accepted or rejected. The
rates A, thus represent the effective arrival rates, af-
ter thinning. We assume the simplest model for the
admission control strategy, where the decisions of ac-
cepting customers of class c are independent Bernoulli
variables with parameter p.. Our results can be ex-
tended to Markov decision and other strategies (see
Vézquez-Abad and Kushner, 1990) via the surrogate
estimation approach of Vdzquez-Abad and Kushner
(1993).

We are interested in estimating the sensitivity
of the system’s response function F()), for A
(M,...,A¢), with respect to the effective rates ..
Note that since the system is under admission con-
trol, strictly speaking, then the sensitivity is not with
respect to the arrival rates. That is, the derivative
with respect to A, is defined as the derivative with
respect to p. evaluated at p. = 1.

Call X.()\) the stationary average sojourn time
per customer of class ¢. We shall use as our model
example a response function of the form F(\)
S KoAsXb(A), where Ky b = 1,...,C are con-
stants. We assume knowledge of the rates A.. Since

= 1.

0 0
ApXp(A) = A
oA (N) v

then, in order to estimate 9F(\)/0\., we can either

Xp(A) + Ip=c} Xo(N),
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construct the sensitivities of A\pXp(A),b = 1,...,C
with respect to each )., or else estimate X () and its
sensitivities with respect to each A, forb=1,...,C.

Call X; the sojourn time of the i-th customer
departing the system. Clearly, the sample average
(A/N) Zf’:l X;I.[n(3)] over a fixed number N of (to-
tal) customer departures is a consistent estimator of
AeXc(X). This follows because the ratio of the num-
ber of customers of class ¢ to the total number of
customers tends to A./A almost surely. Also, the er-
godicity of the unique invariant measure implies al-
most sure convergence of the sample sojourn times
per class to its stationary average.

Estimation of the desired gradient using a single
run simulation presents several problems. First, even
if we assume that A, is a scale parameter of the inter-
arrival times per class, IPA (Ho and Cao, 1991) can-
not be applied to this problem (Glasserman, 1991).
Other methods such as the likelihood ratio method
of Reiman and Weiss (1989) can be applied to the
Bernoulli decision variables, but it cannot be used
for evaluating the sensitivities at p = 1. The SPA
method of Gong (1988) can be applied to this prob-
lem and it is equivalent to the application of the RPA
method of Brémaud and Véazquez-Abad (1992). We
shall construct the RPA estimators for this problem,
though they may require a significant computational
effort. Methods that require perturbing the system,
such as the finite difference approach in Kushner and
Vézquez-Abad (1994) and the harmonic frequency
domain estimators of Jacobson and Schruben (1994)
may result in added estimator bias when performed
in a single run, by varying the effective arrival rates.
Furthermore, these perturbations, while straightfor-
ward to implement for simulation experiments, are
undesirable for on-line adaptive control.

2 FOURIER DECOMPOSITION AND
THE HARMONIC GRADIENT

Fourier Decomposition: We briefly present
the Fourier decomposition for a deterministic, scalar
function X (\) of a parameter A € IR, whose deriva-
tive we want to estimate. We are looking for an ex-
pression that relates 9X/9 to the “output” observed
from the system. We assume that X (\) is smooth.
Under these conditions, let F(t) = X (\g + h(t)), for
h(t) = asin(27rt). Then F(t) is a periodic function
on [0,1] and has the representation F(t) = F(0) +
Soo2 | fasin(nmt), where f, = 2f01 F(t) sin(nwt) dt.
Since F'(t) = > o2 (n7fn)cos(nnt), then f, =
7127 fol F'(t) cos(nmt) dt. Using a Taylor series expan-
sion for F'(t), it follows that

F'(t) = a2m cos(2mt) x
0X 0?

a_A(Ao) + h(t)gA—f(Ao +1(t) + O(a?)

and therefore,

X .
f2= a7 (30) + O(a) )
for a close to 0, since 2f01 cos?(nnwt)dt = 1, and

fol sin(2nt) cos?(2nt) dt = 0.
Equating the Fourier coefficient f, of F(t) and (1),

9X (ro) = (% /0 IX(/\o+asin(21rt)) sin(27t) dt +O(a?)

