Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

ESTABLISHING AN OBJECT-ORIENTED METHODOLOGY FOR THE
SIMULATION AND CONTROL OF INTEGRATED MANUFACTURING SYSTEMS

Joseph G. Macro
Wayne J. Davis

Department of General Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, U.S.A.

ABSTRACT

The current simulation tools which are based upon stochas-
tic queuing network architectures have proven to be inad-
equate for modeling modern Flexible Manufacturing Sys-
tems (FMSs). A Hierarchical, Object-Oriented Program-
mable Logic Simulator (HOOPLS) is proposed: to model
the interaction among the controllers which coordinate the
production in an FMS; to address the flow of all entity types
including jobs, fixturing, tooling, and information; and to
provide direct consideration of the detailed processing
plans which govern how resources are employed to manu-
facture a given item within the FMS.

1 INTRODUCTION

Flexible Manufacturing Systems (FMSs) have evolved
from several technological advancements including com-
puter software and hardware, communication networks,
robotics and numerically controlled devices. FMSs are
being adopted throughout the world to facilitate the
manufacture of a wider mix of products and to permit
economic production of smaller batch sizes. In a recent
study, 75 per cent of the medium- to large-size firms (in
France, Italy, Japan, the United Kingdom, the United States
and West Germany) reported that they will have installed
FMSs by the year 2000 (Mansfield 1993). Although there
is a large acceptance of these FMSs, there is a nearly
universal complaint among manufacturers that these sys-
tems have not achieved the anticipated throughput and
productivity.

One source of this discrepancy is that most FMS
control architectures evolve as a patchwork of controllers.
Manufacturers who do not possess the in-house expertise to
design an FMS must seek assistance from outside consult-
ants or system integrators. System integrators, in turn,
work with major suppliers of processing equipment who
then assemble other manufacturers to provide the essential
supporting systems. For example, the vendor of the mate-

954

Duane L. Setterdahl

Cap Gemini America
S Westbrook Corporate Center, Suite 600
West Chester, Illinois 60154, USA

rial handling system (MHS) provides its system with the
necessary controller(s) for operation. Since most control-
lers are proprietary, little or no documentation is provided.
A bottom-up (patchwork) design evolves through this
procurement procedure. At no point during the process is
a complete set of specifications for the individual control-
lers and their proposed interactions developed. Too often,
the first assessment of system integration occurs when the
FMS is brought into operation. Then, it is discovered that
the integration is incomplete, as there is a propensity for
deadlock as well as overlapping (often inconsistent) func-
tionality among the controllers. Given the proprietary
nature of the included controllers’ logic and the continued
absence of simulation tools to model the controller inter-
actions, the task of modifying the controller hierarchy is
virtually impossible to address. The modeler typically
cannot eliminate the problem(s), and can only document
their consequences.

The electronic circuit board FMS developed for the
Department of Defense's Rapid Access to Manufactured
Parts (RAMP) program clearly demonstrates the bottom-
up paradigm. For this FMS, which is now housed at the
Naval Air Warfare Center in Indianapolis, over one million
lines of computer code were generated to integrate the
commercial software packages and controllers for the vari-
ous processing and material handling equipment. There is
a significant overlap in the functionalities for the included
commercial software. (Three commercial schedulers are
included.) In some cases, the vendors for the controllers
have included password protection to protect their propri-
etary software code, making it impossible to document the
logic employed by the controllers. To date, no organization
has been able to develop adetailed simulation to project the
performance of this FMS, nor has the FMS been brought
into full-scale production.

To insure a fully-integrated manufacturing system, a
top-down design approach, including detailed specifications
of thecontrollersbased upon the desired system integration,
is essential. Detailed simulation studies must verify that

Object-Oriented Methodology 955

these specifications provide the desired coordination among
the subsystems by eliminating deadlocks and redundant
functionalities. The verified specifications must then be
imposed upon each subcontractor to insure that the desired
performance will be achieved. Currently, the essential
design tools to implement a top-down design do not exist.
That is, it is infeasible to accurately simulate the perfor-
mance of a designed control hierarchy using conventional
simulation tools.

