Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

INTERVAL TIME CLOCK IMPLEMENTATION FOR QUALITATIVE EVENT GRAPHS

Ricki G. Ingalls
SEMATECH
2706 Montopolis Dr.
Austin, TX 78741

ABSTRACT

In this paper, we will discuss implementation issues of a
simulation modeling methodology that combines
discrete-event simulation with qualitative simulation. Our
main reason for doing so is to extend the application of
discrete-event simulation to systems found in business
for which precise quantitative information is lacking.
The approach discussed in this paper is the
implementation of interval time specifications in the
discrete-event model and the construction of an interval
time clock for the qualitative simulation model.

1 INTRODUCTION

Computer simulation is a flexible modeling technique
used to solve problems in business, engineering, the
physical sciences, and the social sciences. A computer
simulation model is a computer program designed to
characterize the behavior of an actual system. A number
of different approaches to computer simulation modeling
exist. In the physical sciences and engineering, a system
is often modeled and simulated by a set of differential or
difference equations. This approach provides very
precise information about the behavior of the system as it
evolves through time. It is often referred to as continuous
time simulation. The continuous time paradigm has been
abstracted or modified in a number of different ways to
produce other approaches to simulation modeling.

One popular abstraction used extensively in
engineering and business applications is called discrete-
event simulation. Discrete-event simulation provides an
efficient approach to modeling systems in which the state
of the system changes at discrete points in time called
events. To model such systems, the clock of the
simulation model is incremented asynchronously through
time by proceeding from one event to another. The
behavior of the system is not monitored continuously
through time because it is assumed that nothing of
interest happens between events.

Another abstraction of the continuous time approach
is called qualitative simulation or qualitative physics.
Qualitative simulation was originally developed in the
physical sciences (Forbus (1988)), but more recently has
found application in economics and business (Hinkkanen

574

Douglas J. Morrice
Andrew B. Whinston
Department of Management Science and Information
Systems
Graduate School of Business
The University of Texas at Austin
Austin, TX 78712

et al. (1993)). The qualitative approach is useful when
the level of knowledge about the system being modeled
is imprecise. In fact, qualitative simulation is designed to
represent whatever level of knowledge is available. For
example, variables describing the state of a system might
be represented in a qualitative simulation model as
simply increasing, decreasing or constant with respect to
time if no other information is available. Inferences
derived from the results of a qualitative simulation
model, although less precise, are often considered more
general and robust since these inferences do not rely on
precise and perhaps faulty assumptions.

Discrete-event simulation suffers from many of the
same problems that motivated the pioneers of qualitative
simulation. The amount of detail needed in a simulation
often is overwhelming. Statistical distributions used in
the simulations often are based on incomplete
information or the intuition of the model builder.
Because of the very nature of discrete-event simulation,
appropriate levels of abstraction often are difficult to
determine and justify. These problems make discrete-
event simulation models difficult to build and to verify.
The simulation expert can usually discredit a simulation
by criticizing the input distributions, the appropriate
level of detail, etc. Decision makers often consider
simulation impractical because of lengthy analysis times
and the difficulty of evaluating alternatives.

In this paper, we will discuss implementation issues
of a simulation modeling methodology that combines
discrete-event simulation with qualitative simulation. Our
main reason for doing so is to extend the application of
discrete-event simulation to systems found in business
for which precise quantitative information is lacking.
Discrete-event simulation can be qualitatively defined by
permitting imprecise specification of elements that are
typically quantitatively specified. These include state
variables, the simulation time clock, and events
scheduled to occur in the future. In this paper, we
consider on possible implementation of a qualitatively
specified simulation time clock. Another approach is
found in Zeigler and Chi (1991).

‘Our methodology will be developed within the
modeling framework of Event Graphs (EG's) (Schruben
(1983), Som and Sargent (1989), Yucesan (1990)). EG's
are used because they provide a simple yet general

Interval Time Clock Implementation 575

representation of a discrete-event simulation (Yucesan
(1990)). In addition, various aspects of the simulation
model such as the state variables can be represented
qualitatively using EG's. We call the combination of
event graphs with qualitative simulation Qualitative
Events Graphs (QEGs). QEGs were introduced in
Ingalls, et.al. (1994).