13D
(2)
The last expression allows us to estimate a deriva-
tive based on varying the input variable A as a func-
tion of time and observing the response from the sys-
tem. Suppose that we could actually evaluate the
steady state average X (Ao + h(t)) from a simulation.
Due to the properties of the trigonometric functions,
the integral in (2) is equal to

T-1
D" X (Ao + asin (21wt)) sin (27wt)
t=0

(3)
for any T, where w = 1/T. It then follows that Dr(a)
approximates the desired derivative up to @(a?). The
form (3) represents a weighted average of centered
finite differences with sinusoidally varying step sizes.
In order to see this, consider T = 2M + 1, for M an
integer. Then, since sin(27wt) = —sin(2rw[(2M +
1—t)] fort=1,...,M and sin(0) = 0, (3) can be
rewritten as

2

Dr(a) = —

Dr(a) =
4 X(Mo+h(t)—X(o—Rr(®) .
T ; ( 0 ) sin? (27wt)

where (4/T) Zﬁl sin?(27wt) = 1. Note that for T =
3, the sum reduces to a single term.

Harmonic Gradient Estimation: In frequency
domain experiments, the input parameters are var-
ied simultaneously during a simulation run by the
expressions Ac(t) = Ac(0) + acsin(2rwet), for ¢ =
1,...,C;t=0,...,T, where w, are the oscillation fre-
quencies, a. are the oscillation amplitudes, and T is
the simulation run length. The oscillation frequencies
are typically chosen to be Fourier frequencies (i.e.,
we=he/T,he € {1,...,[T/2]}).
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The harmonic gradient estimator is defined as

~

Acla,w) =

5 T-1
T ;:6 X (A(t)) sin(2mwet).

Assuming that the steady state simulation output
process can be locally approximated by a second or-
der Taylor series expansion, Jacobson and Schruben
(1994) show that this estimator converges in proba-
bility (as (we, ac) — (0,0)) to 8X (A(0))/0A.

If the simulation output process at time index t
depends on input parameter values at time indices
other than ¢, the oscillation frequencies may be forced
close to zero. This is actually the case of the average
sojourn time in a queueing system: the arrival rate
used to generate the interarrival between the t-th and
(t + 1)-st customer of class ¢ is A\¢(0) + acsin(2mwt).
This affects the observed sojourn time of customers
with indices higher than t.

A difficult problem of harmonic estimation is the
frequency selection problem (see Jacobson, Buss and
Schruben, 1991) when gradient estimation (C > 1)
is desired. This is because we are estimating Fourier
coefficients, hence the basis should be chosen so as
to extend the analysis in our previous section and be
able to estimate the effects of the different control
variables without confounding the frequencies.

Finally, a serious problem for the implementation
of harmonic estimators to adaptive control is that it
requires the system to be perturbed constantly.

3 PHANTOM ESTIMATION

We now introduce the concept of a phantom sys-
tem. The notation follows our framework of sec-
tion 1. The nominal system is defined by the input
streams of effective arrivals N.(t), the service time
distributions and the service discipline. We will use
independence of the input streams and assume that
lims—,00 Nc(t)/t — A almost surely.

Let n = {Nn}n=1,2,... be a sequence of binary deci-
sion variables. A phantom system is defined by the
sequence of interarrival and service requirements, plus
a particular sequence n. The customers for which
Nn) = 0 are allowed entrance to the phantom sys-
tem, and those having 7,z = 1, called the phantom
customers, do not enter the system.

By definition of the phantom system, the effective
arrival rates are given by Ac = Acpc, where p¢ is the
fraction of customers of class ¢ accepted in the phan-
tom system, that is, p. = limy oo 22,:1 I.(n)(1 —
In)/ 277:1 Ic(n).