Although simulation is the most accepted technology
for analyzing FMSs, there are two fundamental flaws
limiting its function as a design tool. First, current simula-
tion tools model events associated with entity flows in the
system rather than the controller interactions that govern
these flows. Second, current simulation tools do not allow
for the inclusion of detailed process plans which specify the
coordination that must exist among the flow of different
entity types during the manufacturing process. (An ex-
panded discussion of these concerns is given in Davis,
Setterdahl, Macro, Izokaitis and Bauman (1993)).

2 HIERARCHICAL OBJECT-ORIENTED PRO-
GRAMMABLE LOGIC SIMULATOR

2.1 Message-Based Simulation Modeling

To remedy the inherent deficiencies in SQN-based simu-
lation languages, we are developing a new simulation
methodology, termed Hierarchical Object-Oriented Pro-
grammable Logic Simulator (HOOPLS). HOOPLS em-
ploys the principles of object-oriented programming. Each
modeled object represents either a particular control node
or resource within the system being modeled. To provide
a computer-assisted software engineering environment, a
graphical user interface is developed which allows non-
experts to construct detailed simulation models using the
adopted hierarchical, object-oriented paradigm.

One feature of object-oriented programming is that the
objects process information based upon input messages
received from other objects and can respond appropriately
by sending messages to other objects. HOOPLS uses this
object-oriented message passing to mimic the flow of
actual control messages passed among the controllers of the
modeled manufacturing or assembly system. Our adopted
approach to modeling controller interactions is the single
most important characteristic of the HOOPLS methodol-
ogy and separates it from previous object-oriented simula-
tion approaches. Whereas previous simulation approaches
have focussed upon modeling discrete-events only,
HOOPLS views these events as being consequences of
controller interactions.

Using the object-orientation, each programmed object
(controller) can be individually tested to insure the code is
functioning properly, a feature which is essential in the

development of large-scale simulation models. The pro-
grammed objects are also reusable, not only within the
current simulation, but any future simulations employing
similar equipment. In the future, publicly available soft-
ware libraries of objects (controllers) may be created where
modelers can share the code for control objects that they
have constructed. Since the manufacturer is responsible in
most cases for designing the controller for its equipment,
manufacturers could also develop the control object to
model its equipment and place it in the library. This library
would significantly reduce the effort to develop a simula-
tion model since standardized control objects would exist
for each piece of equipment and the major modeling task
would be to define and model the control hierarchy that
integrates the equipment.

2.2 The Control Architecture

Currently, there is no theoretical or conceptual basis to
guide the modeling of control architectures. It is usually
left to the modeler to choose the control structure, which is
usually centralized, hierarchical, heterarchical, or some
hybrid of the three. In the recent literature, there have been
various discussions on the appropriateness of these differ-
ent control architectures in a manufacturing environment
(Diltsetal. 1991 and Matsuda and Inoue 1991). The use of
adecentralized hierarchy hasbeen established asan effective
method of decomposing the complex decision-making
problem, particularly in amanufacturing environment where
real-time decision making, modularity, and reliability are
of great concern. We model the distributed coordination
(integrated scheduling and control) of acomplex hierarchical
discrete-event system using a Recursive Object-Oriented
Coordination Hierarchy (ROOCH). We have explicitly
designed the ROOCH, an essential component of HOOPLS,
to permit a generic coordinate node to be recursively
employed at each hierarchical level.

In the real-time decision-making environment, the
need for scheduling and control is concurrent. That is, the
controlling elements must continuously monitor feedback
information from the subordinate subsystems and employ
the current control policy to generate the essential coordi-
nating inputs which will direct the future subsystem re-
sponse. The scheduling decision, on the other hand, is
dependent upon the current state of the subordinate sub-
systems which are influenced by the coordinating inputs.
The output of the decision is the control policy which will
be implemented to generate the essential coordinating
inputs. What evolves is a continuous interaction between
scheduling and control which can only be addressed through
coordination of both.

