Proceedings of the 1994 Winter Simulation Conference
ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

SCHEDULING TIME WARP PROCESSES USING ADAPTIVE CONTROL TECHNIQUES -~

Avinash C. Palaniswamy
Motorola
Schaumberg, IL 60196
aap008@email.mot.com

ABSTRACT

Optimistic techniques using the Time Warp mecha-
nism has shown great promise in speeding up Paral-
lel Discrete Event Simulations. However, Time Warp
has been plagued by problems such as excessive roll-
backs, memory usage, and wasted lookahead compu-
tation. In particular, excessive rollbacks can result in
a deterioration of the advancement of the simulation.
Consequently, techniques to properly control the op-
timism in Time Warp are needed to alleviate non-
productive lookahead. This paper presents a Logical
Process (LP) scheduling algorithm based on concepts
from adaptive control theory. In particular, we de-
velop a performance index called useful work. The
useful work parameter represents the amount of pro-
ductive work done by the process and it is used by
our scheduling algorithm to aid in LP scheduling deci-
sions. The scheduling algorithm presented in this pa-
per is compared with the widely used smallest times-
tamp first scheduling algorithm to show its usefulness
in a Time Warp simulation.

1 INTRODUCTION

The time warp mechanism is a method for synchroniz-
ing a parallel discrete event driven simulator. Under
time warp, a physical system is decomposed into a
set of Logical Processes (LPs) that operate as a set
of asynchronously communicating discrete event pro-
cesses. Each LP maintains a local simulation time
(called the Local Virtual Time, or LVT) and com-
municates with other LPs through timestamped mes-
sages. All LPs execute optimistically, without regard
to the state of other LPs and may occasionally be
required to rollback to process a late arriving event

*This work is partially supported by the Defense Advanced
Research Projects Agency under order number 7056, monitored
by the Federal Bureau of Investigation under contract numbers
J-FBI-89-094 and J-FBI-93-116.

731

Philip A. Wilsey

Center for Digital Systems Engineering
Cincinnati, Ohio 45221-0030

phil.wilsey@uc.edu

(called a straggler event).

Clearly, time warp simulation can be successful
only if the cost and the number of rollbacks are kept
to a minimum. If the cost and the number of roll-
backs are minimized in all processes in the simula-
tion, the throughput of the simulator is maximized. A
number of techniques can be employed to reduce the
cost and number of rollbacks. For example, rollback
costs can be reduced with hardware assist (Fujimoto
et al., 1992) or with improved algorithms such as lazy
cancellation (West, 1988). Likewise, the number of
rollbacks can be reduced (i) with efficient process to
processor bindings (Davoren, 1989), (ii) by restrict-
ing lookahead distance (Matsumoto and Taki, 1993;
Palaniswamy and Wilsey, 1993a), or with time warp
specific scheduling algorithms (Lin and Lazowska,
1991; Reiher et al., 1989).

This paper addresses the problem of building a time
warp specific scheduling algorithm. In particular,
we examine the construction of a process scheduler
that attempts to favor LPs whose past history of be-
havior indicates higher productivity than other LPs.
The chief difficulty in building an effective scheduling
technique is the derivation of a measure that accu-
rately reflects LPs whose behavior is “more produc-
tive” than others. In the simple case, one might mis-
takenly believe that simple scheduling to favor the
LP with the lowest LVT value would be a suitable
technique. Likewise favoring LPs with lower rollback
activity does not necessarily produce the best sched-
ule. Thus, a detailed analysis of time warp must
be conducted to derive a measure for “productiv-
ity” that can be used in making, among other things
(Palaniswamy, 1994), scheduling decisions.

This paper presents a new concept called useful
work, which parameterizes the work done and over-
head incurred for each time warp process in a simu-
lation. The time warp simulation is viewed as a dy-
namic system of communicating processes, and sim-
ple adaptive control techniques are applied to maxi-

732 Palaniswamy and Wilsey

mize throughput. In particular, we design the time
warp simulation as an open loop adaptive control sys-
tem based on the Model Reference Adaptive System
(Kokotovic, 1991) model. Using the Index of Perfor-
mance useful work, LPs are scheduled to maximize
the throughput of each process and also, overall sys-
tem performance.