2 BACKGROUND
2.1 Qualitative Simulation

Qualitative Simulation was developed to describe
complex physical phenomena in the absence of good
quantitative information. Forbus (1988) describes a
model that is ideally suited for qualitative simulation
when he describes modeling a robot that, among other
things, makes coffee. What equation could accurately
describe the cup? Several aspects of the cup participate
in the physical system and influences what goes on in the
system. Such complexity lends itself to a more abstract
formulation of the cup and how it interacts with the
system. Forbus goes on to explain that even if the
equations existed and they could be calculated (using our
pocket supercomputer), the output would be insufficient
for the robot to use as good information. The robot may
need to know alternatives available to him. It is this need
for meaningful values and enumerating alternatives that
qualitative simulation is meant to do.

The first aspect of the qualitative simulation
framework is that an underlying deterministic,
continuous model exists. The qualitative model is an
abstraction of this underlying quantitative model. This
underlying continuous model assumption means that
most qualitative models are specified much in the same
way that continuous models would be specified. The
qualitative model specifies relationships between
variables as first-order relationships. These relationships
may be very simple such as: As a increases, b increases.

The qualitative simulation uses qualitative state
variables. There are several implementations of
qualitative state variables. Ordinal-valued variables are
completely enumerated and ranked. Interval-valued
variables can be implemented as continuous intervals on
R or as subsets of the ordinal values for a variable. The
ordinal set may simply mark time landmarks (Kuipers
(1987)) as distinguished time points.

One of the distinguishing characteristics of
qualitative simulation is coverage. "A central goal of
qualitative physics is to achieve a degree of systematic
coverage and uniformity" (Forbus (1988)). In practice, a
qualitative simulation simulates all possible threads or
envisionments. When a qualitative simulation
determines the next possible state, it can easily determine
that there are several next possible states because of the

imprecise nature of the data. A qualitative simulation
will execute each of these possible next states. The
resulting set of envisionments will include all of the
possible event sequences. One of the envisionments
contains the true, underlying, deterministic, continuous
model.

2.2 Discrete-Event Simulation And Event Graphs

Event graphs were introduced by Schruben (1983) in
order to have a discrete-event simulation methodology
that was based on system events. Other types of discrete-
event models such as block diagrams, process networks,
activity wheel or activity life cycle, are structured from
the activity standpoint. The event orientation allows
discrete-event simulation without the traditional entity
definition that was previously required.

(1)

Figure 1: The Most Basic Construct
for an Event Graph

The basic construct in the EG framework is shown
in Figure 1. The nodes labeled A and B represent events.
The edge specifies that there is a relationship between
the two events. More specifically, the construct can be
interpreted as follows ''whenever event A occurs, if
condition (i) is true then event B will be scheduled to
occur t time units later." The quantity t may assume the
value zero, in which case B happens at the same instant
as A. Note that it is possible (and often necessary) to
specify an edge with no condition.

3 INTERVAL VALUES IN MODELING
3.1 Overview

Interval values on R have been used in the qualitative
analysis of continuous systems by Kiang, Hinkkanen, and
Whinston (1993) and Balakrishnan and Whinston
(1991). The purpose for describing state variables with
interval values was to allow the user to describe the
inherit uncertainty of the decision maker or modeler
when it comes to the true value of the variable. Interval
specification allows the decision maker to refine the
estimate of the true variable value as he gathers more
information. For example, if an input to the model was
demand, and the (unknown) actual demand value was 42,

576 Ingalls, Morrice, and Whinston

the decision maker may be able to run experiments or by
intuition determine that the true demand lies in the range
[35,45). For the purposes of this paper, we have only
allowed the interval value specification to be used to
describe activity times (or delay times) in the discrete-
event model.

3.2 Interval Math

In order to be able to handle interval values, we adopted
the conventions of Allen (1983).. Figure 2 gives the
algebra that is used for intervals in this implementation.
In addition, we will use the following notation:

and: &

or: I

negation: !

This algebra was sufficient to implement interval time
for discrete-event simulation.

4 Interval Time Calendar In Qualitative Event
Graphs

A future events calendar or simply a calendar is a
method for determining the order of events in discrete-
event simulation. Discrete-event simulation calendars

are a strongly ordered list of future events. Typically,
this list is always sorted by time where the earliest events
are at the front of the list. If there are events that
scheduled to occur at the same time, the order is
determined by some predetermined rule or a user
priority. Predetermined rules vary from first-on, first-off
to random and vary according to implementor's
discretion. Regardless, the future events list maintains its
strongly ordered characteristics.

