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ABSTRACT

Some interesting results are obtained using a class of
models defined as discrete element. One of the best
examples of this class is the Game of Life whose history
i1s traced to cellular automata. Through duals, the
results link these discrete element models with standard
mathematical models, the specific one involved here is a
logistic equation. Some implications are drawn from
Lauer's blending of two discrete element models: the
Game of Life and the Prisoner's Dilemma. The totally
cooperative aspects of "births" and "deaths" in the
standard Game of Life are contrasted with the
competitive features of the algorithms of strategy in the
Prisoner's Dilemma. Of particular significance are the
optimal population values for varying levels of "selfish"
births and the counterintuitive answers to a number of
significant questions that are raised in a series of
simulation experiments.

1 INTRODUCTION

We begin with a few operational definitions and a brief
discussion of the concepts used in this paper. First, in a
broad sense of mathematics which encompasses both
pattern recognition and symbol manipulation, we
distinguish mathematical models from discrete element
models. These two are related, nonetheless, as can be
shown through the use of so-called duals.

For our purposes, a mathematical model is defined as
an equation or function whose varied form can include
arithmetic, algebraic, Boolean, differential, or integral
expressions. A distinguishing feature of these models is
that their mathematical specification is functional and
macroscopic or top-down. Mathematical models abound
in scientific computation, particularly in finite element
analysis (FEA) and finite element methods (FEMs).
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FEA is used to represent differential aspects of
continuous systems, and a FEM assists in solving
resulting differential equations.  Solutions to these
expressions often are found by finite approximation
techniques where continuous functions have piecewise
continuous  replacements defined on particular
topologies: e.g., a polygon.

Conversely, a discrete element model is embodied in a
computer simulation which can be decomposed into the
data structures that represent the attributes of each
component or element of a system, and the algorithms
that dynamically exercise the model. Such discrete
element specification is wusually microscopic or
bottom-up.

Discrete element models generally exhibit three
features [9]. First, each element in some total collection
is identified by attributes such as name. identification
number, location, class, type, etc. Second, the
time-varying values of these sets of attributes are
determined by rules based on: how each individual
element is "connected" others, its disposition to change,
its strategy, and its previous responses, etc. Lastly, the
aggregate patterns, or distributions of population values,
quite often provide insight beyond that available
through the individual data.

The very recent success in experimenting with discrete
element models is due in no small way to the availability
of personal computers. Computer generated patterns,
such as fractals, chaos, artificial neural networks, and
computer generated art, are often derived using discrete
element models. However, discrete event simulation,
with its central concept of "waiting lines" or queues,
may be the best known area of simulation and,
moreover, a fertile area for contrasting mathematical
and discrete element models.

In queuing models, each element is discretely specified
and tracked in time (or modeled). and the necessary data
structures and algorithms are incorporated into a
simulation programming language.
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Such languages are Simscript, GPSS, Siman, or Simula,
or a higher level general purpose language such as
FORTRAN, Pascal, Modula, Ada, or C. Within a
formal subject area called Queuing Theory, duals are
developed that employ closed-form, continuous
mathematical expressions that describe the limiting
values of the "waiting line" processes.

Lastly, a mathematical dual, analogous to the
philosophical notion of duality, or two modes of
thought, can be either a set of consistent forms of
representation or two models that yield comparable
results. In this paper, we shall use the latter definition
of the term dual to infer yielding similar results through
two different representational forms. As noted
previously [13]. "mathematics is often defined as the
science of space and number ... and it was not until the
recent resonance of computers and mathematics that a
more apt definition became fully evident: mathematics
is the science of patterns."”

2 HISTORY OF CELLULAR AUTOMATA

The evolution of discrete element models generally, and
the Game of Life specifically, can be traced to the work
in cellular automata, or a theory of machines that
incorporate cells as components. This area of study is
also known as tessalation automata and comprises a
portion of the formal area within computer science.
Cellular automata have become valuable modeling and
simulation tools in science and technology. These tools
extend across the spectrum of disciplines from physics,
chemistry, and biology. to philosophy, sociology, and
political science.