The rest of the paper is organized as follows: Sec-
tion 2 presents some background work on other tech-
niques to stabilize time warp simulators. Section 3
presents some background work in adaptive control
techniques. Section 4 introduces the concept of use-
ful work and describes time warp as a dynamic sys-
tem of processes that can be adaptively controlled.
Section 5 presents the new scheduling algorithm. In
addition, a brief description of the smallest times-
tamp first scheduling algorithm is presented. Section
6 presents some performance results using the new
scheduling policy. Finally, Section 7 provides some
concluding remarks.

2 BACKGROUND WORK

Bounded Time Warp (Turner and Xu, 1992) and win-
dow based throttling (Reiher et al., 1989) restrict op-
timistic processing by allowing each logical process
to execute within a bounded window. The window is
static in size and is globally the same for all processes
in the simulation. While this technique constrains the
undesirable lookahead computation, it also limits the
optimism of processes that were achieving good looka-
head. This optimization is difficult to use because dif-
ferent simulation models (within the same application
domain) may require different window sizes, for opti-
mal performance. Furthermore, an incorrectly sized
bounding window can dramatically decrease perfor-
mance. At present, no known techniques exist for
effectively determining a static size for the bounding
window.

Adaptive Time Warp (Ball and Hoyt, 1990) intro-
duces conservatism into the system by allowing a pro-
cess which experiences a large number of rollbacks to
block for a particular time duration called B BW
is varied depending on the time spent in blocked and
faulted states (duration of wasted lookahead compu-
tation). However, determining a faulted curve which
fits the simulation 1s a complex problem. Unless a
perfect fit is obtained, the bound obtained will not
maximize speedup. The assumption that the faulted
curve will be same for all processes does not always
hold and, therefore the initial value of BW would be
invalid.

Penalty Based Throttling (Reiher et al., 1989)
schedules processes which receive the least number

of antimessages. Processes are penalized based on
the antimessage count, and are basically skipped by
the scheduler until the penalty reduces to zero. The
major disadvantage of this technique is that the pro-
cessor is not utilized when all processes are penalized
in the system, thereby wasting CPU cycles. Perfor-
mance results from such techniques has discouraged
further use of this technique.

A combination of smallest timestamp first schedul-
ing and load balancing to reduce the number of roll-
backs has been presented by Glazer and Tropper
(Glazer and Tropper, 1993). Load balancing is ac-
complished by varying time slices to processes based
on the parameter stmulation advance rate of each pro-
cess. This is very similar to other approaches (Mat-
sumoto and Taki, 1993; Palaniswamy and Wilsey,
1993a), but differs by the parameter used for per-
turbing the time slices.

Adaptive Bounded Time Windows (Palaniswamy
and Wilsey, 1993a) uses the concept of useful work
and dynamically sizes windows to maximize speedup.
This technique solves all the problems associated with
the other windowing techniques. Adaptive Time-
Ceiling (Matsumoto and Taki, 1993) is based on a
similar concept, although the window sizes are cho-
sen from a set of discrete values. The controlling pa-
rameter is very simple and does not contain global
information such as antimessage count, positive mes-
sage count, etc.

Breathing Time Warp (Steinman, 1993) 1s a combi-
nation of breathing time buckets and time warp. This
technique is based on the principle that events closer
to GVT have a lesser probability of being rolled back.
Thus N; events close to GVT are executed optimisti-
cally, and N, events after that point are executed us-
ing breathing time buckets. However, the mechanism
provides no means to determine the values of N; and
Ny, or dynamically altering their values to minimize
execution time.

Hybrid approaches have been developed that add
optimism to conservative algorithms. SRADS with
local rollback (Dickens and Jr., 1990) and speculative
computing (Mehl, 1991) optimistically process unsafe
events locally; however, the results are not transmit-
ted to other processes in the system. Thus, rollbacks
are confined to local processes, and such approaches
are termed as aggressive but lacking risk. Breath-
ing Time Buckets (Steinman, 1991) is similar to the
SRADS protocol with local rollbacks, but has the ad-
vantage of dynamically varying the conservative time
windows based on the concept of global and local
event horizons. Unfortunately, this technique per-
forms poorly under small lookahead conditions. An-
other drawback of this technique is that all messages

Scheduling Time Warp Processes 733

have to be flushed before calculating the global event
horizon, i.e., no message can be in transit.