Let Tr(i) = Ti» Sn(i) the service time of customer 1,
whose distribution depends on the class of customer

i, and X; its sojourn time. Define A; = Tp(iy1) —
Tn(s)- This quantity may be negative, indicating that
customer i + 1 has higher priority than customer i.
In the nominal system, Lindley’s equation yields
Xi = [Xi—1—Ai—1]* + Sn(s), where [z]T = max(0, z).
For the phantom system, the arrival epoch of the
n-th customer is T, as it is in the nominal system.
Its service time is defined as S, = Sn(1 —ny). Since
some of the customers present in the nominal system
are no longer present in the phantom system, then
the order of service completions is not the same as
that of the nominal system, although the order of
arrivals is preserved. Let 4 label the customers in the
order of their departures from the phantom system, 7;
being the arrival time of the i-th customer departing
the phantom queue. Define (i) = 3, I{#,>#). Then
A; = Ti(i+1)— Tha(i) represents the difference in arrival
times of consecutive departing customers as per the
phantom queue. Lindley’s equations become

Xi(n) = [Xiz1(n) — AT + Saw, (4)
which represents the actual sojourn time of a cus-
tomer in the phantom queue, provided that nz¢;) = 0.
Otherwise it keeps track of the wait and the interar-
rivals so that the recursion is valid for customers that
follow (see Vdzquez-Abad and L'Ecuyer, 1991). In
practice or in simulations, each customer is assigned
a service time and an arrival epoch. Equation (4) is
straightforward to evaluate, if the new order of ser-
vices can be computed. This is possible from the
knowledge of the classes and arrival epochs of each
customer. In order to simplify the notation, we shall
use X;(n) to denote the sojourn time of the i-th cus-
tomer departing the phantom system determined by
n, so that X;(0) represents the nominal system, for
which n, =0,n=1,2,...

A useful observation is that the phantom system
thus described is dominated by the nominal system.
By domination we mean that if a busy period finishes
in the nominal system, then necessarily the phantom
system has finished a busy period. That is, if 7 starts
a busy period in the nominal system, then n(i) =
n(i) = 4, since phantom customers do “enter” the
queue in (4) with zero service time. Recall that the
sojourn times X;(n) of a customer in the phantom
system is only meaningful if n5(;) = 0.

4 THE PHANTOM RPA

We now develop estimators of the desired derivatives,
where for ease of notation, the sensitivity parameter
A1 is fixed. The extension to other values of ¢ is
straightforward. A finite horizon estimator is con-
structed fixing N as the total number of customer
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departures. We want to estimate the derivative of
the average sojourn time of the customers of class c.

We construct a phantom system corresponding to
an arrival rate A} — 6 by setting 1 — p; = P{nn =
1} = (6/21)I1(n). Define the set E, € {0, 1}V by

N N
= {n: Znn(i)(l — Li[n(i)]) = 0, Z"n(i) = m}
=1 =1

so that only customers of class 1 can be phantoms,
and there are m of them, for m = 1,...,N. Let
N = Y, I;[n(i)] denote the random number of cus-
tomers of class ¢ among the first N to complete
service. Following the arguments in Brémaud and
Vazquez-Abad (1992),

N -
Pine Bnimy = () (= gyl

so that P{n € E1|Z} = N16/X1 and P{n € E,|I} =
O(6™). For small §, define

{ Zx (0)Ie[n(s)]-
—ZX (m(1

cl_

dn(A, 6) =

ﬂﬁ(i))fc[ﬁ(i)]} (5)

where N, = Ef\;l I[n(i)](1 = ns@y). We do not write
down the dependency of N, on 7. Recall that the
indices 7 = 1,..., N are ordered according to the ser-
vice completions of the corresponding systems.

We can write the expectation in (5) conditioning
on n and 7 as follows. Call E,, 7 the conditional
expectation given {n € E,,,Z}. Then

E{Xi(n)L[n()]|T} =

E{Z mI{Xi(ﬂ)Ic[ﬁ(i)]}}
N6
Y

)Elz{x (MIff(0)]} + O(62)

=F

Now ElI(X (’I] I [Fl ] E{ ]./Nl) E] 1 i "

I[n(i)] I1[n(4)]|Z}, where X;(4),5 > 0 is the SOJourn
time of the i-th customer to complete service in the
phantom system determined by Nag) = I{n@G)=n()}
(the index j counts different phantom systems ob-
tained by making each arrival to the nominal system
a phantom customer). Let 7:(j) = 1 = I{n(j)=a(i)}-
Then

Dn(A) = lim dn (A, )

1 N
E (N_c ;=1 Xi(O)IC[”(i)]
1 N
LS X))

Nc i=1 ) } (6)

is the derivative of the sojourn time of the first cus-
tomers of class ¢ to complete service by the time of
the N-th service completion.