Cellular automata started with the work of Alan
Turing in the late 1930's, one of whose contribution was
the notion of a Turing machine or "universal computer"
[5]. In the forties, John von Neumann extended
Turing's ideas with efforts towards a self-replicating
automaton, or a robot that could build a copy of itself
using standard components [4].  Stanislaw Ulam
suggested the use of an array of rectangular cells,
assembled on something like a chessboard. where each
cell takes on one of a number of possible states [13].
Edward Moore, known for the Moore automaton [4],
proposed the use of the eight-cell neighborhood (four
adjacent and four orthogonal) for the rectangular grid.
Thus, this neighborhood is sometimes called the "Moore
neighborhood" which has became a standard
ncighborhood or template particularly for the
two-dimensional Game of Life as described below.

3 ONE-DIMENSIONAL GAME OF LIFE

The Game of Life has many variations:
three-dimensional, two-dimensional, two-sided using
two different colored pieces or "chips", and even
one-dimensional. First suggested by Stephen Wolfram
[19], the one-dimensional Game of Life is essentially a
linear version of the more common two-dimensional
approach. The one-dimensional consists of a linear
array of cells of some maximal length typically defined
by the screen width of the computer system on which it
is generated [16].

Each cell can take on a number of states determined by
transition rules, which we will later call strategies, such
as the following. If the present value (or state) of a
given cell are added to the values of its two adjacent
neighbors, then its next state of that cell is a function of
the sum.

For example, if the computed state or sum of a given
cell is as shown on the top line:

0123456789
0230101000

then the next state is given by the values on the second
line. In words, if its sum is 0, then its next state is 0; if
1 then 2 if 2 then 3: etc. Thus, if we start with a single
cell whose initial state of 'l' in the center, the sequence
of sums and states will be as follows. The states are
given on the left and the sums are given on the right. If
the states are represented by special symbols or colors,
extremely appealing patterns can be generated.

1 111
222 24642
31113 3454543
10001 1110111
2220222 2464440642
311111113 34533333543
100000001 11100000111
22200000222

4 TWO-DIMENSIONAL GAME OF LIFE

The original Game of Life was developed in the sixties
at Gonville and Caius College, part of Cambridge
University, by John Conway [12]. It started out as a
manual game that could be exercised on a chess board
with a set of chips initially placed on certain squares.
Later. it was implemented on various mainframe
computers of the day.
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Rules were developed to determine whether chips
would be located on particular cells at successive time
steps. Sets of chip patterns were called configurations.
After the initial placement of chips on the board,
successive  configurations depend only on the
immediately previous configuration in the following
way.

Each chip (or "filled" location) monitors its "Moore
neighborhood." or the four adjacent and four diagonal
cells. This neighborhood forms the template within
which its number of "neighbors" or filled locations is
counted. The rules (strategies) are as follows:

¢ If a particular chip has either 2 or 3 neighbor
chips in its template, then it "survives" to the
next configuration.

¢ If it has either O or 1 neighbors, then it said to
"perish of loneliness."

¢ If it has four or more neighbors, then it "dies of
overcrowding."

¢ If there is no chip at a particular location, then
one is created (a "birth") if the unfilled location
has exactly three neighbors in the template;
otherwise, there is no change.

All "births" and "deaths" occur simultaneously each
time period or generation, a series of which produces
life "histories." When automated, these histories can be
analyzed visually. Interesting initial configurations for
visual patterns include:

a. The Blinker - { *** }

b. The Glider- { ** }
{* * 3
{ * 3
¢. The Arch of Pi - { ***}
{* *3
{* *3
b. A Viral Block - { ¥ *x* 3
{** *x )
{ v 1}
{** **}
{** **}'

Successive configurations of the Blinker produce
intermittent orthogonal bars, while the Glider appears to
"move" in a diagonal direction. The Arch of Pi provides
symmetrical patterns that can be studied from the point
of view of population logistic experiments. The Viral
Block is stable unless a single chip is placed at y after
the initial configuration, from which point the
configuration disappears.

There are two ways to track the states of this system:
the first is by visual patterns that provide evidence of
symmetry, structure, and motion or "movement" of the
chips. The second is by plotting population levels at
each discrete time period whose trajectories mirror
common logistics models [8] through traces of
aggregate numeric values.

