Proceedings of the 1994 Wainler Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

THE DESIGN, IMPLEMENTATION, APPLICATION AND COMPARISON
OF TWO HIGHLY AUTOMATED TRAFFIC SIMULATORS

Peter Lorenz
Thomas Schulze

Department of Computer Simulation and Graphics
University of Magdeburg
D-39016 Magdeburg, GERMANY

ABSTRACT

The combination of new developments in computing and
new problems in practice stimulates new thinking about
methods for producing models with which traffic systems
can be simulated. This paper describes and compares two
approaches aimed at largely automating the process of
building rapidly executing micro-level simulation models
for complex traffic networks. Two traffic simulators have
been designed and implemented, one based on GPSS/H,
the other based on a model-specific simulation engine
written in Pascal. The alternative-language approaches
are discussed in general terms and their use is illustrated
in a specific application. Data file interfaces promote the
integrated use of these simulation tools with other
engineering tools commonly used for traffic system
planning.

1 INTRODUCTION

Traffic problems are public problems with a high degree
of public interest. Traffic engineers use both
mathcmatical and simulation models in attempting to
develop solutions for traffic problems. Mathematical
models, based largely on queuing theory, are sometimes
used to evaluate the performance of intersections that do
not use traffic light controls or that use simple traffic-
light control systems. However, mathematical models
cannot be successfully used in all cases of practical
interest, and this fact heightens the level of interest in
simulation-based approaches for modeling transportation
systems.

Simulation of transportation systems has been one of
the important application areas of computer simulation
for more than 20 years (Reitman 1971). Many different
simulation tools have been developed throughout the
world to address such problems (Lorenz 1993).
Simulation is an engineering tool that is useful both for
research and for practical applications. The further

1084

Thomas J. Schriber

Computer and Information Systems
The University of Michigan
Ann Arbor, Michigan 48109-1234 U.S.A.

development and use of simulation-based approaches
dealing with the design and control of traffic systems is
stimulated by factors such as these:

v Increasing congestion in traffic systems;

v’ Use of new traffic-light control systems in which
signal intervals are dynamically determined by taking
traffic conditions into account;

v Availability of image processing software, which
facilitates the use of maps as sources of topological and
geometrical input data for traffic system models;

v The possibility of using animation software with
flexible choices of scaling in time and space;

v Improved software for 3-dimensional presentation of
results;

v Further advances in computer technology.

Micro-level traffic models and modeling systems have
been developed to describe the performance of vehicles
traveling over networks of streets. NETSIM (Lieberman
and Andrews 1990; Lieberman 1991) appears to be the
most popular and widely used traffic simulation software
in the United States today. The internal logic of this
micro-level traffic simulator describes the movement of
individual vehicles responding to external stimuli
including traffic control devices, the presence of other
vehicles, pedestrian activity, and so on.

Micro-level models are complex and include abundant
detail. Most micro-level models are based on a fixed time
increment approach to clock management. For example,
NETSIM uses a fixed time increment of one second. Use
of a fixed time increment is the main reason that many
micro-level traffic simulations consume large amounts of
execution time.

The execution time of simulation models plays an
important role in their acceptance and may indirectly
influence the quality of results if long execution times
discourage modelers from carrying out the full set of
experiments required to reach statistically sound
conclusions. Consider the fact that stochastic
distributions are used to describe the characteristics of

Automated Traffic Simulators 1085

traffic systems. The interarrival time of vehicles, for
example, is often assumed to follow the high-variance
exponential distribution. Stochastic output parameters
such as average delay time per vehicle are then often
correspondingly characterized by a high variance. In our
experience, on the order of 50 replications may be needed
to estimate the expected values of response variables
with sufficiently precise confidence intervals in many
traffic simulations. This means that traffic simulation
modelers must be able to run experiments quickly. The
use of a powerful CPU can't solve the problem alone.
Efficient tools and algorithms are also needed.

