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ABSTRACT

Until the day when plant production personnel and
equipment have no downtime, proper collection and
analysis of downtime data will be essential to the
development of valid, credible simulation models.
Methods and techniques helpful to this task within
simulation model building are described.

1 INTRODUCTION

Ford Motor Company is steadily increasing its use of
simulation to improve the design of production
processes, both those still on the drawing board and
those currently in operation. To be valid and credible,
these simulation models must include expected or actual
downtime experience. Since the collection of downtime
data represents heavy investments in both time and cost,
it is important to recapture these investments via the
benefits of using valid and credible simulation models.

The following considerations, to be discussed
sequentially in the remainder of this paper, all pertain to
the valid modeling of downtime:

e invalidity of common
assumptions

simplifying modeling

e techniques of downtime data collection

e describing the downtime
modeling tool being used.

correctly in the

2 INVALIDITY OF COMMON SIMPLIFYING
ASSUMPTIONS

The most brash assumption is to ignore downtime
altogether. Unless downtime never occurs (a situation
never yet seen in our process-engineering practice),
omission of downtime analysis produces an invalid
model. Fortunately, such an invalid model also has no
credibility, and hence will not be used by management
to reach wrong conclusions.
Another, more plausible, simplifying assumption is to
e  observe that downtime is a certain percent of total
simulated time
run the model with no downtime
factor its throughput downward by the percentage
of downtime.
This assumption is typically unworkable for two
reasons. First, very rarely does the downtime itself
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pertain to the entire system being modeled. Second, the
analysis outlined above applies a downtime "correction"
to the throughput statistic only. In practice, performance
statistics other than throughput are of concern to the
user. For example, a process engineer designing line
layout must determine the maximum queue length
upstream from a certain operation.  Hence, this
simplifying assumption is best reserved for rare system-
global downtimes. For example, if records show that a
certain plant shuts down a given number of scheduled
production days per year due to snowstorms, the
computation above is well-suited to evaluate the overall
productivity of the plant.

A variant of this assumption may be applied to each
machine individually. For example, if a machine's cycle
time is a constant x and the machine is down a fraction y
of total time, this assumption models the machine's cycle
time as x/(1-y). This variant likewise tends to estimate
global performance metrics such as throughput well, but
estimate local performance metrics such as maximum
queue lengths poorly.

A third simplifying assumption is "the downtime
duration is a constant equal to its mean," and hence
replaces a random variable representing downtime
duration with that mean value. This assumption
typically produces an invalid model which overestimates
throughput. Downtimes markedly longer than the mean
exhaust downstream buffer stock: once that stock is
exhausted, downstream operations suffer unproductive
time which can never be recouped. Similarly, upstream
operations experience severe backup which the invalid
model will fail to represent as high queue-length
maxima. Vincent and Law’ describe an analogous
pitfall arising from replacing a processing time by its
mean. A variant of this assumption models downtime
with a uniform or triangular density. These densities are
often useful "rough-draft" approximations for model
verification. However, the uniform has no unique mode,
neither the uniform nor the triangular has inflection
points, and both the uniform and the triangular have
finite ranges. Therefore, these densities should not
remain in the model without validation that these

constraints are appropriate to the downtime being
modeled.



Downtime Data

3 TECHNIQUES OF DOWNTIME DATA .

COLLECTION

In industrial practice, the model builder visiting the
production floor must often work with non-technical
personnel unacquainted with simulation analyses; in
turn, those employees often have to answer questions
based on scanty or disorganized data. We have
encountered the following problems and devised the
following countermeasures:

e Problem: Production workers record as a

downtime interval a period of time during which
the machine is performing no work.
Solution:  Explain the terms "starved" -- the
machine is ready to work but has no work to do,
"blocked" -- the machine has finished work but
has no room downstream and hence can't unload
the workpiece to accommodate another, "busy" --
the machine is doing productive work, and
"down" -- the machine has malfunctioned and
needs service. Clarify that the last category
represents a downtime interval, and that the first
three categories collectively represent an uptime
interval.

e Problem: Production workers record a single

number representing the percent of time a
machine is down.
Solution: Explain that "percent downtime" alone
provides too little information -- for example
"10% downtime" might indicate that a machine
typically operates normally for nine minutes and
then goes down for one minute, or that a machine
typically operates normally for nine hours and
then goes down for one hour. Among the three
metrics "percent downtime," "mean time to fail"
[MTTF], and "mean time to repair" [MTTR], any
two determine the third.

e Problem: After downtime data is collected, it
proves inadequate for cycle-based downtime
modeling.

