Proceedings of the 1994 Winter Sumulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

AN INTRODUCTION TO FAULT TOLERANT PARALLEL SIMULATION WITH EcliPSe

Felipe Knop
Edward Mascarenhas
Vernon Rego

Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907, U.S.A.

ABSTRACT

This paper presents an overview of the ACES parallel soft-
ware system and, in particular, an introduction to the
EcliPSe layer of the system. The ACES system is a
fault-tolerant, layered software system for heterogeneous-
network based cluster computing. The EcliPSe toolkit,
which resides on an upper layer, was constructed specif-
ically for replication-based and domain-decomposition
based simulation applications. Itis not, however, restricted
to simulations and supports any message-passing form of
parallel processing. By taking advantage of networks of
heterogeneous machines, generally “idle” workstations,
EcliPSe programs can achieve supercomputer level per-
formance with little programming effort — that is, low
programming effort was a motivating factor in EcliPSe’s
design. We present an overview of key application-level
features in EcliPSe, support for fault-tolerant simulation,
and performance results for three simple but large scale
and representative experiments.

1 INTRODUCTION

The EcliPSe software system was originally designed to
support straightforward and semi-automatic concurrent
execution of stochastic simulation applications in a va-
riety of parallel and distributed environments (Sunderam
and Rego 1991). Since its inception, EcliPSe has been
successful in demonstrating the practical viability of exe-
cuting replication-based or domain-decomposition based
simulations on heterogeneous networks of processors. In-
deed, an early prototype demonstrated prize-winning per-
formance in the investigation of universal constants in a
polymer physics application which executed on a country-
wide network of 192 processors (Nakanishi, Rego, and
Sunderam 1992).

Simulation is known to be computationally intensive,
with typical applications often executing for hours or
days on fast scalar supercomputers. To reduce execu-
tion times, researchers have suggested various techniques
for multiprocessor-based simulation. Considerable atten-

700

V. S. Sunderam

Department of Math and Computer Science
Emory University
Atlanta, Georgia 30322, U.S.A.

tion has been given to distributing a model over a number
of processors in order to speed up the generation of a
single sample path, in particular for discrete-event simula-
tion. Examples of this approach include the conservative
(Misra 1986) and the optimistic (Fujimoto 1990) protocols
of distributed simulation. In addition to the complexities
of application-level and system-level software develop-
ment for distributed simulation, performance is often ad-
versely affected by synchronization overheads intrinsic to
distributed systems.

An alternate but complementary approach to model
distribution is model replication, which is the approach
adopted by the EcliPSe toolkit. This fact was already rec-
ognized by simulation researchers investigating the statis-
tical consequences of parallel sampling (e.g., see (Biles et
al 1985) and (Heidelberger 1988)). Instead of distribut-
ing a single model over a number (say n) of processors,
n replications of the same model are made to run on the
n distinct processors. This is useful for the most general
stochastic simulation paradigm: several sample paths are
required in order that a statement with some statistical ba-
sis can be made. Observe that one cannot avoid replication
even for executions based on model distribution.

Thus, model replication may also be used to comple-
ment model distribution in that successfully distributed
models can be replicated for even better performance.
This statement is particularly relevant for large n, because
distributed simulation cannot guarantee performance im-
provements with increasing numbers of processors. It has
been our experience that model replication often exhibits
potential for better performance than model distribution
simply because replications exhibit few or no data depen-
dencies and do not force synchronization constraints.

The ACES project is an effort geared towards producing
a software base atop cluster computing systems (Turcotte
1993), which are systems consisting of heterogeneous net-
works of workstations and hardware (possibly massively
parallel) multiprocessors. The design of the ACES system
was motivated by a need for easy experimentation and
rapid computation on flexibly configured environments,
and its continuing development is guided by the following
goals:

EcliPSe

GenA UIF |
¥ \ S(I[
i L3 ,
Displa <7 EcliPSe

Graphics Tool s
= Conch

‘ Native Operating System

Figure 1: The ACES Software Architecture

Ariadne

ease of use: complex applications should be imple-
mentable in a high level manner.

portability: a distributed application should execute on
a variety of architectures, including multiprocessors
and heterogeneous workstations on wide area net-
works.

flexibility: the system should cater to a variety of appli-
cations, including replications, general data-parallel
computations with interprocess communication and
general distributed simulations or computations.

scalability: mechanisms that inhibit serializing bottle-
necks should be provided, so that applications can
scale well to run on a large number of processors.

fault tolerance: applications should be able to recover
from machine crashes and other failures which are
typical causes of unwanted termination for long-
running executions.