The Department of Computer Simulation and Graphics
at the University of Magdeburg is working on the
development of prototypes for a new generation of traffic
simulation tools. Among the characteristics of the
prototypes are the following:
¢ Ability to incorporate a high level of modeling detail
with regard to geometric data;

v/ Reduction in the time and money needed for model
creation, thanks to use of topological and geometric data
obtained from existing maps and/or layouts,

¢/ Automatic incorporation of traffic-light control
specifications from engineering information;

v Extremely short simulation runtimes;

v Integration of simulation and animation models with
other tools commonly used by traffic engineers;

v Support for traffic engineers in the optimization of
network layout and signal controls.

We have designed and implemented two different sets
of software to support building and running traffic-
system simulations. One uses a problem-specific
simulation engine written in Pascal and the other uses
GPSS/H. Both have the common objective of producing
micro-level traffic-system simulation models that execute
at high speed. Both work with a common input data
interface and use a common Layout File to produce
Animation Trace Files for subsequent post-simulation
animation based on Proof Animation (Henriksen et al.,
1992). Finally, both also produce the same set of output
parameters, including statistics.

The reason for developing two simulators was based in
part on an interest in trying to determine answers to the
following questions:
¢ What range of approaches can be used to reduce the
manual effort required to create micro-level traffic models
that have a high degree of correspondence with the real
system?

v Is it possible to design and implement a common
approach that can be used to support two alternative
simulators whose purpose is to reduce the manual
modeling effort otherwise required to produce the models
of interest?

¢ Is it possible to combine the GPSS/H simulator with

other engineering tools often used by traffic system
engineers?

Section 2 of the paper describes our view of the logical
structure of a general micro-level traffic model and
Section 3 discusses some basic ideas for reducing the
manual effort through use of a special data file interface.
Sections 4 and 5 comment on the GPSS/H and Pascal
simulator implementations, respectively. Section 6 pre-
sents an application of the simulators. Our experiences
to date in this ongoing project are summarized in Section
7. Conclusions are then drawn in Sec-tion 8, after which
Acknowledgements and References are given.

2 LOGICAL MODEL STRUCTURE

Our view of a traffic system is like a view from a
stationary helicopter hovering overhead. Entities or
instances of various object classes either occupy fixed
positions or move from point to point in the system.
The movement experienced by objects depends on such
things as road signs, traffic regulations, traffic lights,
origin, destination, speed and object class characteristics.

A traffic system can be divided into subsystems, with
each subsystem usually involving traffic nodes
(intersections). A traffic system consisting of only one
subsystem (e.g., an intersection) is of interest as a
special case.

A subsystem is comprised of stationary and statistical
elements which are local to the subsystem. Moving
entities are global, moving through different subsystems
as they progress through the overall system.

Moving entities can be divided into the following
classes:

v’ Cars, trucks, buses and taxicabs (motorized vehicles
that do not move on fixed paths);

v Street cars (motorized vehicles that move on fixed
paths);

v Bicycles;

v’ Pedestrians.

These entities have common types of attributes such
as origin, destination, speed, size and separation
("clearance™). Various techniques are used to model such
things as vehicles passing other vehicles, overall
compliance with traffic regulations, traffic control, and
the behavior of other moving entities.

Stationary modeling elements include lanes or paths,
traffic signs, traffic lights, and entry and exit points.
There are lanes or path subtypes for the various types of
moving entities.

Traffic lights can be controlled by a variety of
approaches. Fixed-time control approaches are not as
flexible as load-dependent control approaches, in which
detectors collect information about traffic location and
intensity and the control system regulates the traffic

1086 Lorenz, Schulze, and Schriber

lights accordingly.

Various statistics are collected, for example:
v’ Number of entities moving through the system;
v Average utilization of specific lanes and paths;
v Average travel time through the overall system and
subsystems for each entity class and traffic stream (where
a traffic stream is a set of moving entities with the same
origin and destination);
v Average delay time within the overall system and
subsystems for each entity class and traffic stream.