956 Macro, Davis, and Setterdahl

2.2.1 The Basic Fractal Unit

The Basic Fractal Unit, introduced by Tirpak et al. (1992),
provides the specifications for the fundamental Coordinate
Node (object) within the ROOCH. The fractal unit was
designed to model the intricacies of a controller, and is
based on the following premise: There is a basic concep-
tual unit that incorporates a set of functional attributes
which must be addressed at every level of a coordination
hierarchy. We have adapted this premise to our purpose of
controlling amodemn integrated manufacturing system. As
shown in Figure 1, the fractal unit has a set of input/output
components defined as ports, queues, and inhibit flags.
Each unit owns an input queue for incoming entities from
its supervisor (next hierarchical unit 'up’), with an inhibit
flag to prevent their entry if necessary.

Each unit also owns an output port, which is simply a
gateway to its supervisory unit. (Note that the output queue
and the output inhibit flag for the unit belong to the
supervisor of the unit, and not the unititself.) Returning to
Figure 1, when an entity is placed into the input queue for
a given fractal unit, that unit assumes control for the
arriving entity. Whenever the fractal unit finishes its
assigned tasks for a job or resource entity, the entity is then
placed in the output queue. Atthis point, the fractal unit has
no further responsibility for determining the disposition of
the entity and the control of the entity is returned to the
supervisor. Within each fractal unit there can exist several
subordinate units (next hierarchical level 'down’). The
modeled fractal unit owns the input port to each of its
subordinate units, as well as an output queue and output
inhibit flag for each subordinate. Whenevera unit places an
entity into the input queue of one of its subordinates it also
delegates direct control of that entity to the subordinate.

SUBORDINATE INPUT PORT
INHIBIT FLAG
SUBORDINATE OUTPUT QUEUE

COORDINATION

subordinate unit directives

unit directi inf

(from lupu'visw)—— supervisar)

Figure 1. The Basic Fractal Unit

The control of the entity remains with the subordinate until
the subordinate places the entity in its output port.

The details of each subordinate unit are hidden from
the unit except for strategic state information. Thus, the
coordination hierarchy is built by placing layers of coor-
dinators inside other coordinators. The highest level coor-
dinator can have several subordinate units inside it, with
each of these subordinates having subordinate units inside
(etc.), until the bottom hierarchical level is reached. The
control hierarchy can also be expanded upwards indefi-
nitely. For example, in a manufacturing setting one can
start by modeling a machine center and its subordinate
units, a part loader, a carousel, and a machine spindle. That
machine center can then be part of a cell, which in turn can
be part of a shop. There can be several shops in a single
factory, and several factories comprising each divisionina
company. Finally, alarge corporation may be comprised of
several divisions. The basic fractal unit described above
allows the modeler to develop simulations at any level,
whether the focus lies on the factory floor, or on long-range
planning among many geographic points. Thatis, we have
developed a common framework to view a controlled
subsystem at any hierarchical level.

To facilitate the flow of entities through layers of the
coordination hierarchy each unit contains a transport sys-
tem. The transport systems are themselves coordinators,
but they are not viewed as fractal units since these coordi-
nators can only transport entities from place to place, (i.e.
- no physical processing takes place). That is, these can
only modify the location and not the state of an entity. Each
unit can have several types of transport systems depending
on the type of entities that flow through the fractal units.
For example, a machine center could have a tool exchanger
and tool magazine to store, load and unload the machine
spindle, as well as a pallet changer and carousel to store,
load and unload parts from the machine. Both the tool
handling system and the pallet handling system are subor-
dinate transport systems for the machine center. Each
fractal unit must contain at least one transport system to
implement the flow of resources to its subordinate unit(s).