Solution: Record the number of machine cycles
completed during each uptime interval, in
addition to recording the duration of that interval.

e Problem: The shortest downtimes go unrecorded

because recording them takes nearly as much time
as repairing them.
Solution: Ideally (but expensively), assign an
incremental worker to record these downtimes
while the production worker repairs them (e.g., by
clearing a jam). Or, in addition to collecting the
downtime data logs, ask production personnel a
question such as "How many downtimes lasting
less than a minute do you typically fix each
hour?"
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Problem: In an operation running continuously
across shifts, the downtime data are inconsistently
recorded and/or subdivided across shifts.
Solution: Provide recording forms and
instructions common to the different people
recording uptime and downtime durations across
each shift. Coalesce data intervals across shift
changes. For example, suppose the data logs
show:

Machine A repaired at 11:40 PM (recorded

by shift 1),

Shift change at 12 midnight,

Machine A went down at 12:50 AM

(recorded by shift 2).
These data indicate one uptime interval of 70
minutes, not two separate uptime intervals of 20
and 50 minutes.

Problem: In a particular modeling context, the
downtime interval may need further subdivision.
Solution: Ask the following questions:
Typically, how long is a machine down before
production personnel notice that it is down?
Once the downtime is noticed, how long does
it take needed repair resources (maintenance
workers, equipment) to reach it? Then, once
the repair begins, how long does it take? Non-
zero answers to the first two questions indicate
that the model builder must subdivide the
downtime interval accordingly. For example,
if the first answer is non-zero, neglecting
subdivision of the downtime will lead the
modeler to allocate repair resources to the
entire MTTR interval, thereby overestimating
the utilization of repair resources.
Problem: The MTTF for a machine may be only
weakly correlated with elapsed time.
Solution: Assess the machine operation to decide
whether the MTTF should be based on elapsed
time, service time, or cycles completed. For
example, a machine which, whether actually
operating or not, draws power from a battery, will
probably have battery-recharge downtimes based
on elapsed time. A polishing machine will
probably have abrasive-replenishment downtimes
based on service time, irrespective of whether the
service time comprises long segments polishing a
few large workpieces or short segments polishing
many small workpieces. A drilling machine will
probably have drill-bit-replacement downtimes
based on cycles completed, i.e., number of holes,
of uniform diameter and depth, drilled in
workpieces.

Problem: No downtime data exists for a machine
(as often occurs when a process still under design
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is to be modeled and the machine and its vendor

are not yet chosen).

Solution: Using experience from similar

situations and similar machines, develop a best-

case and worst-case scenario for the downtime of
the machine. When developing these scenarios,
consider the following:

e  MTTF may be approximately proportional to
the total number of components in the
machine

e MTTR may be approximately proportional to
machine complexity

e if the new machine will be installed in a
different plant, that plant's operating
conditions, tooling, and/or maintenance
practices may differ from those of the plant
using the currently similar machine.

Run the model under both scenarios (sensitivity

analysis, section 4) to assess the effect of changes

in the reliability of this machine. If this machine
thus proves to be a critical point of the system,
alert candidate vendors of this criticality.

Incorporate reliability-performance criteria into

contractual terms.

4 MODELING CONSIDERATIONS
4.1 Choosing an Appropriate Probability Density

Since downtime (and uptime) durations oughtn't to be
replaced with their means, an appropriate probability
density must be included in the simulation model. The
temptation to use the existing data as an empirical
density should usually be avoided, because doing so
tacitly assumes that any duration shorter than the sample
minimum or larger than the sample maximum is
impossible. This assumption is almost always
untenable.

That said, the choice of an appropriate theoretical
density becomes important. The following steps will
assist in choosing one:

e Before undertaking calculations, plot a histogram
of the available data and compare its shape with
those of the candidate probability density
functions.

e  Compare properties of the empirical data set with
those of a candidate theoretical density.

e Assess the goodness-of-fit with statistical tests
such as the chi-square, Kolmogorov-Smirnov,
and Anderson-Darling tests.