The ACES system is currently organized in layers, as
shown in Figure 1. The lowermost layer hosts a stream-
lined software base called Conch, providing higher lay-
ers with a virtual multiprocessor machine serviced by an
efficient interprocess communications library. Given a
set of heterogeneous machines and some user-specified
topology, Conch builds a powerful multiprocessor envi-
ronment where processes communicate with the aid of
simple message-passing primitives.

Ariadne is an efficient lightweight process library de-
signed to provide support for a variety of concurrency
constructs at the Conch, EcliPSe, and Sol layers.

EcliPSe adds to the power of Conch by facilitating the
design and implementation of replicative and domain-
decomposed applications, and more importantly, by im-
proving their performance.

The So! (Simulation Object Library) system, which is
resident at the uppermost layer, is a C++ based library that
facilitates the construction of simulation models and other
parallel applications in a variety of domains (Chung, Sang,
and Rego 1993).

The remainder of the paper is focused on the EcliPSe
layer, which is responsible for providing the base for ef-
ficient fault-tolerant simulations. The present version of
EcliPSe is a robust and re-engineered version of prototype
presented in (Rego and Sunderam 1992) and (Sunderam
and Rego 1991), and has already been used in prodgc-
tion applications, such as the work described in (Rin-
toul, Moon, and Nakanishi 1994). Section 2 presents

701

an overview of EcliPSe, highlighting the main features.
Section 3 presents a brief overview of its fault-tolerance
features, and Section 4 describes a performance moni-
toring tool for EcliPSe applications. We present some
experimental results in Section 5 and conclude briefly in
Section 6.

2 OVERVIEW OF EcliPSe

2.1 Structure

A sequential application requires only minimal changes in
order to utilize the power of EcliPSe. This generally en-
tails insertion of EcliPSe primitives in the original source
code with some (usually trivial) rearrangement of the code.
Also, the user is required to provide a file containing the
names of the machines to be used, usually (though not
necessarily) “idle” workstations. The end result is a run
consisting of a set of concurrently executing sampler pro-
cesses coordinated by one or more monitor processes.

An EcliPSe program must contain the following com-
ponents:

Computation code. This is code thatis run by each of the
samplers, being responsible for most of the “actual
work” that the application performs. The compu-
tation code usually requires (input) data from and
returns (result) data to a monitor process.

Monitor function(s). These are functions executed by
monitor processes. A monitor is responsible for coor-
dinating the computation done by a set of samplers,
generating data for and collecting data from these
processes, and finally terminating the computation.

Declarations. Each type of data item that is exchanged
between monitors and samplers must be declared. By
declaring data types, the user hands over to EcliPSe
the task of data handling. Declarations provide the
added advantage of making explicit the flow of infor-
mation between monitors and samplers.

2.1.1 Declarations

EcliPSe declarations are handled by a special preproces-
sor, allowing users to make declarations using a “C-like”
syntax. For example, suppose that samplers produce an
array of 10 double precision numbers for the monitor. The
declaration of this data item is simply:

eclipse_decls (
double type_result (10];
}

The eclipse_decls block defines the region that the
preprocessor acts on. The preprocessor declares an inte-
ger variable called type_result that, at run time, will
contain a handle used in all subsequent EcliPSe calls that
refer to the double precision array (analogous to the notion
of “file descriptor” in UNIX systems). Therefore, when
an array of 10 double precision numbers is to be sent to the
monitor, only the data type handle and a pointer to the data

702 Knop et al.

need be provided. Data is then transmitted in a machine-
independent format, which is crucial for computation on
heterogeneous machines.

2.1.2 Computation Code Primitives

The basic primitives available to samplers are sim-
ple: request_data obtains data from a monitor, and
put_stat sends data to a monitor. Both take as param-
eters an (integer) type handle obtained in the declarations
and a pointer to the data to be transferred. In general, if an
application’s sequential code is already available, chang-
ing it to work with EcliPSe is a relatively simple task.
It suffices to (a) replace the data input code (sometimes
obtained from the keyboard or from a file) by the cor-
responding request_data primitives, and (b) replace
the collection of result and statistics by the corresponding
put_stat primitives.