In the simplest qualitative discrete-event model, one
with constant delay times, it is likely that there would be
ties on the future events calendar. But unlike
quantitative discrete-event simulation, the qualitative
implementation would not assume a tie breaking strategy,
but rather the qualitative model would create a thread, or
envisionment, for every possible ordering of the ties.
Thus the qualitative future events calendar looses the
strongly ordered characteristic of its quantitative
counterpart. In fact, the qualitative future events
calendar becomes the union of many non-deterministicly
ordered sets (NOSs). In essence, a NOS is a set of
events on the calendar whose execution order is
uncertain. We call the members of a NOS non-
deterministicly ordered events (NOEs). We will
elaborate on the concept and use of NOS later in the

Relation Symbol Symbol Definition Example
for
Inverse

t before s < > t'<s TTT SSS

tequals s = (t =s) and (t" =5 TTT
SSS

t overlaps s 0 oi (t<s)and (t"> s7) and (t" < s%) TTT

SSS

t meets s m mi t'=5s TTTSSS

t during s d di ((t >s) and (t" <= s"))or ((t >=5) and (t' < s%)

t starts s s si t=s TTT
SSSSSS

t finishes s f fi t*=s* TTT
SSSSSS

In addition, we defined the following:

t intersects s i (t overlaps s) | (s overlaps t) TTT

SSS

t+s + [t +5,t"+5"]

t-s - [t-s,t-5s"]

max(t,s) max [max(t,s’),max(t",s")]

min(t,s) min [min(t’,s),min(t",s")]

intersection(t,s) A [max(t,s),min(t*,s")],if (max(t,s’) < min(t",s"))

@ ,otherwise

Figure 2: Interval Algebra for a given interval t = [a,b], f = a, t" = b.

Interval Time Clock Implementation 577

paper. Because we do not have a strongly ordered
calendar, and because one of the foundations of
qualitative simulation is coverage (Forbus, 1988), the
qualitative discrete-event simulation creates different
threads, or envisionments, to execute the possible
orderings of a NOS.

4.1 Interval Time Calendar Constructs

A calendar event is an instance that includes time, the
node that put the event on the calendar (fromNode), the
node that will be executed (toNode), priority of the
event, and any attributes that are passed to the node that
will be executed. For the purposes of this paper, we will
refer to event A's interval time as A.time. The node that
event A will execute as A.toNode. The event priority is
denoted as A.priority.

A calendar is an ordered collection of calendar
events that are ordered where each event's time is
ascending. Specifically, if A and B are two calendar
events, A precedes B in the calendar if:

1. A.time < B.time.

2. A.time intersects B.time & A.priority < B.priority

3. A.time < B.time’

4. A.time = B.time & A.time* < B.time*

A calendar also has an attribute that tracks the current
time of the simulation. For the purposes of this paper,
we will refer to calendar C's current time as
C.currentTime.

4.2 The Interval Time Calendar Algorithm

The Interval Time Calendar(ITC) has been implemented

in Smalltalk. The Interval Time Calendar currently

implemented executes a depth-first search on all possible
threads. This calendar is implemented as follows:

0. Create a calendar with the designated "first event"
on it. Designate calendar as the current calendar and
the first event as the current event. Set the current
time to [0,0].

1. Begin a new thread with the current calendar starting
with the current event as the first event being
executed the time of its execution.

2. If this is the first event of the new thread, go to Step
7.

3. Determine the NOS that must be executed next.

4. If the number of NOE € NOS =1, go to Step 7.

5. Save the current state of the system.

6. Loop over the NOS (i = 1 to number of NOEs)

6.1. Determine the execution time of the event i, and
make event i the first event.
6.2. Call Step 1.
6.3. Restore the system state stored in Step 5. If last
NOE, Return.
7. Execute the event.

8. If the thread has reached a simulation stopping
condition, Return.

9. If there are no more threads on the stack, stop the
simulation.

10. Go to Step 2.

4.3 Non-Deterministicly Ordered Sets And Events

When the order of events is uncertain (step 6 above), the
simulation will try all the combinations of the events.
For any two events A and B, event orderings are
considered uncertain if A.time intersects B.time and
A.priority = B.priority. When these conditions exist,
then the set of events are NOS. In the qualitative model,
the future events calendar is made up of a union of
NOSs. For the calendar mechanism to work correctly,
we must be able to determine the NOS that will be
executed next given the current state of the calendar.
More formally, the NOS of step 6 in the algorithm is
determined as follows:

P is defined as the NOS in step 6.

Given the current calendar C, c; is the i event on

the calendar.

P = { c,time intersects c.time & c,.priority =

c;.priority } V¢; € C.

The only assumption in this statement is that ¢, could be
the next event to be executed. In the calendar
implementation, we have guaranteed that the condition
holds.