5 POPULATION DYNAMICS

The activity of these systems can be monitored by
plotting the population levels at discrete time periods.
The resultant trajectories mirror common logistic
models as shown below in Figure 1. The traces of
aggregate numeric values create graphs known as S- or
J-curves in biology which are plots of population logistic
equations, one of which is next discussed.
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Figure 1: Population Logistic Curve

An important relationship of mathematical models and
discrete element models is this dual between the Game
of Life and its population dynamics curve. It is a fairly
straightforward exercise to develop a discrete element
model of the Game of Life and mimic the results with a
standard differential equation model. The metric for
such a comparison, as developed and used in many
ecological studies, is the number of elements (in this
case, chips) that are present at each time period. In real
environments, such counts are observed to obey logistic
expressions (laws) such as the Verhulst-Pearl equation:

where N(t) is the population size at time t, K is the
maximal population, and b is a constant real-valued
parameter of change. The population size, N(t), can
increase to some maximal value (K), decrease to zero
(we usually do not track negative populations), or (with
minor changes) oscillate. The plot of the population
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data of the Pi initial configuration is shown below in
Figure 2. Note that the shape resembles that the J-curve
previously discussed and shown in Figure 1.
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Figure 2: Game of Life Pi-configuration Data

6 LAUER'S EXTENSION

Lauer's extension to the two-dimensional Game of Life
changes the rules slightly by incorporating ideas of
competition versus cooperation. This approach allows
the study of the ramifications of the addition of "greedy"
or purely self-interested strategies (rules): i.e., locally
optimal and apparently indifferent to the global impact
[17]. We have previously explored such ideas in
investigating the interdependence of strategies in a ring
setting [10,11].

In attempting to ascertain whether there exists a
non-zero optimal value of "selfish" births, Lauer [15]
modified the standard birth and death rules with the
addition of concepts based on the Prisoner's Dilemma
[14], as discussed below. Using the standard Game of
Life to establish the baseline or totally cooperative
environment, it was conjectured that varying
percentages of selfish births might yield more
productive; i.e., larger sized, populations. It was then
decided to test this conjecture through a simulation
study.

Lauer's modified rules for the Game of Life are as
follows:

¢ When a chip or filled node is surrounded by 4 or
more chips, then instead of automatically dying if
it is selfish, it "kills" an appropriate number of its
neighbors until it has only three so that it can
fegally survive. For each round that it kills
neighbors in this manner, it increments its

vitality factor by one. It can also kill an
additional neighbor (the rule of orneriness).

¢ If achip has either 0 or 1 neighbor and is selfish,
instead of automatically dying, it can survive the
round if its vitality count is greater or equal to
one. In each situation like this, it must
decrement its vitality by one.

¢ To have a birth at an empty cell, the rules of
exactly 3 neighbors is changed to 3 OR 4
neighbors with the designation of a new chip as
either selfish or unselfish (normal) based on the
given selfishness parameter of the population.

The insight into these rule changes is taken from the
Prisoner's Dilemma (PD) as follows. PD was developed
from a matrix game devised by Dresher and Flood in the
1950's at the RAND Corporation [7]. The name PD has
been attributed to the mathematician Tucker who
proposed the approach as an analogy to the technique
often used by police in dealing with criminal suspects
(prisoners) and the strategies that the suspects possibly
use in making decisions (hence, the dilemma associated
with their choosing). Their choices usually are to either
"squeal" which means to turn state's evidence (if in fact
guilty) or to stay "mum" which means to say nothing.

In its most general but simplest case, the PD can be
represented as a two-player game where each player
chooses one of two possibilities, either to "cooperate
with" or to "defect from" the other player. A 2 X 2
matrix that provides the corresponding payoffs for these
decisions is shown in Table I. How the PD relates to the
Game of Life is that the strategies that players follow
determine which action (whether to cooperate or defect)
they take. Decisions made taking into account the PD
payoffs seem to favor cooperative strategies (e.g., a very
simple strategy called Tit-for-Tat) [1,3].

The necessary conditions for the PD payoff matrix are
that:

T>R>L>S
and that
(T+S)/2 <R

Table I: Prisoner Dilemma Payoff Matrix

Player A Player B
Cooperates Defects
Cooperates (R,R) S, 7)
Defects (T,S) (L,L)
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Sequential rounds of PD "encounters" are called
Computer Tournaments [2]. In each of the rounds of
such a tournament, each player "exchanges" payoff
values according to the PD matrix. Normally,
participating players in each encounter are randomly
paired, and their actions to cooperate or defect are
determined as a function of their particular strategy and
their recent experiences.

7 THE SIMULATION EXPERIMENTS

To summarize the Game of Life, we have a number of
individual cells or nodes, each of which responds to its
environment without regard to self-awareness or
self-preference, but blindly follows a common set of
rules. The environment itself exhibits a characteristic
fecundity as manifested in the birth of new cells when
certain conditions are met. We proposed a set of
experiments to explore an aspect of the nature of life
itself, to investigate what would happen if we were to
inject an element of self-interest into this universe of
selflessness.