Bounded lag (Lubachevsky, 1978) uses the mini-
mum distance between logical processes as a basis for
deciding safe events and requires the programmer to
provide apriori lower bounds between causally con-
nected events. Filtered Rollback relaxes the conser-
vative time window to allow causality violation and
recovers from errors by using optimistic rollback tech-
niques. However, there is no provision to determine
the distance values between processes to vary opti-
mism to produce maximum speedup.

The smallest timestamp first (Lin and Lazowska,
1991) scheduling policy has been shown to have the
capability to produce a time warp simulation which
is conservative optimal. However, in a general pur-
pose multiprocessing environment with processes par-
titioned across processors, the selected process can be
rolled back by a straggler. Such cases can deterio-
rate the simulation. This is explained in detail in a
later section. Thus, there is a need to derive a sim-
ple heuristic which schedules processes based on its
rollback behavior and productive work.

The following can be concluded from the above dis-
cussion:

¢ The windowing approaches to limit optimism are
promising, but there is a need to provide a mech-
anism to initialize and dynamically size the win-
dows to maximize speedup. Thus rather than
limit optimism, it has to be controlled.

¢ Adding optimism to conservative methods re-
quires, explicit information from the user about
distances between processes in some cases, and in
general there is no provision to determine the op-
timal optimistic and conservative window sizes.
These techniques usually fail for simulations with
small lookahead since they are risk-free.

¢ Scheduling processes such that the LVT advances
in a fairly constant manner has not been studied
in detail. Thus, there is a need to devise, study,
and compare scheduling techniques for time warp
simulation.

The solution to maximize speedup is to conirol op-
timism, i.e., to limit the optimism dynamically as the
simulation proceeds. The following questions arise:

1. Do we control the optimism based on global or
local information, or a combination of both?
2. What is the overhead of the control mechanism?

The solution here is to speed up or slow down in-
dividual processes (by intelligent scheduling) based
on its own performance globally and locally. Imple-
menting such a solution would require integration of

simple control system techniques. Thus, a brief in-
troduction to control systems techniques is necessary
to elaborate on the solution.

3 CONTROL THEORY

Control theory is concerned with modifying the be-
havior of dynamical systems so as to achieve desired
goals (Kokotovic, 1991). These goals include main-
taining outputs at constant levels, assuring that the
overall system track specified trajectories, or more
generally the overall system optimizes a specified cri-
teria. The goal is achieved by computing a suitable
control input based on the observed outputs of the
system. The fundamental process involved in con-
trolling a dynamical system includes:

1. mathematical modeling of the system,

2. identification of the system based on experimen-
tal data, and

3. processing outputs and using them to synthesize
control inputs to achieve desired behavior.

Adaptive control provides potential solutions to
problems of the following general form. The sys-
tem to be controlled is normally exposed to a time-
varying environment, in the form of a system with
changing parameters, input signals, disturbances with
lime-varying statistical characteristics, or changing
performance objectives. However, adaptive control is
not easy for the following reasons:

e Most systems have transfer functions which are
impossible to determine.

o Parameter estimation is difficult.

¢ The adaptive element should be as simple as pos-
sible, so as not to affect the performance of the
system.

To overcome these problems, the following adap-
tive system called Model Reference Adaptive System
(MRAS) has been proposed (Kokotovic, 1991).

Model Reference Adaptive Systems (MRAS):
An MRAS open loop model is shown in Figure 1. In
such systems, an index of performance (IP) is iden-
tified, which indicates the systems instantaneous or
short-term average performance quality. A control
loop called the adaptive control routine or the adap-
tive element is then set up to optimize the IP auto-
matically by adjusting control parameters.

The Adaptive Element: The adaptive element
functions in 3 distinct steps, namely:

1. Identification, which is defined as the process
by which the system is characterized, or by which
the IP value is measured.

734 Palaniswamy and Wilsey

r V
" - o t
Input(s) _ % Process f : Output(s)

o :
\
Controy ! :

i Adaptive
; Element

IP Identification

Figure 1: Model Reference Adaptive System

2. Decision, is the process by which the [P mea-
surements are used to decide how system perfor-
mance relates to the desired optimum.

3. Modification, is the process by which the sys-
tem (control or plant) parameters are changed
towards the optimum setting, as dictated by the
identification and decision process.