Upon determining the non-deterministicly ordered
events that make up the NOS, this qualitative simulation
creates a thread for each event in the set. In each thread,
the i™ event in the set becomes the first event to be
executed. The remaining events in the set remain in the
future events calendar for that thread.

Each thread must determine what the new current
calendar time will be for that thread. After the set P is
determined, there is an issue of calculating the current
time of the new simulation thread.

Let P be the NOS of step 6

p; is the i event in the set.
C is the current active calendar.
D, is the calendar for the thread whose first

event is p;.
For each p; € P
1. SetD;=C.

2. SetD;.currentTime = [max(p;.time’
,C.currentTime’),min(p;.time* V p; € P)]

3. Execute Step 6.2 with calendar D; and first
event p; starting at time D;.currentTime

578 Ingalls, Morrice, and Whinston

5 AN EXAMPLE

As an example, consider the EG of a drive-in teller with
a single service window and large parking area for
waiting cars. The node labeled RUN is the first node
executed in the system. It is used to initialize the state
variables. The node labeled ENTER represents the event
that a car arrives to the system. The nodes START and
LEAVE represent the following events: begin service at
the window and end service at the window, respectively.
The state variables are Q for the number of cars waiting
for service, S for the status of the teller and E for the
number of customers who have exited. If S=1, then the
teller is idle; if S=0, then the teller is busy. Since changes
in the state variables happen only when an event occurs,
the changes are stated below each event. For example,
when the START service event occurs, the queue of
waiting cars decrements by one (Q=Q-1) and the teller
status changes to busy (S=0).

The conditional expressions that appear on some of
the edges are based on the state of the system. For
example, the condition between the ENTER event and
the START event is a condition to test if the teller is idle
(S>0). In other words, if a car arrives and the drive
through window is not busy, then the car enters service
immediately. It should also be noted at EG edges can
have priorities. This model has high priorities (1) on the
edge between ENTER and START and the edge between
LEAVE and START.

5.1 Interval Time Calendar Example

Using the example model in Figure 3, we want to
illustrate how ITC works by simulating 5 customer
service completions (LEAVE events). The example
below tracks the first thread in the system to completion.
Thread 520 is created when the model cannot determine
the ordering for the two events on the calendar:
[3,8],ENTER,9 and [4,6],LEAVE,9. These two events
have event times that intersect ([3,8] and [4,6]) and have
the same priority (9). Thread 1 continues as if
[3,81, ENTER,9 was the first event. Thread 520

(Q>0)

Q=0 Q=Q+1 Q=Q-1 S=1
IS-3=%) S=0 E=E+1

Figure 3: The Qualitative Example

continues as if [4,6],LEAVE,9 was the first event. The
remaining non-deterministic orderings found in threads 1
and 520 help create the 897 threads that were created
during the simulation run.

5.2 Interval Time Outputs

When interval time is used in discrete-event simulation,
the results are can be analyzed by examining the timing
of events or conditions. For example, Figure 4 illustrates
that the fifth exit occurs in interval [20,30] for thread 1
and [20,32] for thread 520. Using all possible threads,
one can determine that the fifth exit of the system must
occur in the interval [20,38]. Interpreting the inputs to
the model, we can say that regardless of the distribution
placed on the arrival time interval of [3,8] and the
service time interval of [4,6], the fifth exit of the system
will occur in the interval [20,38]. For example, we ran
100 replications of a quantitative model where the input
distributions were uniform over [3,8] and [4,6] and the
fifth exit occurred between 21.7726 and 34.5777 in those
experiments.

5.3 Coverage

As was stated earlier in the paper, a primary goal of
qualitative modeling is coverage. This qualitative model
is, in one sense, characterizing all possible sample paths
of a structurally equivalent quantitative EG. Of the 897
threads created in our example, one would replicate the
event sequence and bound the event time for any sample
path generated by a structurally equivalent EG whose
input distributions were bounded by [3,8] and [4,6],
respectively. Second, it bounds the time that any specific
event (or state) can occur. As with our example, we
were able to bound the fifth exit in the interval [20,38].
Bounding the time of a specific event in this way can be
very useful in determining if some given design limit has
in fact been met. Third, the QEG characterizes all the
possible states that could occur. This is very important
because one is guaranteed that everything outside the
generated threads is impossible.