Finally, consider the estimator

nN+N

S LG x

1 —nN+1

yn(ce, N) =

nN+N

(I_Vc_,,(N_) Z Xi(0)Ic[n(i)]

v i=nN+1

1 nN+N ‘
- X ()G L[
Nen(N) i=§+1 (3)7:(5) el ()])
where Non(N) = N¢ (nN + N) — No(nN +1) =
SN | Ie[n(i)] and Nen(N) is defined similarly.
The finite horizon derivative in (6) converges to
the stationary derivative as N — oo, since the limits
N — oo and § — 0 are interchangeable in dy (X, N),
provided that the system is stable. Then as N — oo,
E{yo(c,N)} converges to the derivative of the sta-
tionary sojourn time of customers of class ¢ with re-
spect to A\;. Notice that if N(n) is a random number
such that N(n) — oo almost surely as n — oo, then
E{yo(c, N(n))} also converges to the same value.

A “Non-Reset” Estimator: The estimator
yn(c, N) considers the differences between the nom-
inal and the phantom sojourn times of customers
nN +1tonN + N due to N; possible phantom sys-
tems, given N and Z. From the construction of the
phantom systems, X,(j) = X;(0) for all ¢ < j. This
follows because if (i) < n(j) then n(i) = n(i), since
the nominal and phantom systems coincide. After
the ficticious service completion of the phantom cus-
tomer, services may change their order in the phan-
tom system with respect to that of the nominal. From
the domination property, X;(j) = X;(0) for all those
customers i not belonging to the nominal busy period
where j belongs.

We now present a second estimator that does not
involve dividing by a random number, and argue that
this estimator is more desirable than y,(c, N). Call
A= Zf=1 Ac the total effective arrival rate, and

A nN+N

TeM =35 2

j=nN+1
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a(nN+1)
[Xz(o) - X'L(])T_]'L
i=nN+1

(D e[n(3) 11 [n(4)]

where a(i) is the index of the last customer in the
nominal busy period where customer ¢ belongs. This
estimator considers the total differences in the cumu-
lative sojourn times across the whole path, between
the nominal and N phantom systems. It can be writ-
ten as

A nN+N
YieN) =35 Y hbG)
j=nN+1
a(f)
> X:(0) - (BRG] (7)
i=¢(j)

where ¢(j) is the index of the first customer in the
busy period where customer j belongs. This follows
because customers not belonging to the nominal busy
period where the phantom customer belongs have the
same sojourn time in the nominal and phantom sys-
tems.

It is shown in Vézquez-Abad (1994) that Y,}(c, N)
is consistent in the average sense of Kushner and
Vézquez-Abad (1994) for the derivative of A X (1)),
that is,

nll{go ;mZ—OE ;Tl[)\cXc()\)]- (8)

This result is true for any value of N. Since we are
no longer dividing by a random number, (7) is addi-
tive in the sense that Z;__lo Y,}(¢,N) = Yg(c,nN).
In practical optimization problems, property (8) can
be used to construct stochastic approximation algo-
rithms that are asymptotically optimal, using a fixed
value of N for adaptive control. For the estimator
yn(c, N), a stochastic approximation procedure would
require the estimation interval lengths N to increase
in order to approximate the optimal performance.
This is not practical for adaptive control problems.

Due to the indicator functions I;(j), the amount
of computation required to estimate the gradient of
a function is comparable to the amount of compu-
tation to estimate the derivative with respect to the
total arrival rate. That is, given the utilization fac-
tors of the system, the computational effort does not
increase with C. However, the phantom systems are
computed using Lindley’s equations and this requires
keeping the same number of registers as phantom sys-
tems. For each nominal busy period, the number of
phantom systems is the same as the (random) number
of customers in that busy period. This may become
large, when the utilization factor is close to one.