2.1.3 Monitor Function

All code related to file I/O and to the collection of statistics
is placed inside the monitor function, which is executed
by a monitor process. If a sequential application is being
ported to EcliPSe, writing the monitor generally means
moving the above functionality from the computation code
into the monitor. Calls to produce_data (counterpart
torequest_data)andcollect_stat (counterpartto
put_stat) are inserted when needed.

Table 1 summarizes the main primitives available to
monitors and samplers.

2.2 General Features

Without mechanisms for efficient data transfers between

samplers and monitors, it is possible for sampler-generated

data to cause a bottleneck at a monitor. EcliPSe provides

a set of control mechanisms that prevent such serializ-

ing bottlenecks and network clogs from occurring. These

include:

Granularity control. With a small change in a data type
declaration, the user may specify a “grain size” to be
used for that type. Asaresult, subsequentput_stat
calls buffer data instead of sending data directly to a
monitor. When the number of buffered data items
reaches “‘grain size”, the buffered data is sent in a
single message. This helps reduce network usage and
also decreases overhead at monitors and at samplers.

Multiple monitors. If a monitoris being overworked due
to high incoming traffic, then the incoming workload
can be distributed among several monitor processes.
This is accomplished by coding additional monitor
functions for the different workloads, specifying their
names in the declarations, and indicating (again, in
the declarations) which data types are to be associated
with which monitors. Code for the sampler need not
change.

Tree-combining. If a monitor were to receive data di-
rectly from a large number of samplers, the amount
of incoming traffic and resulting “combining work”
could make the monitor a bottleneck for the entire
computation. This can happen, for example, when
the monitor averages results it receives from sam-
plers. To prevent such a bottleneck from occurring,
EcliPSe allows processes to be organized in a vir-
tual tree structure, with a user-defined topology and
the monitor as the root. Each sampler transparently
sends data to its parent in the tree, instead of sending
data directly to the root. Each such parent combines
its own results with the results it receives from all of
its children in the tree, applying the same operation
that the monitor process would have applied had the
tree-combining scheme not been used. As a result,
the monitor at the root only needs to combine data it
receives from its own children.

The user may choose to employ the tree-combining
scheme by declaring a data type to be a “‘combining
type” and by specifying its corresponding combining
operation. The latter may be either a user-written
function or one of the standard combining operations
provided by EcliPSe (i.e., averaging, summation,
concatenation, and others). No change is required
in the code for samplers.

Data-diffusing. The virtual tree structure described
above can also be used to speed up the distribution
of data from a monitor to each sampler. Instead of
sending data directly to each sampler, a monitor only
needs to use the produce_data_diffuse primi-
tive on an array of data items to be distributed. Data
is then “diffused” down the tree, with each sampler
receiving a data item. The process behaves like the
tree-combining scheme in reverse. The same primi-
tive can also be used for an efficient data broadcast.

3 FAULT TOLERANCE

Typical EcliPSe applications often require large compu-
tational resources, which is sometimes translated to mean
tens or hundreds of machines executing continuously for
several days, and possibly weeks. In this setting, the
need for fault tolerance is critical, because heterogeneous
distributed computing in an open, uncontrolled environ-
ment is generally unreliable. Without fault tolerance, long-
running applications may never run to completion.

We have attempted to address most of the typical prob-
lems that occur during execution of a large-scale applica-
tion and incorporated our solutions in the EcliPSe toolkit.
Recovery is attempted whenever it is meaningful. The fol-
lowing is a list of problems detected, with corresponding
actions.