6 Research Issues

During the course of this work, several key research
issues came to light. First, there is the issue of the
amount of computation required to generate the threads.
Here, we have presented a depth-first search. We are
currently working on breadth-first and other thread
managing techniques to reduce the computation time.
Second, there is research to be done in the area of
characterizing the threads that are generated by the
simulation. Are some threads 'subsets" of others?
When can we know that a thread contains no new

Interval Time Clock Implementation 579

Steps for|Thread |Calendar |Event S Future Events [Thread |Calendar|Event Future Events
Thread 1 Time Executed (Time,Node,Pri) Time Executed (Time,Node,Pri)
0,1,2,7,10 1 {0,0] RUN 1 0 |[0,0],ENTER,9
2,3,4,7,10 1 [0,0] ENTER |1 0 {[0,0],START,1

[3,8],ENTER,9
2,3,4,7,10 1 [0,0] START |0 [3,8],ENTER,9

[4,6],LEAVE,9
2,3,4,5,6,6.1,]1 [3.6] ENTER |0 [4,6],LEAVE,9 (520 [4,6] LEAVE [3,8],ENTER,9
6.2,1,2,7,10 [6,14], ENTER,9
2,3,4,5,6,6.1,|1 [4,6] LEAVE |1 [4,6],START,1 520 [4,8] ENTER [4,8],START,!
6.2,1,2,7,10 [6,14], ENTER,9 [7,16],ENTER,9
2,3,4,7,10 1 [4,6] START |0 [6,14],ENTER,9 |520 [4,8] START [7,16],ENTER,9

[8,12],LEAVE,9 [8,14],LEAVE,9
2,3,4,5,6,6.1,]1 [6,12] ENTER |0 [8,12],LEAVE,9 {520 [7,14] ENTER [8,14],LEAVE,9
6.2,1,2,7,10 [9,20] ENTER,9 [10,22], ENTER,9
2,3,4,5,6,6.1,|1 [8,12] LEAVE |1 [8,12],START,1 |520 [8,14] LEAVE [8,14],START,l
6.2,1,2,7,10 [9,201,ENTER,9 [10,22],ENTER,9
2,3,47,10 1 [8,12] START |0 [9,20],ENTER,9 (520 [8,14] START [10,22],ENTER,9

12,18],LEAVE,9 [12,20],LEAVE,9

2,3,4,5,6,6.1,[1 [9,18] ENTER |0 [12,18],LEAVE,9 520 [10,20] |ENTER [12,20],LEAVE,9
6.2,1,2,7,10 [12,26],ENTER,9 [13,28],ENTER,9
2,3,4,5,6,6.1,|1 [12,18] |LEAVE |1 [12,18],START,1 {520 [12,20] |LEAVE [12,20],START,1
6.2,1,2,7,10 [12,26],ENTER,9 [13,28],ENTER,9
2,3,4,7,10 1 [12,18]) |START |0 [12,26],ENTER,9 |520 [12,20] |START [13,28],ENTER,9

[16,24]),LEAVE,9 [16,26],LEAVE,9
2,3,4,5,6,6.1,]1 [12,24) |ENTER [0 [15,32],ENTER,9 520 [13,26] |ENTER [16,26],LEAVE,9
6.2,1,2,7,10 [16,24),LEAVE 9 [16,34],ENTER,9
2,3,4,5,6,6.1,[1 [15,24] |ENTER (O [16,24],LEAVE,9 [520 [16,26] |LEAVE [16,26],START,1
6.2,1,2,7,10 [18,32),ENTER,9 [16,34],ENTER,9
2,3,4,5,6,6.1,]1 [16,24] |LEAVE |1 [16,24],START,1 |520 [16,26] |START [16,34],ENTER,9
6.2,1,2,7,10 [18,32),ENTER,9 [20,32], LEAVE,9
2,3,4,7,10 1 [16,24] |[START |0 [18,32],ENTER,9 (520 [16,32] |ENTER [19,401,ENTER,9

[20,30],LEAVE,9 [20,321,LEAVE,9
2,3,4,5,6,6.1,|1 [18,30] |[ENTER |[O [20,30],LEAVE,9 |520 [19,32] |ENTER [20,32),LEAVE,9
6.2,1,2,7,10 [21,38],ENTER,9 [22,40],ENTER,9
2,3,45,6,6.1,|1 [20,30] |[LEAVE |1 [20,30],START,1 |520 [20,32] |LEAVE [20,32],START,1
6.2,1,2,7,8 [21,38],ENTER,9 [22,40],ENTER,9

Figure 4: ITC Threads Example
information? Under what conditions can threads

"merge'? These are a few of the questions that need to
be addressed. Third, we plan to expand the use of
intervals to state variables.