5 THE PHANTOM HG METHOD

We now present a hybrid estimation procedure based
on (3) using the phantom systems to evaluate, in
parallel, the values of the stationary sojourn times
Xc(Ac + asin(2rwt)). For ease of notation, consider
the estimation of the sensitivities with respect to A;.
The nominal system has an arrival rate of A1(0) + a,
where a > 0 is small. We assume that the system is
stable for all A; < A1(0)+a. Let T be a fixed integer,
w = 1/T and define:

A1(0) + a sin(2nwt)
bt 21(0) +a or

-1

Common Random Numbers: Let M be an inte-
ger and take T = 2M +1. A total of 2M phantom sys-
tems are calculated from the nominal path as follows.
For the n-th arrival to the nominal system, generate
one uniform random variable u,. This random vari-
able is used to determine the 2M phantom systems
by assigning n,(t) = I1(n)I{y, >p,},t = 1,...,2M.

The phantom systems corresponding to the finite
differences (indexed by ¢t and T—t, fort = 1,...,2M)
use common random variables. The use of common
random numbers in the phantom finite difference ad-
dresses the problem of variance reduction. For the
case M = 1, this scheme reduces to the phantom fi-
nite difference scheme introduced in Vézquez-Abad
(1989).

Common and Antithetic Random Numbers:
We define the phantom HG estimators exploiting the
combined use of common random numbers for the
paired systems in the finite differences, and antithetic
random numbers for adjacent systems.

Let U be an integer and let M = 2U, T = 2M + 1.
Upon arrival of customer n into the nominal system,
we generate the uniform variates {11 (t),t=1,...U}.
We then define for each t =1,...,U:

mm(t) = Il(n)l{un(t)>pt
(T —1) = () {u,(t)>pr_s}
MU +1) = I(n) (1w (t)>pusn}
(T - U —t) Il(”)I{l —un(t)>p(r-v_1)}

Small values of the amplitude a are desirable for
accuracy, but the difference between the correspond-
ing values of A1(t) and A1 (M + 1 — t) would be very
small. The use of the same random number for the
admission variables would result in many busy peri-
ods were these systems have exactly the same trajec-
tory. Antithetic random numbers ensure the distine-
tion between these different points; common random
numbers are kept for the finite differences.
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The Estimators: The phantom systems have an
effective arrival rate A1(t) = X1(0) + asin(27wt),
Ac(t) = Ae(0), ¢ # 1.

Let N be the total number of customers served
within our estimation period for the nominal system.
Define A = )~ _A.(0) + a to be the total arrival rate.
Let X;(¢) be the sojourn time of the i-th customer
leaving the phantom system parameterized by t, and
7:i(t) = 1=na()(t). The estimator is then constructed
as:

nN+N

_- Z sm(27rwtz Xi(#)7:(t) e[ (4)]

i=nN-+1
9)

Since the phantom systems appear in (9) in an ad-
ditive way, then for each t,

Y(cN

nN+N

—Z > Xi®m) L[aG)] =

m—O i=nN+1

nN
(,\NCT(LTJLVN, t)) 1 ;Xi(t)ﬁi(t)lc[ﬁ(i)],

Nc(nN,t) ‘

where N¢(nN,t) = Z:ﬂ I.[n(4)]7:(t) is the number
of class ¢ customers among the first nN to complete
service in the phantom system labelled by t. For
any N, we have limp_,oo Nc(nN,t)/N = (A:(t)/N)
almost surely. Also, the sample average of the so-
journ times X ;(£)7;(t)Ic[7(3)] converges almost surely
to the stationary average X.(A\(t)), where A(t) has
A1(t) = A1(0) + asin(27wt) and A(t),c = 2,...,C
are constant.

This estimator is consistent in the average sense of
Kushner and Vazquez-Abad (1994) for the weighted
finite difference (3), that is,

n—1
Jim = 3" Br2(e M) = 5 ReXe)] + O
m=0

Since the perturbations are now performed in par-
allel, most of the common problems of harmonic es-
timation that are related to the undesired effects of
perturbing the system are no longer present. In par-
ticualr, the oscillation frequencies w. do not have to
approach zero, since we have consistency of the es-
timation of the stationary average sojourn times for
each phantom system. Also, to estimate the gradi-
ents, the same frequencies can be used for all the
control variables A.,¢c=1,...,C. In this case, 2MC
are constructed. While the effort here does increase
explicitly with C, the number of parallel phantom
systems needed simultaneously is always fixed. In
most applications, the utilization factor may be close

to one, while the number of different classes of cus-
tomers is typically not very large. Therefore, the
phantom HG may yield a more practical estimator,
albeit biased.