I. Process or machine failure. In general these
are caused by operating system resource exhaustion

EcliPSe

703

Table 1: Main Primitives Available in EcliPSe

[PRIMITIVE [

MEANING]

COMPUTATION CODE

request_data(int type id, char *ptr data)

Receive one data item from the monitor

put_stat(int type id, char *ptr_data)

Produce one data item for the monitor

MONITOR FUNCTION

produce data(int pr.d, int typed, char *ptr.data) | Produce one data item for a sampler

produce data_diffuse(int type_id, char *ptr data)

Produce data items for all samplers using the diffusion scheme

collect_stat(int pr_id, int type_id, char *ptr data)

Collect one data item from a sampler; prid may be ANY_PROC

collect_stat_.combine(int type id, char *ptr_data)

Collect the combined data items from all samplers

MISCELLANEOUS

getfirst_proc(), getnext_proc(), is_end_proc()

Process listing primitives

getfirst_child(), get_next_child(), is_end child()

List children

get_parent()

Return id of parent process

(caused by an EcliPSe application or an alien appli-
cation using one of the EcliPSe machines), operating
system error, hardware fault, machine shutdown, or
network failure. The default action in each case is
to run a replacement process that substitutes for the
failed process.

2. Software exceptions. These are exceptions detected
by the hardware/operating system and are usually due
to application programming errors. Executing a re-
placement process is not wise since the error is likely
to repeat itself unless corrected by the application
programmer. Only an appropriate error message is
printed and the application is typically terminated.

3. Infinite loops in the application. Even if the appli-
cation successfully passes small-scale test runs, prob-
lems may arise with large-scale runs. A problem that
might occur is that one or more samplers enters an
infinite loop because of a subtle programming error at
the application level. Alternately, a sampler may ap-
pear to be in an infinite loop if it works slowly, due to
a hitherto undetected load surge on its host machine
or because it has been given too low a priority by
its host’s scheduler. A hard problem to tackle in the
general case, detection of infinite loops is performed
using some user-guided heuristics. Upon detection
of such a situation, appropriate user action is taken,
with the default being simply a warning message.

To allow recovery from a process or machine failure,

a checkpoint-rollback mechanism is used: data from all
processes is periodically saved, and then later restored
should a failure occur, with a new process being created
to replace that which failed. While EcliPSe checkpoint-
ing is not transparent to the application, it requires little
programming effort and has the added advantage of being
low cost and efficient; the user only needs to declare what
must be saved and specify the few points in the program
where checkpoints should occur. To specify the data to be
saved, the user must declare a set of recovery data types
together with a set of data pointers. As an example, a
20-element integer state vector is saved by all samplers
at a checkpoint, and then restored in a rollback, with the
following declaration:

int type_ft_proc(20]) (ft_proc <state_array>);

where state_array is a user-provided pointer to
the data being saved. A similar array used for saving
and restoring a monitor’s state is declared by replacing
ft_proc by ft_mon in the type declaration above.

The user indicates the points in the program where
checkpoint and recovery should occur by inserting calls
to check_recover (). After this is done, checkpoints
and rollbacks occur without further user intervention.

Provided adequate state vectors are specified, rollbacks
still allow the program to produce the same output regard-
less of the number of process failures even when samplers
base their computations on random numbers.

A shutdown-restart mechanism has also been provided:
the user may stop the application and restart it later, pos-
sibly using another set of machines (even of a different
type).

By taking advantage of the application’s structure,
EcliPSe programs can often achieve an almost negligi-
ble checkpoint overhead, which in turn drastically reduces
the fault tolerance performance penalty. The details of
how this is accomplished are presented in (Knop, Rego,
and Sunderam 1994b).

4 PERFORMANCE MEASUREMENT

EcliPSe applications support a variety of computation
structures (see (Knop, Rego, and Sunderam 1994a)) and
execute on a number of machine environments. Bottle-
necks in a distributed application, however, may impair
execution performance, resulting in a waste of compu-
tational resources. Early experience with some EcliPSe
applications indicate that bottlenecks tend to occur when
(a) the monitor is overworked by a high influx of data mes-
sages, and (b) samplers have to share a host CPU with other
non-EcliPSe applications. Some bottlenecks are easily cir-
cumvented by a small change in the program or execution
environment, provided the source of the bottleneck can be
found.