Fractal units also contain a coordination module which
enables them to schedule and implement assigned tasks
upon entities residing within their control. The type of
coordination module used does not matter, but it must
perform four basic functions: to monitor, assess, analyze
and execute (Davis 1992). The coordinator must first be
able to monitor its subordinate systems, synthesize this
information, and report it back to its supervisor. When a
decision is to be made, the coordinator must be able to
assess the different control options, analyze each one to
dctermine the appropriate action, and then execute the
desired control option. These functions can be supported
with the technologies of Petri-nets, Knowledge Base Sys-
tems (KBS), orreal-time simulation analyses, to list a few.

Object-Oriented Methodology 957

In summary, the fractal unit provides a single concep-
tual framework to model the coordinate node at any hier-
archical level. The hierarchy is constructed by adding
subordinate layers of fractal units inside each fractal unit.
The benefits of using fractal units are: (1) models can be
constructed at various hierarchical levels and abstraction;
(2) the flows of any number of entity types canbe considered
without modification of the fractal unit; (3) a standard
coordination protocol can be developed to depict the chain
of commands arising when entities cross fractal unit
boundaries; and (4) the control of the included subsystem
results from the interaction among the included coordina-
tors and not with the flow of the entities.

2.2.2 Recursive Object-Oriented Coordination Hier-
archy

Using the fractal unit described above, the ROOCH was
developed as an effective tool for modeling FMSs. The
primary motive for developing the ROOCH was to further
detail the modeling specifications proposed in the Basic
Fractal Unit, and to provide a framework for constructing
these models. Each manufacturing system is modeled by
its unique ROOCH, which also serves as its coordination
hierarchy.

It has been observed that FMSs are composed of
equipment which fallinto one of three classes of hierarchical
elements, or nodes: Transport Nodes, Processing Nodes,
and Coordinating Nodes. Each node has prescribed fun-
damental capabilities based upon its class:

« Transport Nodes are responsible for the transporta-
tion of Primary Resources (parts, assemblies, etc.) and
Supporting Resources (tools, fixtures, NC code, etc.)
using Transport Resources (AGVs, conveyors, net-
works, carousels, etc.).

» Processing Nodes represent points (locations) in the
manufacturing system where tasks are performed on
Primary Resources using various Supporting Re-
sources, as specified by the processing plan.

+ Coordinating Nodes are responsible for allocating
and coordinating the flow of both Primary and Sup-
porting Resources among subordinate nodes toward
the completion of assigned processing tasks.

The Coordinating Node is the fractal unit. Every Coordi-
nating Node must have at least one Transport Node to
implement the transfer of Primary and Supporting Resources
among its other subordinate nodes and, therefore, mustalso
have at least one or more subordinate nodes. Processing
Nodes and Transport Nodes cannot have subordinate nodes,
which means these always represent a terminal node of a

particular ROOCH. In terms of control, this is the hierar-
chical level at which device-specific interfaces to the
controlled unit processors (machines) exist.

The ROOCH defines the role of three node types in the
context of a manufacturing system coordination hierarchy,
and also defines how different coordination modules may
be implemented. It then provides specific rules for the
assembly of each of the node types into a decision-making
and control hierarchy for the considered system. By
formalizing this architecture, it is possible to build coor-
dination hierarchies using graphical objects and linking
them together according to the rules of the hierarchy. Our
adopted object-oriented view for each node also implies
that communication will be through a set of formalized
control messages via some message passing facility native
to the programming language and network platform cho-
sen. The ROOCH determines the type of control messages
each node type will be able to process and the control
messages thatit will transmit, which will be further detailed
below. And finally, the resulting ROOCH explicitly de-
fines the set of coordinators in the adjacent hierarchical
levels with which each coordinated object contained in the
ROOCH can communicate.