The identification process is system dependent and
is usually a heuristic IP value which closely repre-
sents the performance of the system. The decision
and modification process is based on one of the follow-
ing gradient methods (Eveleight, 1967): (i) steepest
ascent, (i1) steepest descent, and (iii) fixed-increment
ascent or descent techniques.

4 TIME WARP AS A SYSTEM OF PRO-
CESSES

Consider a time warp simulation as a system of
processes as shown in the block diagram of Figure 2.
The complete time warp system is considered as a
system of processes interconnected as determined by
the communication structure of the simulation. The
time warp simulation would be optimal if the output
at each block is optimal. The output at each block
can be made optimal by adaptively controlling the
process using the MRAS model.

A fixed parameter system will not result in an opti-
mal system as was observed from earlier discussions.
Thus, an adaptive mechanism as shown in Figure 1
is required to continuously vary control parameters
to provide optimal simulation. Since there is no way
of determining the transfer function of the system,
an IP which represents the progress of the system is
required. The final system for each time warp pro-
cess 1s configured as shown in Figure 1. The difficult
stage in the design of the adaptive control is decid-
ing on an IP for each time warp process. The next
subsection deals with the selection of an appropriate
Index of Performance (IP), which characterizes the
performance of a time warp process.

4.1 The Concept of Useful Work

Ideally, for time warp to be optimal, all processes
should execute without being rolled back. However,
practically processes do get rolled back. To minimize
execution time, the following conditions should exist
in the parallel environment, namely:

e The number of rollbacks in each process should
be minimal.

e The number of antimessages sent by each process
should be minimal.

e The number of transactions undone should be
reduced, so as to maximize lookahead computa-
tion.

o The number of transactions committed in a given
time interval should be maximum, so as to in-
crease the throughput of the system.

A lumped parameter (for each process) which re-
flects a combination of the above mentioned condi-
tions would be very useful in determining the actual
amount of optimism utilized by the processes. A sim-
ple quantity which reflects the progress of the process
would be the number of events committed per second,
i.e., the throughput of the system. In this paper, the
parameter is termed as the measure of useful work
(Wi).

We formally define an initial measure of useful work
by an LP as the ratio of the total number of events
committed (E.) every GVT cycle to the CPU time
used by the process to commit those E. events (écpu)
and is termed as the transition value of useful work

(Wh):
E.

We=5—"

(1)

However, this simplistic measure does not reflect the

actual throughput of the process for the following rea-
sons:

o It is not necessary for all events to have the same
execution times, i.e., events can have varying ex-
ecution times.

e Events can occur at varying frequencies, i.e.,
more than one event can occur at the same
LVT. This implies that there may be instances at

which many events occur, and instances where a
few events occur.

This implies that the ratio of the number of events
committed per second as the measure of useful work
1s not correct for a real Parallel Discrete Event Sim-
ulation (PDES) environment. However, if all events
have equal execution times and occur at a constant

Scheduling Time Warp Processes 735

\ Blocki
' |
!
From other Input(s)
Logical 3| nputs)
Processes | 1
[\
v [Blockj
L
|
From other Input(s)
logeal ~ y. . Pu@

It

Processes

r
_ 1 Logical

-
)
| Output(s) | lgc;(l:hasr
. - - gical
| ‘I ; Processes
e |
"o
|
. Output(s) | To other
i 7 Processes

T — Logical
| !
|

Figure 2: Time Warp Control System

frequency, then for such PDES environments Equa-
tion 1 holds as the measure of useful work. The next
subsection presents a complete definition for a use-
ful work parameter taking into account all possible
overhead scenarios.

4.2 Performance Index: Useful Work

Assume that the useful work is calculated every GVT
cycle, and all measurements are taken in this interval
called the measurement cycle. Smaller the measure-
ment cycle, closer will the system tend to be balanced.
However, small measurement cycles would result in
excessive time spent in calculating W; rather than in
useful computing.

Definitions:

e Let E, represent the total number of events pro-
cessed in the measurement cycle.

e Let E. represent the number of events committed
in the measurement cycle.

e Let E, represent the number of events undone
in the measurement cycle.

e Let M, represent the number of antimessages
(negative) sent in the measurement cycle.

e Let M, represent the number of positive mes-
sages sent in the measurement cycle.

o Let o be the ratio of undone events to the total
number of events executed.