To address the problem of locating execution bottle-
necks, the ACES system provides a tool for the interactive

704 Knop et al.

Table 2: Performance Statistics Collected by the Tool

MEANING

STATISTIC |

NODE STATISTICS

CPU occupation Fraction of time this node uses the CPU

CPU load Average number of processes running or

waiting for the CPU

Input packet rate Rate of incoming network packets at the node

Output packetrate | Rate of outgoing network packelts at the node

Collision rate Rate of packet collisions for bus-like nctworks

DATA TYPE STATISTICS

Messages received | Accumulated number of data messages
or sent received or sent for this typc

Messages pending | Messages of a specific data type queued in
this process’s input buffer

Waiting time Time (cumulative) this process waits for

data of a specific type

FILE Help

Interaction ol ode af]]
¢ T

Node Num. 1(NOREQUEST)|
Output Node Num. 2(NOREQUEST) |

Node Num. 3(NOREQUEST) | {3
Procld:0> Data Types Table
----------------- Node Num. 4(NOREQUEST) |
Procld:0> 0 Seed
Procldio> 1 Mean service time Node Num. SCNOREQUEST)
Procld:0> 2 Num. Customers
Procld:0> 3 Mean delay tn queue Neds Num, G{NOREQUEST)
Procld:0> 4 Mean delay (n system
Procld:0> 5 tupe_ft_dif Node Num. 7(NOREQUEST) |
Procld:0> 6 type_ft_comb
Procld:0y 7 Ft_rec_from_disk Node Num. 8(NOREQUEST) |
Procld:0> 8 type_mol) o
[@][-] Setup B cry occupationcTisio
Frequency(ASYND) || cPu Loadcrsks
Node Task Selection(ASYNC) [|| IN Packet(TaSH)
Data Tupe Histograms<ASYNO | || ouT Packet<Trsmy 1
Data Type Selection(ASYNG) | || collisionscTask) J
Close | Help | Close | welp | |17
]

Figure 2: Main Window of Display Tool

display of graphical performance data collected and dis-
played on-the-fly during an application run. Two types
of statistics are periodically collected for each process:
node statistics and data type statistics. The former refers
to machines which host Ecl/iPSe processes, and the latter
refers to EcliPSe data types in which the user has partic-
ular interest. Table 2 shows a list of parameters that the
tool currently displays. Statistics from all processes are
displayed as histograms, making it easy for the user to spot
bottlenecks. Use of this tool requires no changes in the
application program.

The main window of the tool is shown in Figure 2.
The buttons shown under the title Interaction allow a user
to interact with an ongoing EcliPSe application. Using
the Setup panel and clicking on options available, a user
can select/deselect the plotting of histograms for CPU
occupation-level, CPU load, in/out packet rate, etc. Fig-
ure 3 shows an example of a histogram plotted for the CPU
occupation-level of an M/GI/1 queue application utilizing
eight samplers and one monitor (node # 0).

More details about the performance tool can be found

Figure 3: CPU Occupation-level Histogram for 8 Proces-
sors and | Monitor

in (Knop et al. 1994).

5 EXPERIMENTS

To give the user an idea of EcliPSe’s performance on easily
understandable examples, we present the results of a few
experiments. The goal is to demonstrate the utility of
some of the main features described in the paper, and to
give some indication of EcliPSe’s performance on typical
applications with different computation structures.

5.1 Machines

The experiments were conducted on a network of 177
SUN IPC SPARC workstations. These machines reside
on four distinct local area networks, all connected via a
single gateway. The communication time (as measured
by the UNIX traceroute command working with 40-
byte packets) between local machines is 2 ms, and this
increases to 3 ms when a message has to pass through the
gateway. Each machine is rated at 15 MIPS.

5.2 Programs
5.2.1 M/G/1 Queue Simulation: Replication

In this program (hereafter referred to as mgl), each repli-
cation simulates an M/GI/1 queue for a fixed number of
arrivals. Based on batch-means, the statistics sent to the
monitor include mean system delay and maximum num-
ber of customers found in the queue. The regenerative
method may also be used (as was done in (Rego and Sun-
deram 1992)) to estimate these quantities. The monitor
utilizes results from independent parallel replications to
build a confidence interval for both statistics. Though
times between the reporting of samples can be large, the
monitor may be overworked if a large number of processes
is used. For the experiments reported in this paper, the to-
tal number of samples collected was fixed. Two variations
of the program were tested: one using the tree-combining
scheme and one not using this scheme.

EcliPSe

5.2.2 Multidimensional Integral Estimation

This application (hereafter referred to as integral) is an ex-
ample of the use of the sample-mean Monte Carlo method
in estimating multidimensional integrals. In this particular
experiment, we estimate

1l I iot s
/ / .. / ez-=0 Tdroday . dago
0 Jo 0

with d = 20, to demonstrate the effectiveness of Monte
Carlo in high-dimensions.

In the integral procedure, each sampler repeatedly
chooses a random point (29, xy,...z4_) inside the re-
gion over which the integral is defined and computes the
value of the function at this point. The resulting value
is sent to the monitor using a put_stat primitive, with
the monitor averaging all results it receives. Since the
computation time for a single sample is small, both a tree-
combining scheme and “‘grainsize™ larger than 1 were used
to avoid overworking the monitor.

5.2.3 Absorption Times in Markov Chains

Given a (k + 1)-state, discrete time Markov chain and its
associated transition probability matrix P, program ab-
sorb estimates the average number of steps required to
take the chain from state & to the absorbing state 0 (i.e.,
the time to absorption). The monitor builds matrix P
and broadcasts it to all samplers. Upon receiving P, the
samplers simulate independent realizations of the time to
absorption and sends results to the monitor, with a tree-
combining mechanism used to average results. The mon-
itor is then able to compute an estimate for the average
time to absorption.

The parameters used in this experiment were k = 256
and grainsize = 128. A total of 2'® = 262144 sam-
ples are generated in all by the samplers. A fault-tolerant
version of the application was used, based on the fault tol-
erance interface outlined in Section 3. For fault-tolerance,
a state size of 8 bytes was used for each sampler, with 36
bytes for the monitor.

5.3 Results
5.3.1 Effect of the Tree-Combining Scheme

mgl was chosen for the evaluation of the tree-combining
scheme. In the version without tree-combining, samples
of average delay on the system and samples of maximum
number of customers in queue are sent directly to the mon-
itor, which utilizes a running-mean procedure to compute
sample mean and variance. In the tree-combining version,
the average combining operation is used, together with the
EcliPSe monitor function which accumulates results. For
both programs, 25000 customers were simulated in each
replication, for a total of 2048 replications. Figure4 shows
the execution time for both versions of the program, while

705

10000 Fr—r—T —

tree-combining ©—
no tree-combining —+ -
ideal speed-up ----

1000 k

|

100

Execution time (seconds)

10

48 16 32 64 80 128
Number of processes

Figure 4: Execution times for M/GI/1 Application

100 rr——1

[ee———— T
& 90 - ,/ tree-combining ~6—]
g 80 ,/ no tree-combining —+-
s 70 / -
a. ,/
2 60) -
S sof / i
D 7’
5 40 & ﬂ
5 30 // — -
= -0 L]
E 20 ,+/
P 10 =4 -
0 1 1 1 1
48 16 32 64 80 128

Number of processes

Figure 5: Monitor CPU Occupation Level for M/GI/1
Application

Figure 5 shows the corresponding CPU occupation-level
of the monitor.

For fewer than 64 processes, the “normal” combining
program was slightly (up to 5%} faster. This happens be-
cause of combining overhead imposed on the samplers.
For a larger number of processes, the “normal” combining
program was not able to take advantage of the extra sam-
plers, and an explanation for this can be found in Figure 5:
the monitor is overloaded with work generated by a high
influx of messages.

This experiment demonstrates the usefulness of the tree-
combining scheme when a large number of processes is
used. It also demonstrates that use of tree-combining must
be made with care, to avoid unnecessary overhead.

5.3.2 Effect of Different Tree Topologies

With tree-combining, use of different tree topologies can
lead to different performance characteristics. To demon-
strate this effect, we experiment with five different topolo-
gies. As an application we use integral on 64 samplers,
each using grainsize of 1000, with a total of 8 million
samples generated by the system.

To describe each tree topology, the following notation
is used. A (x),r7,...)-tree is a tree where the root has
» children, each of which has z, children, and so on.
Figure 6 shows the program execution times for the fol-
lowing topologies: (16,3), (24, 1 07 3) (in this topology
each of the 24 nodes in the first level has either 1 or 3 chil-
dren, so that the total number of nodes is still 64), (8,7),
(4,15), and (4,3,4). Figure 7 shows the corresponding

706 Knop et al.

100 T T T T T

executioa time <

I 90 -

]

=1

g 80 - o

L

E 1 -
S [od

=]

= 60 - Lol
g <

58] 50 -

(16.3) (24,1 0r3) (8.7) (4.15) (4.34)
Topology

Figure 6: Execution Times for the Different Tree Topolo-
gies

100 T > T T T
& 90 = CPU occupation © 7]
g 80 - ° .
g OF -
§ 60 - 1
S 50 7
E 40 B~ I
o
= 30 o n
s 20 N
(=}
= 10 P~ < © S
] 1 1] 1

(16,3) (24,1 0r3) (8.7) (4,15) (43,4)
Topology

Figure 7: CPU Occupation-Level of Monitor for Different
Tree Topologies

CPU occupation-level of the monitor.

The values of the monitor’s CPU occupation-level are
consistent: the load of the monitor tends to be propor-
tional to the number of children it has. Using the limited
data provided by Figure 6, we may arrive at the following
conclusions: (a) tree topologies that overwork the moni-
tor (like (24, 1 or 3) for the present experiment) result in
poor speedup, and (b) tree topologies that avoid overwork-
ing the monitor at the expense of assigning several child
processes to each non-monitor process (like (4, 15)) also
behave poorly.

5.3.3 Effect of the Grainsize

The program chosen for the “grainsize” experiment was
integral, using the tree-combining scheme. The total num-
ber of samples was 8192000, and the program was run with
64 processes placed in a (16, 3)-tree. Figure 8 shows the
program’s execution times for grainsize varying from 100
to 51200, while Figure 9 shows the corresponding monitor
occupation-level of the CPU.

For a grainsize smaller than 800 the program’s execu-
tion time increases roughly proportionally with the inverse
of the grainsize, which can be attributed to the monitor not
being able to handle the incoming data. Data in Figure 9
indicates that with grainsize 800 the monitor is using al-
most all CPU time available, and that the total amount of
work accomplished will only decrease if the grainsize is
made less than about 800.

For a grainsize larger than 800 the monitor load is much

250

1 T T T L) 1 T T

execution time -©—
200 —

150 —
100 - -

oo

50 —O— -1

Execution time (seconds)

0 1 1 1 1 1 1 1 1 1

2 4 8 16 32 64 128 256 512
grainsize (x 100)

Figure 8: Execution Times for the Different Values of
Grainsize

100

T) ¥ T T I T

CPU occupation —

80 |

60 }-
40 F

20 =

Monitor CPU occupation (%)

0 1 1] 1

8 16 32 64 128 256 512
grainsize (x 100)

N
s

Figure 9: Monitor CPU Occupation for the Different Val-
ues of Grainsize

less of a factor, and ordinarily the program’s execution
time should decrease until an asymptote is reached. An
explanation of the unexpected increase in execution time
for a very large grainsize may be found in the program’s
pattern of memory usage: a larger grainsize requires a
large amount of memory to be used by the samplers to
store samples, therefore causing an increased number of
page faults.

5.3.4 Fault Tolerance Overhead

Program absorb was run with different numbers of pro-
cesses to evaluate the effects of checkpointing overhead.
Execution times are shown in Figure 10.

From this figure itis clear that the application is still able
to obtain good speed-up, despite frequent checkpoints and
the significant proportion of time (about 20% of the total
execution time for 128 processes) spent by the monitor

10000 Fr——T

1)
absorb ©—
ideal speed-up ---

1000

100

Execution time (seconds)

L1

48 16 32 64 128
Number of processes

10

Figure 10: Execution Time for the absorb Program

EcliPSe

to broadcast the transition probability matrix. This graph
shows that fault-tolerant applications in EcliPSe can be
developed with negligible checkpoint overhead, using low
programming effort to make the program fault-tolerant.

6 CONCLUSIONS

Our experiments with the EcliPSe system have led to in-
teresting results. Simple fault-tolerant applications can be
designed and made to run on a network of dozens of ma-
chines in a matter of a few hours. Such programs are fairly
easy to understand and modify, and perform very well in
a multi-machine run. This indicates the effectiveness of
EcliPSe in speeding up the execution of model replication
applications.

Working with EcliPSe also gives us a feel for possi-
ble improvements. A graphical tool is being designed
(Mascarenhas et al 1994) to allow the user to specify the
monitor in a high level manner, with the entire monitor
function produced automatically. Also, our experiences
and empirical results with EcliPSe indicate that automat-
ing the virtual machine configuration procedure may result
in improved application performance.