2.3 Control Messages

Given the ROOCH, the communication between coordina-
tors required for production and assembly can be specified.
Communication consists of a set of messages thateach type
of coordinate node sends and receives. Supervisory nodes
have no knowledge of the specific logic details of any
subordinate tasks, but only know when a task has been
accomplished by receiving a response message. Each
message initiated between two node types has a specific
response, which defines the protocol, or "conversation”,
between coordinators. In other words, a Coordinating Node
would never expect a taskExecuted() message from a
Transport Node in response to a pickupltem() message.

In Figure 2, we define three distinct message types:
Resource Messages, Action Messages, and Status Messages.
Resource Messages aid in coordinating the flow of resources
and making accurate real-time decisions. The resource
messages alert a coordinate node that a particular resource
has been assigned to it, and this node will be given control
of that resource in the future. An action message is an
initiating message; a coordinate node determines that a
physical action is necessary and an action message is sent.
Status messages are responding (feedback) messages and
are sent when a subordinate has completed a required task
or when a subordinate needs to activate or deactivate its
inhibit flag.

The three types of messages play an important role in
the communication protocol which defines the hierarchical
interactions of the coordinators. A conversation between

958 Macro, Davis, and Setterdahl

coordinators is defined as a set of messages sent between
two coordinators which define a specific action. A conver-
sation must include one and only one action message and
the appropriate response message. It may also include any
number of resource and status messages. Currently, most
conversations include only a few messages. However,
when the system is developed to the point of real-time
scheduling and control, these conversations could be along
dialogue of resource messages and status messages which
aid in the determination of the appropriate scheduling and
control decisions.

The action message class has been developed, and we
believe that although the list of action messages does not
contain every possible message, it is a sufficient for most
FMSs. The class of action messages can be broken down
into three subclasses based on whether the Coordinate node
(supervisor coordinator) is communicating with: a trans-
port node, a process node, or another coordinate node. The
Coordinating Node communicates with its Transport Node
using two basic commands deliver/tem() and pickupltem().
The deliverltem() command is used when the transport
system already has physical control of an entity. An entity
can be delivered to cither the Coordinating Node's super-
visor or to one of its subordinates. The pickupltem()
message is similar to the deliverltem() message, except the
pickupltem() message is used when the Coordinating Node
does not physically have control of the entity it needs to
transport. When a Transport Node has finished transport-
ing a resource to its destination, it issues the appropriate
return message: either itemDelivered() or itemPickedup().
(Note that all the control logic required to move a trans-
porter from one location to another resides within the
Transport Node and is appropriately hidden from the Coor-
dinating Node.)

The communication between a Coordinating Node
and its subordinate Processing Node is straightforward.
Once the Coordinating Node has assembled the essential
resources needed to manufacture a part, an executeTask()
message is sent to the Processing Node. When processing

Messages

CResourcD (Action) C Status)

acceptltem ()
returnltem ()
executeTask ()

anticipate ()
return ()
resourceFree ()

itemAccepted ()
itemReturned ()
taskExecuted ()

pickupltem () itemPickedup ()
deliver Item () itemDelivered ()
startup () startupDone ()
shutdown () shutdownDone ()
inhibitltemType ()
permitltemType ()

Figure 2. Control Messages

iscompleted, the Processing Node returns the taskExecuted()
command. At this point the Coordinating Node can either
unload the job from the processor, or load a new set of
supporting resources onto the processor to complete an-
other task on the same job.

When the control of an entity is passed from a super-
visory Coordinating Node to a subordinate Coordinate
Node, eitheran accept/tem() or returnltem() messageis sent.
These messages signal to the subordinate Coordinating
Node that the supervisor's Transport Node is ready to be
unloaded or loaded. In addition, the control of the
supervisor's transport resource is also passed to the subor-
dinate Coordinating Node. This ensures that the transport
resource cannot be used for another task while (un)loading
operation is being performed. Once the subordinate Co-
ordinating Node has finished its assigned task, the appro-
priate response message, itemAccepted()oritemReturned(),
is sent to the supervisory Coordinating Node.