3 DATA-FILE INTERFACES

Per the Section 1 objective of reducing the amount of
engineering effort required to create micro-level traffic
models with details faithful to the real system, it is
desirable to take advantage of information that is
available in machine-readable form when creating the
model for the system. Information needed by the model
€ncompasses:

v Topological data for the system, including relations
between different lanes (e.g., the crossing over of lanes,
the splitting of single lanes into two or more lanes, and
the merging of two or more lanes into single lanes); and
between lanes and sources of traffic, sinks for traffic,
traffic signs, traffic lights and traffic streams;

v Geometric data for the system, including the length of
lanes, the positions of lane end points and the positions
of detectors (traffic sensors);

v’ Traffic-load data as collected by traffic counting
devices and stored in databases in traffic engineering
CAD systems;

v Traffic control data and algorithms represented in
flowcharts developed by traffic engineers (Walper 1994).

These data should be available to a traffic simulation
model in highly automated fashion. Here we comment
on one such possibility: the extraction of geometric and
topological data from existing traffic-system maps, the
capturing of this information supplemented by creative
traffic-engineering decisions in a Proof Animation
Layout File, and then the use of network analysis to
produce a Final Path File, as shown in Figure 1.

The Initial Layout File or "drawing," which contains
the contours of the traffic system elements, is produced
by computer from a map of the real system via scanning
and vectorizing. The construction of paths, the choice of
path names, and the selection of positions for various
classes of objects (e.g., traffic lights, detectors, traffic
signs) must then be accomplished interactively by the
modeler or traffic engineer (using tools provided by Proof
Animation), as depicted in Figure 1. The results of
creative traffic engineering are captured and expressed
through this interactive input, in which the traffic
engineer or modeler transforms the initial Layout File-

Real iystem
Map

Scan Software

Vectonzing
Software

Drawing
(Initial Layout File;

Proof Animation
Software
Interactive Proof Animati
nmmn """m,. roo n:ll'l:lstnon
Input ayout Frie

Network- Analysis
Software

Final Path File

Model-Generation
Software

Simulation
Model

Figure 1: Data Transfer from the Real System
to the Simulation Model

into a Proof Animation Layout File that contains-all
needed information for the next step: network analysis.
As shown in Figure 1, network analysis uses as its
input the Proof Animation Layout File, which contains
the names and numbers of all paths and input/output
points to which the paths belong. The network analysis
looks for all the paths, input and output points and nodes
defined in the Layout File and identifies the crossing,
splitting and merging of these paths. The positions of
signs, traffic lights and detectors on paths are also regis-
tered as attributes of the corresponding paths. Finally, it
is determined which target directions are accessible for
each path. The resulting Final Path File then serves as
input to the simulation model, as suggested in Figure 1.
An example of the records making up a typical Final
Path File is shown in Figure 2. The information in a
Final Path File can be used by different simulation mod-

Automated Traffic Simulators 1087

Final_Path= Record
case Rec_Ident of
‘F': {Following Paths)}
(Number_of_FP, List_of_FP);
'E': {(mErging Paths)

(Number_of_Right_MP,Number_of_Left_MP,
List_of_MP);

'C': {Crossing Paths)
(Number_of_CP, List_of_CP);
'S': {Signs on Paths}
(Number of Signs, List_of_Signs);
'L': {Traffic Lights on Paths)
(Number of Lights, List_of_Lights);
'D': {Detectors on Paths}

(Number of Detectors, List_of_Detectors) ;

Figure 2: An Example of the Records Making Up
a Typical Final Path File

els. Other mode! description data needed for model
construction are traffic load data and traffic light control
data. These data can be extracted from data files available
in the context of traffic engineering projects.

In the following sections two different modeling
approaches are discussed and compared: a GPSS/H-based
approach and an approach based on an application-
specific simulation engine written in Pascal.