Before considering the possible ramifications of such a
step. we speculated that the Game of Life has the
inherent potential to be modified in such a way. It turns
out that the Game of Life does possess a unique capacity
to mode] self-interest because:

1) Based on the dual that produces the well known
population logistic curve, there is a basis for
believing that by investigating this modification we
are legitimately analyzing processes that apply to
populations;
2) The traditional rule, that if a node is surrounded
by 4 or more other nodes, then it dies selflessly of
overcrowding, is changed. The modified version is
that whena node is thus surrounded, it dies as
before unless designated a selfish node:; in which
case, it kills as many of its neighbors as necessary to
reduce the local population within its template to a
point where it can survive itself. This is clearly an
ideal paradigm of brute self-interest.
What made such extensions and these experiments
particularly intriguing for the authors was that the
possibilities appeared to be endless and potentially
counterintuitive, with possibly profound ramifications
for not only numerous applications [6], but also an
evolving methodology [9].
In the simulations runs, all of the data beyond 0%
sclfish births were obtained by averaging the ending
population for 600 replications on various size
rectangular grids (matrices).  This allowed us to
determine beyond what point the results would become
conceptually repetitious, though still variable and

apparently unpredictable. The smallest matrix selected
was a 7 by 7, the medium a 21 by 21, and the larger a 41
by 41.

For the medium size grid (a 21 by 21 matrix), stability
is achieved before the 100th generation, while it takes
approximately 200 generations for the larger matrix
(41x41) to stabilize. Subsequent trials with varying
percentages of selfish births were run up to those points
for each size matrix.

8 RESULTS OF SIMULATION EXPERIMENTS

In discussing the results, let us conjecture some
implications for the new rules. Recall that the major
issue that guided the design of the simulation
experiments was that of injecting an element of
self-interest into the standard two-dimensional Game of
Life. Clearly, the selfish nodes would benefit directly in
terms of continued survival, but there were several
additional open questions that needed to be addressed to
assess the real impact of the selfish nodes on the selfless
ones. Thus, we addressed these four questions:

1) Would the population at the end of some number
of generations be greater than, equal to, or less than
that achieved by the standard (or utterly selfless)
opulations?

2) Is there, in fact, an optimal non-zero percentage
of selfishness in a generally cooperative or selfless
population?

3) Would the community as a whole be more or less
stable with a selfish element that without one?

4) Does introducing a limited dose of selfishness
into the population increase or decrease the overall
population levels and mortality rate?

In answering these questions, it should be noted that
we initially discovered that there is a non-zero value for
selfish births that does cause an optimal value for the
size of the population after one hundred generations. As
shown in Figure 3. the value of 95 elements is the
ending population for 0% selfish births (the standard
Game of Life case), which peaks, however, later at 5 %
of selfish births, but continues to drop as expected as the
parameter (percentage of selfish births) increases from
around 9 % and beyond.

To answer question #1, we examined the results for the
medium and larger matrices to compare the maximum
populations achieved by various strategy mixes.
Referring to Table II, we see that the selfless strategy
(0% selfish births) was able to fill about 30-35% of the
matrix at the maximum, while 5% selfish births
increased the percentage of fill to between 42 and 46%.
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Figure 3: Average Ending Population as a Function of
Selfish Births

This result is surprising because by including nodes

that kill from 1 to 5 of their neighbors in order to
survive themselves, we have created a compound
strategy that is more productive than the simple, purely
cooperative strategy alone. Thus, by including
selfishness in a selfless population, we achieve an
increased population level over the simple, selfless
strategy.

Table II: Productivity of Selfish and Selfless Strategies

% Selfish Births | Max % Filled | Max % Filled
21x21 grid 41x41 grid
0 31.1 (1) 34.9 (3)
42.5(2) 45.5 (4)

(1) Population of 137 achieved in the 98th generation.

(2) Average population of 187.28 achieved in the 99th generation.
(3) Population of 588 achieved in the 189th generation.

(4) Average population of 765.46 achieved in the 199th generation.

To answer question #2, we again refer to Figure 3
where we can see that at 5% selfish births we do, in
fact, find an optimal non-zero value for the population
level. We also note that although this is the optimal
value for this experiment, the advantage in
productivity persists all the way up to 26% selfish
births. '

We conclude that this is no fluke, no mere "sweet
spot,” that produces these results. There appears to be
something about the inclusion of self-interest that has a

very powerful effect on the population, and that is
counterintuitively beneficial for the entire group.