Ey
a= g (2)

Ideally we would like o to be equal to zero, i.e.,

E, is zero.
e Let v be the average rollback length in the mea-

surement cycle.

e Let N, be the total number of rollbacks in the
measurement cycle.

Assertions: The following assertions form the basis
of the useful work model to be developed later.

1. A small value of o would result in more work
done by the process, therefore:

1
Wi = 3)
2. Every antimessage sent results in a performance
deterioration, and therefore a decrease in the
amount of useful work done, therefore:

1
Wi o« — 4
? Mn ()
3. Every rollback results in the process wasting time
in restoring the current state and recomputation

of events, therefore:

(5)

Model: Consider a logical process ¢ in the time warp
synchronized simulation. For the entire system of
processes to execute in the shortest time possible,
each process should execute in a minimum time.
Therefore, each process should not waste excessive
processing bandwidth on synchronization overheads
(rollback, antimessages, state-saving, etc). From the
assertions, we define a new quantity for the useful
work W;:

- a My Ny (6)

736 Palaniswamy and Wilsey

where k is the constant of proportionality. Substitut-
ing for a, we obtain:
k E,
Wi = Ey Mp Ny vy @

A new parameter called useful work, which rep-
resents the productive work done, the overhead in-
curred and the forward progress for each time warp
process has been presented. Two modifications
needed to time warp have been successfully imple-
mented and tested. The two implementations based
on the concept of useful work are: (i) Adaptive Peri-
odic state saving (Palaniswamy and Wilsey, 1993b),
and (ii) Adaptive Bounded Time windows, which
was proposed to solve the problem of optimal BTW
(Palaniswamy and Wilsey, 1993a).

The final modification required for time warp is
the need for a process scheduler. A parameterized
process scheduler based on the concept of useful work
has been proposed, implemented and tested in this
paper. A detailed description of the proposed design
is presented in the next section.

5 LP SCHEDULING

Consider a time warp simulation of n processes
(Py, Pa,....P,), partitioned across m machines (pro-
cessors). The collection of processes (Pj...Px) on ma-
chine m; is termed a cluster C;. A formal statement
of the scheduling problem in a time warp simulation
1s as follows:

For each cluster C; schedule process P, so as to

satisfy the following criteria:

Criteria 1: The scheduler should be simple and not
produce probing effects in the simulation. O
Criteria 2: The process to be scheduled should be
chosen such that the overall execution time is
reduced.)
Criteria 3: All processes should be given a fair
chance to execute, otherwise deadlock due to
starvation may occur. 0

Given these criteria, we review two LP scheduling
strategies, namely: Smallest Timestamp First and
Useful Work.

5.1 Smallest Timestamp First Scheduling

The process with the smallest timestamp is always
scheduled to execute (Lin and Lazowska, 1991). This
technique results in good performance in homoge-
neous environments with global knowledge of LP ad-
vancement. However, in a distributed network or

multicomputer environment the most efficient pro-
cessing may not reside with the slowest advancing LP.
This is especially true when the critical path of simu-
lation time advancement migrates among a large re-
gion of the LPs and when LPs off the critical path can
perform useful lookahead (especially when that looka-
head advances a region of the simulation to another
region of the critical path). In addition, the following
phenomenon may also deteriorate overall system per-
formance when smallest timestamp first scheduling is
employed:

Phenomena 1: Straggler messages destined to the
scheduled process may cause a performance de-
terioration. Bad partitioning and varying com-
munication latencies could cause such a condi-
tion to frequently occur. In such cases, there is
again a violation of Criteria 2. 0

Phenomena 2: Processes with their local clock at
infinity may have (true or false) messages waiting
to be processed that could cause the process to
rollback to the smallest timestamp in the system.
Thus, smallest timestamp first scheduling does
not satisfy Criteria 2. m]

Put more simply, there are instances of simulation be-
haviors where LVT advancement is not the sole mea-
sure of productivity. Other factors such as rollback
activity and frequency of antimessage generation are
also contributors to measures of productivity.