6 SIMULATION RESULTS

We present the results from the simulation of a single
server queue with two customer classes and a non-
preemptive service discipline. Class 1 customers have
higher priority than class 2 customers. The arrival
processes are Poisson with parameter A; for class
i, and the services are exponential with parameter

= 1.0 > Ay = A1 + Ao. For this model, the the-
oretical values of the stationary averages and their
gradients can be evaluated analytically. All the sim-
ulations were performed on a PC (486, 33 MHz, 8M).

Three systems were simulated. In our first system,
p = 0.60 with A\; = 0.45 and A2 = 0.15. In the second,
p = 0.75 with A\; = 0.60 and Ay = 0.15. In the third,
p = 0.85 with A\; = 0.65 and As = 0.20.

We used a total of N number of customers and
performed a Monte Carlo simulation accumulating
the values (non-reset estimation) to obtain the esti-
mates {Y,*(i,¢,N),n=1,...,8}, S = 50, for method
k =1,2. The sample mean was calculated, as well as
the sample mean square error

(A cXc(N),2
MSE = (1/5) Z[Y i,¢,N) — Iy )2
The Phantom RPA Method: The results for the
Phantom RPA method are reported in table 1. We
give the theoretical value D;(c) = 9(A:X(A))/0M:.
We show in this table the mean number of customers
per busy period (NBP) as well as the maximum num-
ber of customers in a single busy period (Max). We
used N = 3000.

A comparison between tables 1 and 2 shows the
quality of the phantom RPA method. However, this
method requires the calculation of as many phantom
systems in parallel as customers in each busy period.
Even if long busy periods are rare, the code uses all of
the memory required. Actually, we could not get the
results for p = 0.85 because the simulation consumed
all of the available memory in the computer.

The Phantom HG Method: We used a. = 0.01),
for the estimation of the derivatives with respect to
Ac. Recall that when T = 3, the phantom HG method
reduces to the phantom finite difference (FD). In ta-
ble 2 we give the results of the phantom HG. We used
a fixed value of N for each system (see table 2) for
T =3,5,9. In our experiments, the variance showed
a dramatic reduction in passing from T =3 to T =
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p=0.60,N = 3,000 p=0.75,N = 10,000
Max = 106 Max = 275
Theoretical | Mean | MSE | Theoretical | Mean | MSE
D:(D) 3.80 3.75 | 0.13 7.19 701 | 0.40
D1(2) 2.45 2.40 | 0.49 8.81 8.59 | 3.31
Da(1) | 082 0.85 | 0.03 1.50 151 | 0.10
Dy(2) 5.43 5.34 1.05 14.50 14.29 | 4.92
NBP - 2.50 0.02 - 4.00 0.02

Table 1: Results for the Phantom RPA Method

to T'= 9. We performed other simulations at higher
values of T (up to T = 51) that showed marginal vari-
ance reduction at the expense of computation time.

We compare the results for T 5 and 9 with
the phantom FD (T = 3) using higher values of N
(shown in table 2). The computational effort of these
longer simulation runs using the phantom finite dif-
ference is comparable to the computational effort of
the phantom HG with T = 9 using the smaller N.
The theoretical values D;(c) correspond to the the-
oretical weighted average of the finite differences (3)
that approximate 9(A.Xc()\))/8A;.

It is clear from table 2 that the phantom HG
method with T = 9 performs no worse than the phan-
tom FD method (T = 3) with a larger horizon N. In
many problems, the code for calculating the parallel
phantom systems can be optimized to reduce the time
of computation even further. This is the subject of
on-going research. The advantages of using a shorter
finite horizon N with, say, T = 9 are clear: first, it al-
lows for more frequent updating when the estimation
is used in the optimization context. Second, if we
can implement U parallel processors that can com-
pute the four corresponding phantom systems, the
actual time of computation could be greatly reduced.
Thus we can improve accuracy in the estimation with
shorter runs.
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