4 IMPLEMENTATION OF THE
GPSS/H-BASED SIMULATOR

In this section we describe our experiences to date in
using GPSS/H to build a prototype simulator
corresponding to the conceptual "Simulation Model" of
Figure 1. The initial work has been aimed at building a
simulator designed with the objective of modeling single
but generalized and realistically complex traffic
intersections. A model of a single traffic intersection has
to represent the following aspects of the intersection:

v Topology and geometry of traffic lanes;

v Rules of behavior for drivers, pedestrians, bicyclists
and street cars;

v Traffic load and traffic streams;

v Traffic light and sign positions and relations to traffic
lanes;

v Traffic light control cycles, phases, decision rules and
transition schemes;

v Data collection and report generation;
v Experimental conditions.

The first five of the above items usually involve an
abundance of intersection-specific data. It is a challenging
task in its own right to reduce to a minimum the amount
of engineering time required to supply this information.
Quite apart from this task, it is also a challenging task
to specify a general solution not only for one
intersection, but eventually for a set of linked traffic
intersections, a traffic network or an entire system.

To provide insights into the potential gain resulting
from development of a code-generating program, we first
built "by hand" GPSS/H modules for modeling a single
intersection. The source code in the resulting GPSS/H
model consists of about 4000 statements. After
expansion of macros included among the 4000
statements, the compiled form of the model consists of
about 7000 statements. More than 50% of these
statements structure the output and specify the
experiments to be carried out with the model. Some
10% to 15% of the statements are application dependent
and, in the absence of an automatic code generator, would
have to be developed manually for each new application.
The proportion of statements used to specify various
aspects of the model are summarized in Figure 3.

Declarations
- Topology und

Geometry

Control of
Experiments

Traffic
Model

Traffic

Result Control

Processing

Figure 3: Relative Proportions of GPSS/H Model
Statements in a Typical Traffic-Intersection Model

An important goal for the automatic code-generating
software we are developing is to reduce the hand-tailored
application-specific part of the code from about 10-15%
of the model to about 0-1% of the model.

The GPSS/H modeling language has both strengths
and weaknesses when used to write a program that will
read records from a Final Path File (see Figure 2) and
generate GPSS/H statements for a corresponding traffic
simulation model. Excellent help is provided for this
purpose in the form of GPSS/H entity-type Functions
(S-Functions; Henriksen and Crain 1989). Our experi-

1088

ence has shown that it is possible to define all needed
data structures for a traffic system on the basis of the
Final Path File, and (o build the corresponding GPSS/H
entity-type functions using a code-generating program
which reads that file as input. In general, such a code
generator could be written in any number of languages.
GPSS/H has enough file and string processing capabil-
ity. for example, to support the use of GPSS/H to write
such a generator in an casy and natural way. Figurc 4
provides a glimpse of aspects of such a code-generating
program, and shows a sample of the resulting GPSS/H
code generated via application of the program.
The two most notable weaknesses of GPSS/H when
used to write a GPSS/H code generator are these:
v Absence of a control-statement SUBROUTINE
capability;
v Lack within the control-statement language of a
block structure which allows the use of local variables.
On the other hand, three relatively new features
provided in GPSS/H Professional which have proved to
be very useful in using GPSS/H to generate GPSS/H
code are these:
v’ The INSERT control statement for including files;
v The SYSCALL statement for calling external pro-
grams;
v/ Statements for string and file processing, and the
powertul features for combining numeric and symbolic

Lorenz, Schulze, and Schriber

identifiers (c.g. Entity Functions and the Standard
Character Attribute SYM).

IMPLEMENTATION OF THE
SIMULATOR IN PASCAL

5

As explained in Section 1, an important part of our
research is to use different simulators to implement our
model generating concept. In the last section we
described the use of GPSS/H, and in this section we
discuss our experience to date in the use of Turbo-Pascal.

Many simulation languages and simulation systems
exist in the simulation world. Some of them are well
tested, are widely and successfully used and are portable
across different computer hardware. Why did we start to
develop a new simulator? