Proceedings of the 1994 Wunter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

AN INTRODUCTION TO EXTEND™

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, California 95119

ABSTRACT

This document presents an overview of Extend, a mul-
tidomain, hierarchical simulation modeling tool. Extend
is designed around a modern graphical user interface and
is extensible into many different areas of application
including both discrete event and continuous systems.

1 INTRODUCTION

In the past ten years, simulation software has made
great strides in power and ease if use. The power
available on an analyst's desktop today exceeds what was
available on mainframes ten years ago. Additionally, new
user interface developments have made that power far
more accessible. What has been achieved, however, is
only the beginning. With features such as hierarchical
modeling, object orientation, libraries of modeling
constructs, and a graphical user interface, Extend
represents the next generation of simulation software.
The low cost and ease of use of Extend is allowing many
analysts to place it along side their spreadsheet and word
processor as a necessary business tools. Extend is giving
simulation power and flexibility to those who would
normally be unable to commit the time and money re-
quired for traditional simulation programs. Analysts no
longer need to become experts in a particular modeling
tool or hire consultants to utilize simulation technology.

Extend bridges the gap between a simulator and a sim-
ulation language. Models are constructed in a network
fashion by specifying the logical flow through the
Extend blocks with connectors similar to a simulation
language. The Extend blocks, however, can be as rich in
features and utilize a similar parameter style input as
typically found in simulators. An Extend block can be as
simple as an addition function or as complicated as
thousands of lines of code will allow. The blocks
themselves are built with a compiled simulation specific
language, ModL, which is built into the Extend
authoring environment should they want to enhance
existing or develop new blocks. This gives modelers the
capability of building custom libraries (block sets) of
high performance blocks for a specific application or
industry. Currently, in addition to the libraries of blocks
produced by the Extend developer, Imagine That, Inc., no

538

fewer than 12 third party libraries are available for
various industries. They range from libraries designed to
enhance the Imagine That's own Discrete Event library to
highly industry-specific libraries, in areas such as
designing paper mills or modeling environmental
systems. The true elegance of Extend is that each of
these libraries are built with the same block development
tools as are used by Imagine That, Inc. to develop their
own blocks. In addition to the ModL language, help,
custom icons, and dialog parameters are specified
graphically. This results in a truly integrated product
which is specific to a particular industry, like a
simulator, but because modelers still have access to the
full Extend product has the power of a simulation
language.

Extend was designed around a graphical user interface.
This interface was integrally designed from the start, not
grafted onto a development of a DOS or mainframe based
program. The method of model entry and analysis as well
as specific graphical support tools create an environment
uniquely suited to modern "point and click" interfaces.
This results in a consistent, easy to use simulation prod-
uct that is a natural environment to analysts who are ac-
customed to a windowing interface. Extend is available
for Microsoft Windows and the Macintosh. These operat-
ing environments have become industry standards sup-
porting a wide range of applications which can be used to
support the modeling effort with simple "cut and paste”
or automatic information exchange. Some examples in-
clude: spreadsheets that can be used to store model input
and output data without elaborate import or export rou-
tines, and drawing programs whose images can be pasted
into Extend as an icon.

Extend is on the leading edge of the "state of the art".
Other simulation vendors are only now beginning to de-
velop and release their "next generation" simulators with
features that Extend has supported since 1988.
Specifically, features such as hierarchy, industry specific
libraries, object orientation, and authoring environments
are only now beginning to emerge from the traditional
simulation software vendors (Collins and Watson 1993)
(Hendriksen 1993). In any case, the cost, in terms of dol-
lars and time for these products, continues to be much
higher than that of Extend. Extend is bringing simula-
tion to those who need this technology, not just a select

Extend

few who have had the resources for traditional simulation
tools.

2 BUILDING AN EXTEND MODEL

Extend models are constructed with library based iconic
blocks. Each block describes a step in a process or a cal-
culation. As stated earlier, blocks reside in libraries. Each
library represents a grouping of blocks with similar char-
acteristics such as Discrete Event, Plotters, Electronics,
or Business Process Reengineering.

There are two types of logical flows to and from the
Extend blocks. The first type of flow is for items which
represent the objects that move through the system.
Items have attributes and priorities. Examples of items
include parts, patients, or a packet of information on a
network. The second type of logical flow is for values or
information. Values represent a single number.
Examples of values include: the number of items in
queue, the result of a random sample, and the level of
fluid in a tank. Each block has connectors which are the
interface points of the block. Connections are lines used
to specify the logical flow from one connector to an-
other. Item connectors and connections are represented by
double lines and value connections and connectors are
represented by single lines. A single server, single queue
would have the following form:

)

JyU LT D
Generator Queve, FIFO Aotivity , Delay Exit

Figure 1: A simple model, single server single queue.

The block on the far left represents a Generator which
periodically creates items. Following this is a Queue
block which holds items until requested by the following
block, the Activity Delay. The Activity Delay represents
a limited capacity of one processing unit and delays an
item for a fixed amount of time. The last block in the
model is an Exit block which removes items from the
system. An enhancement to this model would be to spec-
ify that the delay in the Activity Delay is determined by
a specific random distribution. This can be done by con-
necting the output of an Input Random Number block to
the delay (labeled "d") connector on the Activity Delay
block as follows:

acmar]
Input Random ®

Figure 2: A simple model with random process times

Another feature that can be added to the model is a
Discrete Event Plotter which plots, in this example, the
contents of the queue. The first Plotter Discrete Event

539

value input connector will be connected to the Queue's
length (labeled "L") value output connector as follows:
=)

Input Random ®
Figure 3: Discrete Event Plotter added to simple model

Simulation parameters such as number of runs and
simulation end time can be specified in the Simulation
Setup menu item under the Run menu. The simulation
can then be run by selecting the Run Simulation menu
item from the Run menu.

During the run, the current simulation status is dis-
played in a bar near the bottom of the monitor screen.
This displays the estimated time before the run will be
completed, the current simulation run time, the number
of simulation steps completed so far, and the current
simulation run number.

Once the simulation run has completed, the results of
the simulation are contained within the blocks. Double
clicking on each block reveals the information collected
from the simulation run. For example, double clicking
on the Queue FIFO block opens the dialog which shows
the following information about the state of the Queue

FIFO block:
F_’Ig
1O

m]

[2] Queue, FIFO

Firstin, first out queue.

Maximum queue length -

[stop simulation when the queue is full
Land W are: @ continuous
QO histogram

Arrivals {107 Ave. length;0.23461032496,
Departures; 105 Ave. waiti0.26440263836
Utilizalion:0.17161325026{Max. length
Comments Max. welti1.85718292869

Items walt for processing here

It

o

o <l
o1&

(FeTD)ouewe Fro1[5]

Figure 4: Dialog of Queue FIFO

The plotter block shows the number of items stored in
the Queue FIFO over time:
IO R (7] Plotter, Discrete Event INERRENENCE
CTus T * T [R [RTAT AT 9]

Plotter Discrete Evoat

Number in Queve

ol i || ;I
60

Time

Figure 5: Plot of queue length

540

Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to
another program such as a spreadsheet or database, dis-
played in an animation, or even used to control some. as-
pect of the computer's operation through external device
drivers.

3 HIERARCHY

There are-two methods for building custom blocks in
Extend. One is hierarchy, a second is through the ModL
scripting language which will be discussed later.
Hierarchical blocks represent a collection of blocks
grouped under a single icon. Hierarchy can be any num-
ber of levels deep and hierarchical blocks can be stored in
libraries for use in other models.

One method for building a hierarchical block is to
build a model on the worksheet. Select the blocks to be
contained within the hierarchical block and choose "Make
Selection Hierarchical" from the Model menu. Extend au-
tomatically creates connectors on the new hierarchical
block where the interface points are to the remainder of
the model. Double clicking on the hierarchical block
brings up the individual blocks so that individual param-
eters can be modified. The structure of the block, includ-
ing unique help text, icon, and connectors can be edited
by option double clicking on the hierarchical block. At
any point, the block structure may be edited to change
the external connectors, blocks within the hierarchy, the
appearance of the block icon, or any other customizable
feature of the block. Once a block has been created it can
be optionally stored in an Extend library and reused in
other models.

Hierarchy is important in graphical modeling for large
models. Without hierarchy, large models are difficult to
comprehend or maintain. Hierarchy allows the modeler to
flexibly group logical sections of the model. This feature
also supports team modeling. As each hierarchical block
is independent, blocks created by different modelers can
be easily combined. Because any values and names used
within a hierarchical block are local to that block, all
that needs to be defined are the block external interface
requirements.

4 STANDARD EXTEND LIBRARIES

The standard Extend libraries include functions for dis-
crete event modeling, results plotting, generic calcula-
tions, electronics design, interprocess communication,
and utilities. For discrete event modeling, the most
commonly used standard libraries are the Discrete Event,
Generic, and Plotter. Additional, optional, discrete event
libraries include the Business Process Reengineering and
Manufacturing libraries which will be discussed in detail
later. -

Extend supports the following general modeling func-
tionality for discrete event modeling:

Krahl

« Attributes - Unique variables which are local to the
items moving through the simulated system.

« Priorities - A unique value, local to a given item,
which can be used to rank items in a queue or interrupt
items in process.

« Values - The number of items represented by a single
item. Setting a value will create clones of an item
when that item arrives to a queue, resource, Or exit
block.

The most commonly used block types in the Discrete

Event library are as follows:

« Activities - These represent limited capacity time de-
lays and include the Activity Delay, Activity
Attributes, the Activity Service, and the Activity
Multiple blocks.

« Batching - Batching in Extend allows multiple items
to be combined into a single item and then later
restored to their original items. The Batch and Unbatch
block perform this functionality.

« Resources - Resource blocks hold a limited number of
items which can represent scarce resources in the
model. Typically, resources are batched with an item at
the start of a process and unbatched from the item
when the process is complete. In the Discrete Event
library, the Resource block serves this function.

« Decisions - The Select DE (Discrete Event) blocks in
Extend allow items to choose one of a number of
paths based on a value input to the Select block. The
BPR and Manufacturing libraries contain more sophis-
ticated versions of this block.

A simple Extend model using these blocks:
i)

Resource .
Input Random *

Figure 6: Discrete event model

This models a single queue, multiple server system
with a rework loop. The resource is acquired before
processing and not released until the item has success-
fully completed processing.

The Generic library is used for both continuous model-
ing and discrete event modeling. In the continuous mode,
calculations are performed at each evenly spaced clock
step. In the discrete event mode, calculations are made in
response to a request (message) from a discrete event
block.

When used with Discrete Event library, the generic li-
brary is typically used to provide values for inputs or op-
erate on the value outputs of the discrete event blocks.

Extend

Typical examples of using the Generic library in this
mode include using a Decision block to compare the
length of two queues or using an Input Random Number
block to generate a random time delay for an Activity.

There are a number of classes of generic blocks. These
include: mathematical calculation, integration, file opera-
tions, logical calculations, integration, statistical calcula-
tions, error reporting, simulation events (such as playing
a sound or displaying a dialog), accumulation, and
threshold detection.

In addition to the above libraries, Extend also includes
libraries for statistics, animation, plotters, utilities, elec-
tronics, filters, digital circuits, controls, and apple
events. Libraries are available from third party developers
for control systems, paper manufacturing, neural net-
works, biology, and signal processing.

5 EXTEND MODELING SUPPORT
FEATURES

Extend is a complete modeling environment which not
only gives the simulation modeler complete model build-
ing and analysis tools, but also allows the modeler to
communicate with other software for data input and anal-
ysis. In addition, there are many thoughtful features de-
signed specifically to support the hierarchical, graphical,
object oriented environment. Following is a list of some
of the most interesting Extend modeling support fea-
tures.

5.1 The Worksheet and Drawing Tools

Extend models are built by dragging the appropriate
blocks from the library window or pull down menu and
placing them on a main worksheet. The Extend modeler
can zoom and scroll this worksheet as well place ex-
planatory text on the screen. There is also a set of
graphic tools which allow the user to draw various
shapes and lines on the screen to further enhance model
presentation. Of course, because Extend is a native
graphical user interface application, the clipboard can be
used to paste graphical objects in to Extend as well as
copy Extend models, inputs, and outputs into other ap-
plications. For example, a symbol can be drawn in a so-
phisticated drawing package and then pasted into Extend
as an icon or on the background screen.

5.2 The Notebook and Cloning

In addition to the main worksheet, Extend also makes
use of a Notebook which can contain auxiliary model in-
formation. Perhaps the most interesting use of the
Notebook is using it to contain cloned dialog items (a
cloned dialog item is a copy of a block dialog item
which can be placed in a hierarchical block the model
worksheet, or in the model notebook). This feature
solves the problem of giving the user easy access to an

541

important dialog variable which may be buried under
many levels of hierarchy. The notebook can also contain
graphical objects and text. This gives the Extend modeler
the capability to build a customized user interface with
cloned dialog items, label them with industry specific
text, and use graphic objects to enhance the presentation.
The example below represents access to important model
parameters from over 20 blocks and was built by the au-
thor in less than an hour. It includes the ability to mod-
ify all important simulation input parameters, reporting
simulation results and graphing variable levels.

Call Center 1 2 3
I[)'gt:" Number of calls at simulation stort| |8 13 18
- Calis per hour| | 250 [[300 ||S00
Capacity of queue (number of calis)| |S 10 12
Time 1o process call| |2.66 [|2.66 [|2.66
Number of operators| |10 15 20

1¢>2 1¢>3 2¢>3

Number of Links: E B E

T Number of calls in process || 10 15 20

Results: Call center utliization [0.985 | {0.886 | [0.915

‘ Calls processed {103 [[137 |{198
Number of calls waiting ||5 1 9

Average number of calls walting || 2.69 0.948 | |3.375

1¢-22 1<->3 2¢->3

Figure 7: Using the Extend notebook to create a custom
interface

5.3 Spreadsheet Access

Extend can access spreadsheets in a number of ways.
As mentioned earlier, simulation data can be cut and
pasted to and from GUI compliant spreadsheets. There
are, however, other, more automatic methods which in-
clude Apple Events, which allows the "live" transfer of
data, and the publish and subscribe function on the
Macintosh which allow entire tables of data to be trans-
ferred at the beginning or end of a simulation run.

5.4 Named Connections

Named connections allow the modeler to transfer the
logical model flow from one point in the model to an-
other. This is useful in reducing the "spaghetti” of con-
nections particularly in a large model where some con-
nections may span the entire worksheet. Extend has a
"Show Named Connections" feature which allows the
modeler to trace the flow through the named connections.

942

5.5 Equations

The equation functions, used in the Equation block,
provide a block level method of evaluating complex
equations. This functionality gives access to the ModL
language and functions in a runtime format. Full access
to the ModL language, system variables, and up to 5
user input variables is available.

5.6 Controls

There are three controls in Extend which can be used
for interactive user input. These are:

« Slider - Provides a continuous range value inputs con-
trolled by a sliding mechanism.

« Switch - Provides a 0/1 input.

 Meter - Reports a continuous range of values.

Each one of these controls is represented as a tool on
the screen (or within a block) that the user can manipu-
late either before, during, or after the simulation run.

6 PLOTTERS AND TABLES

Extend has a number of plotters and tables that can be
used to represent simulation results, store simulation in-
put and output and provide ASCII file transfer capabili-
ties.

For discrete event modeling, the following plotters are
useful:)

« Plotter Discrete Event - Displays the value of up to
four variables throughout the run. The plot data is
stored in a table which can be viewed or transferred to
another application.

 Plotter DE Multisim - Plots one variable over four
simulation runs.

* Plotter DE Error Bars - Records an observation of a
variable's mean over a period of time and over multiple
runs plots the mean and standard deviation for each
batch.

7 BPR AND MANUFACTURING LIBRARIES

The BPR (business process reengineering) and
Manufacturing libraries are vertical market libraries pro-
duced by Imagine That, Inc. They are discrete event li-
braries which provide additional blocks to be used in con-
Jjunction with Extend's standard libraries.

The BPR library is designed for modeling business
processes. Each block in the BPR library uses business
terminology. Examples include the Transaction,
Decision, and Labor blocks. The blocks are represented
by standard flow-charting symbols which make models
easier to understand by those unfamiliar with Extend.

Krahl

The Manufacturing Library focuses on industrial mod-
eling. It includes constructs such as conveyors, AGV's,
flexible batching and unbatching operations, and en-
hanced queuing and preempting operations.

8 MODELING IN EXTEND

Model building in Extend is a "drag and drop" opera-
tion. The modeler selects a block from the appropriate
library window (or menu) and drags it with the mouse
onto the Extend worksheet. The modeler can connect the
connectors from one block to the next, and set the block
dialog values, defining the system logic.

The following illustrates two different models built in
Extend. The two approaches presented are, in the author's
opinion, two of many that could be used by a modeler.
Both are intended to illustrate graphical model building,
hierarchy, and presentation to the end user.

8.1 A Call Center Model

The first model is a call answering center for airline
reservations. There are three regional call centers, each
one with its own queue of calls. Should a queue become
full, the call can be transferred to another call center if a
link to that call center is available and there is space in
the queue at that call center (otherwise the caller will not
get through and will be counted as lost business).

incoming Routeto Process at
Calls Call Center Call Center Extt

Figure 8: Call Center model

At the top level, only hierarchical blocks are visible.
This model represents two levels of hierarchy (some of
the hierarchical blocks contain hierarchical blocks them-
selves). This illustrates a complex model being repre-
sented only by its four most major steps. The actual
number of library blocks is 104. While certainly not a
large model, even this number of blocks, displayed with-
out hierarchy, would be impossible to display here.
Below is the hierarchical block which describes the
arrivals to the system. This block includes an Import
block which generates the item, two Constant blocks and
a Divide block which calculates a time between arrivals
based on a user specifies rate of arrivals, and an Animate
Item block which will show an animation action at the
top (worksheet) level when an item passes through it.
This hierarchical block also includes a clone of the dialog
value of the lower constant block which represents the
rate at which arrivals occur. Additional text has been

Extend

placed next to the clone and a box drawn around it to
enhance clarity.

2 O] foiiionnieg | |G E

Figure 9: Hierarchical Block in Call Center Model

Significant model parameters such as the initial num-
ber of calls, the average number of calls per hour, the ca-
pacity of the queue, the number of operators on duty, the
average time to process a call, and the number of links
are cloned to the Notebook (see Figure 7). The Notebook
also contains the simulation results of the total through-
put, the average number in the queue, the current number
of calls in process, the utilization of the operator, and the
utilization of the links. In addition, cloned plots of the
number of calls waiting and the number of calls in pro-
cess are in the Notebook as well. This is an example of a
special purpose simulation created from an Extend model
with only "cut and paste” operations. The user is able to
manipulate the critical input parameters and view simula-
tion results from the Notebook alone. If desired, virtually
any Extend model parameter can be brought forward to
the Notebook.

Another possible approach to this model would be a
more modular model. This would allow the user to vary
the number of call centers by building hierarchical blocks
representing the links, operators, queues, decisions, and
inputs to the model. A model constructed in this fashion
would yield a more complex model at the top level, but
would allow the modeler to easily change from three to
four call centers by adding additional hierarchical "primi-
tives".

8.2 An Environmental Model

The following model is drawn directly from Pritsker
(1986) (referred to as "Cedar Bog Lake"). It models a
simple ecosystem for consisting of solar energy, plants,
herbivores, carnivores, organic material, and energy
transfer. The equation below (1) indicates the relationship
between each of these factors.

solar =95.9(1.0 + 0.635sin (2 time))
d(plants)
ar
d(herbivores)
dt

; (¢))
ﬂmr’;vﬂ = 4.85herbivores — 4.65carnivores

Mii’ﬂl = 2.55 plants + 6.12 herbivores +1.95carnivores

= solar — 4.03 plants

= 0.48 plants —17.87 herbivores

d(energy)

y = 1.00 plants + 6.90 herbivores + 2.70carnivores
!

543

At the highest level, the model appears as follows:

Seasen: Vinter

I:D’S"‘" Plants
Herblivores \
Q—j Cam|vor.gL-Orgomc Materie)
lants. Plon(s\
"J Herblvores Energy Trensfer

Cernivores—a

—
'

H
é%
H

<

-

Soler-
Plonu;@
Herbivores:
Cam!vonsE
= % @—Cernivores Qrganic Meterial
hd Energy Trensfer.
Figure 10: Cedar Bog Lake

The actual equations are defined graphically within
each of the hierarchical blocks. For example, the block
which calculates level of plant life would be:

Figure 11: "Plants" block

The Notebook has also been used to display the plots
for each of the environmental variables:

][] r]=u [L[QIA[2] ¢
Vakie v2

Solar & Plaats
-~ : =
128.73] / \ ‘f \\ 2e.73
75| 7 ™ s
66.25) i i ‘ i o2
° s 1 13 2
— Solr —¥2Plnts Time

Herbiveres & Carntveres

1

o[t] v (0 S[QA[2] 2
Vake 2

.75

ool yal

023

o os 1 15 2
ﬂ = Herbtveres e Y2 Carniveres

Figure 12: Graph of Cedar Bog Lake variables

These examples illustrate the modeling flexibility of
Extend. The Call Center model is derived from an actual
system (differing only in the numbers used) and the
Cedar Bog Lake model is an implementation of a classic
continuous simulation example. Note that neither of
these models required any programming to create either
the model or custom user interface.

9 MODL

ModL is the programming language which defines the
logic of each Extend block. The ModL language is
similar to the ¢ programming language. This allows
Extend users who are familiar with the ¢ language to be
able to use ModL easily. Each block has a series of

544

ModL message handlers and procedures within it which
provide the primary method of interfacing with other
blocks.
The message handlers are functions which are called in
response to system events. Typical message handlers are:
+ on initsim - Called at the start of the simulation and is
typically used for initializing the block variables.

« on checkdata - Called before initialization to check the
consistency of the simulation parameters and construc-
tion.

on simulate - Called at each simulation event. Most
discrete event blocks ignore this event unless an event
is scheduled to occur within that block at the current
time.

on endsim - Called at the end of the simulation and is

usually used to record a last data point and report simu-
lation results,

on <connector name> - This message handler responds
to a signal to a given connector. This is the main
method by which one block communicates to another.
For example, when an Activity Delay releases an item,
it will send a message to the previous block requesting
another item, if this block can not hold an item, it
will send a message upstream through the connections
until a block is reached that can return a message indi-
cating whether or not an item is available.

Procedures are functions which are called by the mes-
sage handlers. They are included in ModL for conve-
nience and language completeness.

There is a range of support procedures available in
Extend as well. Some examples are: mathematical opera-
tions (such as max and min), matrix manipulations, in-
tegration, animation, string manipulation, block messag-
ing, attribute management, and system information.

The ModL language is available within the Extend au-
thoring environment. This environment also includes an
icon builder for creating a graphical representation of the
completed block, a text editor for creating the help text
associated with the block, a list of system and user vari-
ables available to the ModL programmer, and a graphical
builder for defining the dialog associated with the block.

In the Icon Builder, a block developer can either use
Extend's built in drawing functions or paste a drawing in
from the system clipboard. This is also where the con-
nector position and types are specified. An Extend block
can have up to 255 connectors per block (although it is
generally not recommended to have more than 10 or 15).
The name of the connector specifies if it is an input or
an output from the block. A connector that ends in "in"
represents an input and "out" represents an output. These
connector names are used as variables in the script.
Connectors can be used to pass single values, arrays, or
messages.

The text editor for the help provides a rich text format
for providing the help which is unique to this block.

Krahl

[N SN Structure of Set Priority (Discrete Event Lib)
Assigns a priortty to ftems that pass through. The priertty value may be set at the P conneotor er,

[~ | 11 e cenneotien ts made there, in the dialeg. Note that the lewest vakue (inokuding negative numbers)
.mv. has the tep priortty .
o i

Dialog Choices

[

= S =
Homin [0 procedure passitealinteger sendiesds) L
HomOut w
priarteyin #¢ chack for update queus at sach event
If (ltaaln <= 0.0)
sandrisg(eants, input); // va wanl an |les
I1¢ Iteain > 0.0 AND (iteaOut ¢= 0.0 || push) > ** test for data present [}
a
{teaindex = itealn;
Itenin = -ltealn;
| tamdut = |tealndax;

sendsg(taken, Input); // item laken

gatArrays();
11¢ Priorl tyCon)

ToAl | Cons(priori tyln);
priority = priorityin;
| tanArra ALl teaindex]{1] = priorl Win;

i s it G
Figure 13: Icon, help, and program editors

The dialog can include check boxes, radio buttons, but-
tons, text fields, numeric fields, and more. The pro-
grammer can set each one of these to display only or ed-
itable items. In addition, any parameter can be treated as
a program variable. One example of this is in the Input
Random Number block where the names of the parame-
ters displayed on the dialog are changed by the model
program depending on which distribution has been cho-
sen.

F\ulgm the specified prlorllg] [0K]
o Items poassing through.

Figure 14: Dialog editor

10 SUMMARY

Extend is a sophisticated modeling tool for both con-
tinuous and discrete event simulation. It provides multi-
ple methods for developing application specific compo-
nents and interfaces and is suitable for rapid prototyping
as well as detailed analysis. Most importantly, however,
is that Extend's low cost, multidomain capability, pow-
erful modeling features, and elegant user interface define
Extend as the leader in the next generation of simulation
software.

REFERENCES

Collins, Norene and Christine M. Watson. 1993.
Introduction to Arena, in Proceedings of the 1993
Winter Simulation Conference, ed. G. W. Evans,
M. Mollaghasemi, E. C. Russell, and W. C. Biles,
205-212. IEEE Piscataway, NJ.

Hendriksen, James O. 1993. SLX, the Successor to
GPSS/H, in Proceedings of the 1993 Winter
Simulation Conference, ed. G. W. Evans, M.
Mollaghasemi, E. C. Russell, and W. C. Biles,
263-268. IEEE Piscataway, NJ.

Extend 545

Imagine That!, Inc. 1994. Extend Software Manual. San
Jose, CA.

Pritsker, A. A. B. 1986. Introduction to Simulation and
SLAM II. 3rd ed. New York: Halsted Press.

AUTHOR BIOGRAPHY

DAVID KRAHL is the Technical Coordinator for
Imagine That! Inc. In this position he is responsible for
the technical support and block development for Extend.
David received a BS degree in Industrial Engineering in
1986 from the Rochester Institute of Technology. Since
then, David has performed consulting, technical support,
and development for a wide range of simulation products.