5.2 Useful Work Scheduling

To accommodate all of the above criteria, a heuris-
tic approach to select the appropriate process has to
be devised. This scheduling algorithm, presented be-
low, is based on the hypothesis that a process with
the largest value of useful work should be given prior-
ity for scheduling, since this would result in the over-
all productivity of the system of processes increasing.
This implies that the scheduling priorities for the pro-
cesses are based on their local parameter of the Index
of Performance, namely useful work. This algorithm
will be particularly useful when there are a lot, of true
messages in transit, a condition where the scheduling
decision based on the smallest timestamp first policy
would not be optimal.

The scheduling algorithm is presented in Figure 3.
An array of useful work values for all processes con-
trolled by the scheduler is maintained. The process
with the largest value of useful work is scheduled by
the scheduler. Once this process has executed, it is
placed at the end of the queue, and the process with
the next highest useful work is scheduled. This is
done in order to provide fair scheduling policy that

Scheduling Time Warp Processes 737

/AR o Ao Ao ok ok koK K o K Ko KoK ok K o ko

Let n be the number of processes to be
scheduled.

Maintain an array of length n sorted in
decreasing order of useful work.

Update and Sort the array after every
GVT computation.
koo ok Kok ook ok o ok o KoK o K o o K K K Kk ke ko ok

begin Scheduler

1. Schedule the process with the largest
value of useful work.

2. After execution move process to the
tail end of the array.

3. Schedule process with next highest
value of useful work.

4. Continue until simulation ends.

end Scheduler

Figure 3: Scheduling Algorithm using IP useful work

prevents deadlock (thus satisfying criteria 1 and 3).
New values for useful work are calculated after every
revision in GVT.

6 EXPERIMENTAL RESULTS

Both algorithms have been implemented for empir-
ical performance comparison. In particular, an ex-
perimental platform of PDES for simulating digital
system descriptions described using the hardware de-
scription language VHDL is used. The simulator runs
on a 4 node SMP SPARC-1000 running SOLARIS
2.3. The benchmarks used are:

a 8 process Parallel to Serial Converter (PTSC),
a 20 process Parallel Multiplier (PMULT),

a 20 process Arithmetic Logic Unit (ALU), and
a 32 process Floating Point Arithmetic Unit
(FPA).

B

Since processes use a large amount of system re-
sources, time warp processes were implemented as
threads, greatly reducing the size and execution time
of the simulation.

The scheduler for each processor is configured as
shown in Figure 4. The scheduler selects the thread
to be executed from the pool of threads based on the
scheduling policy (Each thread being a process to be
executed). The present implementation schedules all
threads for equal amounts of time on the processor.

| b
i

Pool of Threads

Scheduler
i

r

l

Figure 4: Time Warp Process Scheduler

Processor

Test Policy | # Rollbacks | Time (Secs)
PTSC LTF 385 16.24
UwW 395 16.37
PMULT | LTF 449 185.46
UW 441 184.724
ALU LTF 251 19.68
UW 245 15.14
FPA LTF 2784 35.42
UW 2546 34.66

Table 1: Performance Results

All policies were executed with similar load conditions
existing on the machine. The goal of the study was to
compare the performance of the adaptive scheduling
strategy with the smallest timestamp first scheduling
policy.

Comparative Results for the benchmarks are pre-
sented in Table 1. From the table, it can be ob-
served that the scheduling policy using the index of
performance useful work performs as well or outper-
forms the smallest timestamp first scheduling pol-
icy. In general, the total number of rollbacks are de-
creased (2% to 10% reduction) using the new schedul-
ing policy. Thus, initial experimental results have
shown that the scheduling policy using useful work
has promise and outperforms smallest timestamp by
20% for ALU. However, further testing with signifi-
cantly more complex models are necessary to further
validate the approach.

7 CONCLUSIONS

A new approach to visualizing time warp simulations
as a dynamic system of processes that can be adap-
tively controlled has been presented. An index of per-
formance (IP) called useful work has been derived. A
new scheduling algorithm, based on the value of useful

738 Palaniswamy and Wilsey

work of each process in the simulation has been pro-
posed. The scheduling policy was implemented and
compared against the smallest timestamp first algo-
rithms. Initial results have been encouraging, and the
new scheduling policy using model reference adaptive
techniques has outperformed or performed as well as
the smallest timestamp first policy.

The drawbacks of LVT scheduling have been over-
come in the adaptive scheduling policy. In particular,
the presented algorithm is based on model reference
adaptive control techniques, with the following char-
acteristics: (1) simplicity of implementation (ii) dy-
namic ordering of the round robin queue based on
the simulation, and (iii) priority based on the pro-
ductivity of each process in the simulation.

The new scheduling algorithm has shown promise
to be effective at improving performance of time warp
simulations. However, more empirical results are nec-
essary to concretely conclude its usefulness.

REFERENCES

Ball, D. and Hoyt, S. (1990). The adaptive time-warp
concurrency control algorithm. In Distributed Simu-
lation, pages 174-177. SCS.

Davoren, M. (1989). A Structural Approach to the Map-
ping Problem in Parallel Discrete Event Logic Simu-

lations. PhD thesis, Dept of Computer Science, Uni-
versity of Edinburgh, Edinburgh UK.

Dickens, P. M. and Jr., P. F. R. (1990). Srads with local
rollback. In Distributed Simulation, pages 161-164.
SCS.

Eveleight, V. W. (1967). Adaptive Control and optimiza-
tion techniques. McGraw-Hill, New York, NY.

Fujimoto, R. M., Tsai, J., and Gopalakrishnan, G. C.
(1992). Design and evaluation of the rollback chip:
Special purpose hardware for time warp. [FEE
Trans. on Computers, 41(1):68-82.

Glazer, D. W. and Tropper, C. (March 1993). On process
migration and load balancing in time warp. [EEFE
Transactions on Parallel and Distributed Systems,
4(3):318-327.

Kokotovic, P. (1991). Foundations of Adaptive Control.
Springer—Verlag, Berlin, Heidelberg.

Lin, Y.-B. and Lazowska, E. D. (1991). Processor schedul-
ing for time warp parallel simulation. In Advances

in Parallel and Distributed Simulation, pages 11-14.
SCs.

Lubachevsky, B. D. (1978). Efficient distributed event
driven simulations. Communications of the ACM,
32(1):63-72.

Matsumoto, Y. and Taki, K. (1993). Adaptive time-ceiling
for efficient parallel discrete event simulation. In

Object-Oriented Simulation Conference, pages 101-
106. SCS.

Mehl, H. (1991). Speed-up of conservative distributed dis-
crete event simulation methods by speculative com-
puting. In 5th Workshop on Parallel and Distributed
Simulation, pages 163-166. SCS.

Palaniswamy, A. (1994). Dynamic Parameter Adjustment
to Speed Time Warp Simulation. PhD thesis, Dept
of ECE, University of Cincinnati.

Palaniswamy, A. and Wilsey, P. A. (1993a). Adaptive
bounded time windows in an optimistically synchro-
nized simulator. In Great Lakes VLSI Conference,
pages 114-118.

Palaniswamy, A. and Wilsey, P. A. (1993b). Adaptive
checkpoint intervals in an optimistically synchro-
nized parallel digital system simulator. In VLSI 93,
pages 353-362.

Reiher, P. L., Wieland, F., and Jefferson, D. R. (1989).
Limitation of optimism in the Time Warp Operat-
ing System. In Winter Simulation Conference, pages
765-770. SCS.

Steinman, J. S. (1991). Speedes: A unified approach to
parallel simulation. In 6th Workshop on Parallel and
Distributed Simulation, pages 75-84. SCS.

Steinman, J. S. (1993). Breathing time warp. In 7th
Workshop on Parallel and Distributed Simulation,
pages 109-118. SCS.

Turner, S. J. and Xu, M. Q. (1992). Performance evalu-
ation of the bounded time warp algorithm. In 6th
Workshop on Parallel and Distributed Simulation,
pages 117-126. SCS.

West, D. (1988). Optimizing time warp: Lazy rollback
and lazy re-evaluation. Master’s thesis, University
of Calgary, Calgary, Alberta.

AUTHOR BIOGRAPHIES

AVINASH C. PALANISWAMY completed his
Ph.D. in Electrical and Computer Engineering from
the University of Cincinnati in May, 1994. His
research interests include, parallel synchronization
algorithms, high speed parallel simulation of digi-
tal systems, CAD for board level simulation, Hard-
ware/Software Co-Simulation, and acceleration of
VHDL simulation.

PHILIP A. WILSEY is an assistant professor at
the University of Cincinnati. His primary research in-
terests are computer architecture, parallel processing,

hardware description languages, MIMD on SIMD,
and CAD.