ACKNOWLEDGMENTS

This research was supported in part by NATO-
CRG900108, NSF CCR-9102331, ONR-9310233, and
ARO-93G0045. The first author was supported by CNPq-
Brazil, process number 260059/91.9.

REFERENCES

Biles, B., D. Daniels, and T. O’Donnell. 1985. Statistical
considerations in simulation on a network of micro-
computers. In Proceedings of the Winter Simulation
Conference, 388-393.

Chung, K., J. Sang, and V. Rego. 1993. Sol-es: An object-
oriented platform for event-scheduled simulations. In
Proceedings of The Summer Simulation Conference.

Fujimoto, R. M. 1990. Optimistic approaches to parallel
discrete event simulation. Transactions of the society
for computer simulation, 7(2):153-191.

Heidelberger, P. 1988. Discrete event simulations and par-
allel processing: statistical properties. SIAM Journal on
Scientific and Statistical Computing,9:1114-1132.

Knop, F, V. Rego, and V. Sunderam. 1994a. EcliPSe:
A system for fault-tolerant replicative computations. In
Proceedings of the IEEE/USP International Symposium
on High-Performance Computing.

Knop, F., V. Rego, and V. Sunderam. 1994b. Failure-
resilient computations in the EcliPSe system. To ap-
pear in Proceedings of the International Conference on
Parallel Processing.

Knop, F., E. Mascarenhas, V. Rego, and V. Sunderam.
1994. Fail-safe concurrent simulation with EcliPSe: an

707

introduction. Submitted for publication.

Mascarenhas, E., et al. 1994. GenA: A Gui for Gener-
ation of ACES Applications. Technical report, Purdue
University (in preparation).

Misra, J. 1986. Distributed discrete-event simulation.
Computing surveys, 18(1):39-65.

Nakanishi, H., V. Rego, and V. Sunderam. 1992. Super-
concurrent simulation of polymer chains on heteroge-
neous networks. /992 Gordon Bell Prize Paper, Pro-
ceedings of the Fifth High- Performance Computing and
Communications Conference: Supercomputing '92.

Rego, V. J, and V. S. Sunderam. 1992. Experi-
ments in concurrent stochastic simulation: the EcliPSe
paradigm. Journal of Parallel and Distributed Com-
puting, 14(1):66-84.

Rintoul, M. D., J. Moon, and H. Nakanishi. 1994. Statis-
tics of self-avoiding walks on randomly diluted lattice.
(to appear) Phys. Rev. E.

Sunderam, V. S., and V.J. Rego. 1991. EcliPSe: A system
for high performance concurrent simulation. Software-
Practice and Experience, 21(11):1189-1219.

Turcotte, L. H. 1993. A survey of software environments
for exploiting networked computing resources. Techni-
cal report, Engineering Research Center for Computa-
tional Field Simulation, Mississippi State University.

AUTHOR BIOGRAPHIES

FELIPE KNOP is a Ph.D. student in Computer Sciences
at Purdue University. He received a Masters degree in
Computer Sciences from Purdue University in 1993 and
a Masters degree in Electrical Engineering from Univer-
sity of Sdo Paulo, Brazil, in 1990. His current research
interests include parallel and distributed simulation, and
multiprocessor operating systems.

EDWARD MASCARENHAS is a Ph.D. student in Com-
puter Sciences at Purdue University. He received a Mas-
ters degree in Computer Sciences from Purdue University
in 1993 and a Masters degree in Industrial Engineering
from NITIE, India. Current research interests include par-
allel computation, distributed simulation, user interfaces
and multi-threaded programming environments.

VERNON REGO, Ph.D., Michigan State University, East
Lansing, 1985, is an Associate Professor of Computer
Sciences at Purdue University. His research interests in-
clude parallel and distributed computing environments,
networks, computational probability and stochastic simu-
lation. He was awarded the 1992 Gordon Bell Prize for
parallel processing.

V. S. SUNDERAM, Ph.D., University of Kent, 1986, is
an Associate Professor in the Dept. of Math. and CS at
Emory University, Atlanta. His research interests include
parallel processing paradigms, specifications and tools,
heterogeneous distributed systems, communication proto-
cols and simulation. He was awarded the 1992 Gordon
Bell Prize for parallel processing.