Or is it? Does the inclusion of selfishness actually
affect the average lifespan of the community as a whole?

To answer this, question #3, we refer to Figure 4 to
examine the case where the available resources are
exceedingly scarce. This is modeled by reducing the
space, or the number of cells available, to the smallest (7
by 7) matrix. Here we find, at the end of 50 generations
for the base case (0% selfish births), a catastrophic
result: there are no survivors!

Figure 4 also makes clear the surprising truth of the
matter: in the case of extremely limited resources, the
inclusion of any amount of selfishness -- from 1% up to
100% (0-28% is shown) -- is required to guarantee the
very survival of the community itself. In this case,
the optimal result is achieved in the range of 10-11%
selfish births. :
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Figure 4: Pi-configuration with Limited Resources

Alternatively, to answer question #3, we can look at
the average age of the population at the end of 100
generations. Here we find in Figure 5 that the
community tends to stabilize in age beyond 10% selfish
births. However, the average age for selfish nodes (the
solid line graph in the figure) peaks near thirty
generations, whereas the selfless nodes (the '+') remain
below 5 on average. The combination, the average for
the entire community (shown as the '*'), peaks slightly
above 5 but remains near 5. What is startling is that the
selfish nodes tend to decrease in average age while the
selfless tend to increase for the increase of percent of
selfish births shown.
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To answer question #4, refer to Figures 6 and 7 which
show the relationship between the total number of
deaths in 100 generations and the ending population.
With 0% selfish births, there are 95 survivors and a total
of 3808 deaths. The number of survivors does not
return to this original level until we reach 27% selfish
births, and in this range we find a startling result in
the number of deaths (in Figure 7). As might be
expected, as soon as we increase the percentage of
selfish nodes in the population, there should be, and is,
an immediate increase in the total number of deaths.
This is apparently the price that must be paid for
maximizing the overall population level. However,
once we get above 18% selfish births, the number of
overall deaths drops BELOW the 3808 level (of the
0% selfish births), yet we still achieve an advantage in
ending population level that continues until the 27%
level.

9 SUMMARY

In this paper, we have attempted to show the power of a
class of models called discrete element through a series
of simulation experiments. Some realism was
demanded of the two-dimensional Game of Life by the
inclusion of Prisoner Dilemma-like strategies, called
Lauer's extension. With that modification, and the use
of the mathematical dual of the population logistic
curves, some surprising results were obtained. The
results were more fully explicated through a series of
questions and answers that provide some insight, results
that are counterintuitive, and a few surprises.

We did not develop these models to ascertain what
kinds of expectations that these results might contradict.
Further, it is not certain how to justify drawing more
generalized conclusions from the experimental data
from our simulations. Ideally, the results should be
abstracted into some forms of formulae, rules, or laws.
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What we have attempted to show is that by including
various levels of so-called selfish nodes in the initial
population of the two-dimensional Game of Life through
the control of the percentage of selfish births, we have
found that:

1) For certain classes of resource allocation problems,
there may be a more efficient packing of the available
space, or a more efficient utilization of available
resources;

2) The optimal amount of selfishness in an otherwise
selfless population is not zero, but may be substantially
higher than is initially suspected;

3) In certain extreme cases of resource availability,
some degree of selfish behavior appears to be crucial to
the survival of the group (the community as a whole);

4) The group benefits from the inclusion of some
selfishness in terms of stability (as measured by average
age) as well as in terms of overall population level;

5) For certain values, including selfishness into an
otherwise totally cooperative population not only
increases the productivity, but it also actually decreases
the overall mortality rate.
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We seek further corroboration and other general
implications of these unexpected findings. The authors
currently are working on several additional papers that
demonstrate  implications of these results for
applications in several other fields; e.g.. biology.
economics, sociology. political science, and philosophy.
At the very least, ourhope is that this contribution will
provide a more comprehensive modeling approach with
findings that support a spreading modern realization
that life may be a great deal more complex than we first
imagined.

Suffice it to say that attempts to model real world
processes confronts us with the fact that life is far too
complex to be comprehended in a single, simple theory.
Therefore, to say that it would be best for all if
everyone in a society acted selflessly is  surely
contradicted by modern market theory [18]. Further, to
say that it would be best for all if everyone acted as the
perfect ‘economic man' is certainly contradicted by the
results of these simulation experiments.
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