As we ran the qualitative models, a fourth area of
research became evident: how to assign priorities to arcs
so that the model executes in a fashion that you desire.
In our example, when we did not have two arcs with
priority 1, we found ourselves in states where Q < 0 or
the calendar would have more than one LEAVE event
scheduled. Using QEG to determine priorities on arcs in
order to avoid these system states would be desirable
from an EG modeling standpoint (Ingalls, et.al., 1994).

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
CBA/GSB Faculty Research Committee of the College
of Business Administration of the University of Texas at
Austin.

REFERENCES

Allen, James F., 1983. Maintaining Knowledge about
Temporal Intervals. Communications of the ACM,
26(11), 832-843.

Balankrishnan, Anantaram and Andrew B. Whinston,
1991. Information Issues in Model Specification.
Information Systems Research. 2 (4), 263-286.

Forbus, K.D., 1988. Qualitative Physics: Past, Present,
and Future. Exploring Artificial Intelligence,
Howard Shrobe, ed. San Mateo: Morgan Kaufmann
Publishers, Inc.

Hinkkanen, A., Lang, K.R., and Whinston, A.B., 1993. A
Theoretical Foundation of Qualitative Reasoning
Based on Set Theory. Working Paper.

Ingalls, Ricki G., Douglas J. Morrice, and Andrew B.
Whinston, 1994. Qualitative Discrete Event
Simulation Using Event Graphs, to appear in

580 Ingalls, Morrice, and Whinston

Proceedings of the 1994 European Simulation
Multi-Conference, Barcelona, Spain, June, 1994,
Kiang, Melody Y., Aimo Hinkkanen, and Andrew
Whinston, 1993. Reasoning in Qualitatively
Defined Systems Using Interval-Based Difference

Equations. Working Paper.

Kuipers, B., 1987. Qualitative Simulation as Causal
Explanation. IEEE Transactions on Systems, Man,
and Cybernetics 17(3), 432-444.

Schruben, L.W., 1983. Simulation Modeling with Event
Graphs. Communications of the ACM, 26(11), 957-
963.

Som, Tapas K. and Robert G. Sargent, 1989. A Formal
Development of Event Graphs as an Aid to
Structured and Efficient Simulation Programs.
ORSA Journal on Computing. 1(2), 107-125.

Yucesan, E., 1990. Simulation Graphs: A Mathematical
Framework for The Design and Analysis of Discrete
Event Simulations. Ph.D. Dissertation, School of
Operations Research and Industrial Engineering,
Ithaca, New York.

Zeigler, B.P. and Chi, S. 1991. Symbolic Discrete Event
System Specification. Proceedings IEEE
Conference on Al, Simulation and Planning in High
Autonomy Systems, Cocoa Beach, Florida, 130-141.

AUTHOR BIOGRAPHIES

RICKI G. INGALLS is on the technical staff of the
Operational Modeling Group at SEMATECH in Austin,
Texas. He has been involved in the application and
development of operational modeling tools and
techniques in the electronics industry for over 10 years.
He has a B.S. in Mathematics from East Texas Baptist
College, a M.S. in Industrial Engineering from Texas
A&M University and is currently in the Management
Science Ph.D. program at the University of Texas at
Austin. Prior to joining SEMATECH, he was Manager
of Operations Analysis at Compaq Computer
Corporation, a consultant with the Electronics
Automation Application Center of General Electric Co.
and an Industrial Engineer with Motorola, Inc. He is a
member of the Society for Computer Simulation.

DOUGLAS J. MORRICE is an assistant professor in
the Department of Management Science and Information
Systems at The University of Texas at Austin. He
received his undergraduate degree in Operations
Research at Carleton University in Ottawa, Canada. He
holds a M.S. and Ph.D. in Operations Research and
Industrial Engineering from Cornell University. His
research interests include discrete event and qualitative
simulation modeling, the statistical design and analysis
of large scale simulation experiments, and the statistical
aspects of quality control. He is a member of The

Institute of Management Science and the Operations
Research Society of America.

ANDREW B. WHINSTON is a professor of both
business and computer science at the University of Texas
at Austin, where he is also a fellow of the IC2 Institute
and director of the Center for Information Services
Management, and holds the Hugh Roy Cullen Centennial
Chair in Business Administration. His research deals
with decision support systems theory, distributed Al,
organization modeling and qualitative modeling. He
received his Ph.D. in management from Carnegie Mellon
University, Pittsburgh, PA, and is a member of the
Institute of Management Science.