For example, a normal density should be avoided if its
standard deviation, relative to its mean, is large enough
to imply occasional durations less than zero. Also, since
the mean, median, and mode of a normal density are all
equal, a normal density should be avoided if these
equalities conspicuously fail to hold for the sample data.
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Similarly, if the sample mean and sample standard
deviation are markedly unequal, an exponential density
(for which these two quantities are always equal) should
be avoided. Likewise, an exponential density should be
avoided if the sample mode is well-removed from the
sample minimum. A uniform or beta density should be
avoided if no upper limit to durations is apparent,
because these densities are non-zero over finite ranges.

4.2 Sensitivity Analysis

Sensitivity analysis is a method of assessing how much
or how little the observable behavior of the system being
modeled varies as its intrinsic properties vary. In the
context of studying downtime, sensitivity analysis
examines the extent of change in performance metrics
such as throughput, downstream utilization, and queue-
length maxima in response to changes in downtime
properties such as percentage, duration, and variability
of duration. For example, of two candidate machines
potentially installed at a critical point of a system, the
machine with smaller variance of downtime duration
may greatly improve system performance even when
percent downtime and average duration of downtime are
equal for the two machines.

As indicated above, these sensitivity analyses are
valuable when no downtime data are available.
Comparing system performance under best-case and
worst-case scenarios assesses the criticality of downtime
performance at a specific point within the system. The
greater this criticality, the greater the attention that
should be devoted to increasing the accuracy of
downtime estimation at that point.

Additionally, sensitivity analyses, in keeping with the
"what-if" gaming abilities of simulation, provide
accurate assessment of the return on various investments
proposed for downtime-performance improvement.
Such proposed investments might include capital
expenditure for equipment with shorter downtime
durations, less variable downtime durations, or longer
uptime durations. Competing proposals might involve
increasing payroll costs to accommodate hiring
additional and/or more highly trained repair crews to
improve  downtime performance, or increasing
outsourcing costs for contracting work externally to the
system during its downtime intervals.

4.3 Modeling System Behavior During Downtime
Intervals

Modern model-building tools and languages allow the
modeler a variety of options for modeling system
behavior during downtime. To use these software
capabilities effectively in the building of a valid,
credible model, the modeler must ask the system experts
questions such as these:
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e Can an interval of downtime for a given machine
begin at any time, or only when that machine is
busy (in contrast to blocked or starved)?

e When a downtime interval begins during
machine-busy time, can the machine finish the
workpiece currently occupying it?

e If the answer to the immediately preceding
question is "no," as it usually is in practice, does
the workpiece become scrap immediately, await
the end of the downtime interval, or get routed to
backup processing?

e If the answer to the immediately preceding
question is either of the last two alternatives, does
the intervention of the downtime leave the
remaining processing time required by the
interrupted workpiece unchanged, or increase that
requirement?

e When workpieces approach a downed machine
from upstream, do they accumulate behind it or
get routed elsewhere? The answer may be a
composite of these possibilities; for example,
after a certain amount of backup has gathered,
additional arrivals may be sent to a subcontractor.

e Can separately specified downtimes attributable
to different causes overlap? For example, a
machine may be undergoing a downtime based on
cycles (e.g., change of drilling bit) at the time a
downtime based on elapsed time is scheduled to
begin (e.g., recharge batteries). The modeler
must check whether these downtimes should run
consecutively or concurrently.

After the above questions have been asked and
answered, the modeler must, while building a model in
the simulation language or package of choice, study its
documentation thoroughly to assure an accurate match
between the workflow of the system and the
corresponding workflow in the model. Achieving
accuracy of this match represents the task of model
verification -- checking that the model's behavior on the
computer matches the modeler's expectations.

5 SUMMARY AND OUTLOOK

During the rapid rise in simulation modeling usage at
Ford Motor Company during the past few years,
production and process engineers have become
increasingly aware that valid downtime modeling is an
essential ingredient of valid, credible models. Each of
the following is in turn an essential ingredient of valid

downtime modeling:

e avoidance of oversimplifying assumptions

e careful attention to downtime data collection

e accurate probabilistic characterizations of empirical
data sets

e correct usage of simulation software in modeling
process logic in the face of downtime.

Planned developments include implementation of
automated downtime data collection, increased archival
and sharing of downtime data among corporate
components, and development of spreadsheet macros to
smooth the interface between data collection and
simulation software.
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