We have defined three resource messages that can be
sent by a coordinate node only. These messages are
anticipate(), return(), and resourceFree(). The antici-
pate() command is sent by a supervisor to alert its subor-
dinate that a particular resource has been assigned toit. The
subordinate does not take control of that part until it is
physically loaded into it. However, the subordinate coor-
dinators can make decisions based on the fact that it will
receive thisresource in the near future. The resourceFree()
command is sent when a subordinate coordinate node no
longer needs a resource. The return() command is issued
when a supervisory coordinate node determines that a
resource which is currently being controlled by the subor-
dinate node receiving the message is needed at another
location.

These simple messages are a subset of all of the
messages that are needed to ensure a smooth communica-
tion between coordinators during production or assembly.
Developing a standard set of messages with a constant
functionality is crucial toimplementing a generic coordina-
tion hierarchy. We believe that the current set of action
messages is sufficient to simulate and control an integrated
manufacturing system. However, we concede that there are
endless status and resource messages that can be passed
among coordinators depending on the level of coordinators'
interaction that a system requires. Atthe lowestlevel of the
hierarchies (the Transport Nodes and Processing Nodes),
the internal control messages cannot be standardized due to
the limitless possibilities of proprietary material handling
and processing devices. These messages must be deter-
mined based solely on the system that is being modeled.
However, once a set of control messages is determined for
agiven MHS, these messagescan be re-used every time that
transport system is employed, due to the object-oriented
nature of HOOPLS.

Object-Oriented Methodology 959

2.4 The Generic Process Plan Representation

To assess both the product and process flexibility for
a given FMS, simulation tools must have the ability to
directly access detailed processing information associated
with each alternative processing sequence for each part to
be manufactured in the FMS. Thus, HOOPLS adopts the
structure of a generic, object-oriented process representa-
tion that supports process flexibility by facilitating the
specification of alternative production paths for each part
type being produced.
A multi-layered process plan format has been devel-
oped by embedding the process flow information inside a
product tree representation. The product tree defines all of
the component parts and subassemblies that are needed to
manufacture or assemble a finished product. Each node in
the product tree represents either the finished product, a
subassembly, a machined part or a purchased part. Em-
bedded in each product node is a process flow diagram
which delineates the alternative production paths needed to
produce the associated part.

2.4.1 The Product Tree

The first layer of the graphical process plan represen-
tation uses a manufacturing-oriented explosion to decom-
pose the product into subassemblies, machine parts and
purchased parts. From this explosion, a manufacturing
product tree can be developed (Figure 3). The root of the
tree is the finished product while the leaf nodes are purchased
parts. The children of a given node are the component parts
and subassemblies needed to create that node. These
component parts are iteratively consumed in the production
of the parent node until the root of the tree isreached and the
finished product is complete.

We adopted this product tree representation because of
its ability to represent a finished product at various stages
of production. All components and subassemblies of the
final product are tracked individually until they are con-

Finished
Product
[]
Subassembly Subassembly Machined
Part
Purchased Machined Machined Purchased
Part Part Part Part
l [
Purchased Purchased
Part Part

Figure 3. Product Tree Representation

sumed. This allows manufactured parts and assembled
parts to be modeled similarly, and all product nodes to be
represented by the same graphic primitive (Figure 4). Each
product node contains scheduling information, a resource
list, a component list, and an associated process flow
diagram. The scheduling information consists of the lot
size, lead time, current inventory level, demand for this
item, and scheduled order receipts. Although the data
contained in the product node are the inputs required to
implement a traditional MRP system, these same inputs
may be used in conjunction with various production plan-
ning methods including JIT. A resource list details all the
possible resources required for completion of a product
node. Since multiple process flows may exist, all of the
resources may not be necessary for production. The
component list specifies the number and type of child
product nodes required for manufacture or assembly. The
process flow diagram details the alternative processing
tasks for completion of that product node.

2.4.2 The Process Flow Representation

Our Manufacturing Systems Laboratory (MSL) has
also developed simulation models for several different
types of FMSs, and the same graphic elements were used to
model the product and resource flows. Wehave determined
that there exists a minimal set of graphic primitives that
could be used to describe process flows for any manufac-
turing system. A sample process flow, which utilizes the
set of graphic primitives, is shown in Figure 5. This set of
primitives includes: a start node, a finish node, a branch
node, a conditional node, a resource node and an unit
process node (Figure 6). Using these primitives, any flow
condition can be represented: processes which can be done
using alternative resources where processing need not be
sequential ("and" branch); processing which can be com-
pleted by one of many stations ("or" branch); one or more
processing steps that are repeated several times ("loop”
conditional); and flows dependent on the state of the
product ("inspect” conditional). Basile (1993) has devel-
oped an object-oriented semi-conductor process flow rep-
resentation using a similar set of graphic primitives. How-
ever, this representation lacks the ability to specify process
flexibility through altemative processing routes and also
the capability of joining separate product flows.

Every process flow diagram begins with a start node
and concludes with afinish node. The start node contains

II Component Name |

Scheduling [[Component| [Resource
Information List List

Figure 4. Product Tree Graphic Primitive

960 Macro, Davis, and Setterdahl

Process

D— Setup

Process

| Rework

Process

I t
3 nspec

Package —q

Figure 5. Process Flow Representation

simply the list of items needed to complete the given
processing step, along with their respective ID numbers.
Detailed information about a given resource (amount,
description, etc.) is located in the associated resource node.
Because a local copy of the process flow is carried with
every manufactured entity contained within the product
tree (Figure 3), shop-floor data can be recorded for the
entity.

Each type of resource in the system is represented by
the same graphic primitive. Aresource node gives the name
of theresource, an identification number, and the amount of
thatresource required for production. Asanexample,if the
resource node represented solder paste, it would contain the
amount needed to complete the processing step, or if the
resource node represented a tool, this amount would be an
estimate of the tool life consumed during the process.

The manner in which entities flow through the system
is defined by link nodes, which are the only nodes that can
have multiple input or output links. There are two types of
link nodes: a branch node and a conditional node. The
branch node indicates that there are multiple process paths
available and the Coordinator needs to make a decision
based on the state of the subsystems it controls. A branch
node can be one of two types, an "and" node or an "or" node.
For an "and" node, the order in which the alternative
processing paths are executed is not crucial, as long as all

Start and End Nodes Unit Process Node
Branch Node Conditional Node

x F

Resource Node

N\

Figure 6. Process Flow Graphic Primitives

of the processing paths listed are executed. An "or" node
requires that only one of the listed processing paths needs
to be executed. Alternatively, conditional nodes indicate
that the Coordinator makes its decision based on the state
of the entity, rather than the state of its subsystems. A
conditional node lists the possible processing paths and
defines the state of the entity associated with each alterna-
tive path. A conditional node is used primarily in two
situations - either to model the results of an inspection
process or to model a loop in the process flow.

2.5 Summary of HOOPLS Methodology

HOOPLS has been explicitly designed to model the
coordinators' interactions from both the flow of jobs (parts,
assembilies, etc.) and the flow of resources (fixtures, tools,
information, AGV's, etc.). The modeled interactions include
the explicit exchange of control for each resident job and
supporting resource as it is transferred among the coordi-
nate elements within the coordination hierarchy. As a
direct result of the object-orientation and formalized coor-
dination hierarchy, the ability to accommodate detailed,
flexible processing plans will be greatly enhanced. This
latter feature is essential in determining the supporting
resources which are required to complete the current pro-
cessing tasks. HOOPLS is an attempt to provide sophis-
ticated tools to permit accurate modeling of complete
operational details, eclipsing the modeling capabilities of
existing SQN-based simulation tools.

3 FUTURE RESEARCH

Although the conceptual foundations have been developed
for HOOPLS, the implementation of HOOPLS is still very
much initsembryonic stage. Preliminary simulations were
written in C++, and have shown that the methodology can
effectively model a typical FMS. Reusable class libraries
are currently under development.

Two projects are also being undertaken to further
implement the HOOPLS methodology. A second genera-
tion model is being developed for an FMS emulator de-
signed by our MSL, which considers expanded process

Object-Oriented Methodology 961

plans, tool handling and due date scheduling issues. This
second generation model will not only be used for simu-
lations of the emulator, but this same code will be used to
physically control the emulator. Our MSL isalsodeveloping
aHOOPLS model fora scmi-automated cell for small batch
assembly of circuit boards at the Naval Air Warfare Center
(NAWC), Indianapolis.

Concurrent to developing these new HOOPLS mod-
els, the programming environment for graphically specifying
new HOOPLS models will be developed. The complete
environment will include four development frames: the
ROOCH Frame, the Control Frame, the Process Plan Frame,
and the Experiment Frame. The HOOPLS environment
will eventually be an ideal simulation package for the
design of modern Integrated Manufacturing Systems.

REFERENCES

Basile, D. 1993. Flow Control for Object-Oriented Semi-
conductor Process Representations. SRC Technical
Report T93009, Semiconductor Research Corporation,
Research Triangle Park, NC.

Davis, W.J. 1992. A Concurrent Computing Algorithm
for Real-time Decision Making. In the ORSA Com-
puter Science and Operations Research: New Devel-
opments in their Interfaces Conference, ed. O. Balci,
R. Sharda and S. Zenios, 247-266. Pergamon Press,
New York.

Davis, W. J., D. Setterdahl, J. Macro, V. Iziokaitis, and B.
Bauman. 1993. Recent Advances in the Modeling,
Scheduling, and Control of Flexible Automation.
Proceedings of the 1993 Winter Simulation Confer-
ence,ed.G. W.Evans, M. Mollaghasemi, E. C. Russel,
W. E. Biles, 143-155. The society for Computer
Simulation, San Diego, CA.

Dilts, D. M., N. P. Boyd and H. H. Whorms. 1991. The
Evolution of Control Architectures for Automated
Manufacturing Systems. Journal of Manufacturing
Systems, 10(1):79-93.

Mansfield, E. 1993. The Diffusion of Flexible Manufac-
turing Systems in Japan, Europe and the United States.
Management Science, 39(2):149-159.

Matsuda, M. and K. Inoue. 1991. Software Architecture of
Autonomous Manufacturing Cells. Design, Analysis,
and Control of Manufacturing Cells, ASME PED-
53:173-183.

Tirpak, T.M.,S. M. Daniel,J. D. LalLonde and W.J. Davis.
1992. A Note on a Fractal Architecture for Modelling
and Controlling Flexible Manufacturing Systems. IEEE
Transactions on Systems, Man, and Cybernetics,
22(3):564-567.

AUTHOR BIOGRAPHIES

WAYNE J.DAVIS is a professor of General Engineering
at the University of Illinois. His active research areas
include simulation, computer-integrated manufacturing,
and real-time planning and control of discrete-eventsystems.
He collaborates with the Automated Manufacturing Re-
search Facility and the Electronics Manufacturing Pro-
ductivity Facility. He is a member of ASME, ORSA and
TIMS.

JOSEPH G. MACRO is a doctoral student in the De-
partment of Mechanical and Industrial Engineering at the
University of Illinois. He isarecipientof the US Department
of Energy Integrated Manufacturing Predoctoral Fellow-
ship.

DUANE L. SETTERDAHL is systems analysis consult-
ant for Cap Gemini America, an enginering consulting
firm, in West Chester, Illinois. He received his masters
degree from the Department of General Engineering at the
University of Illinois.

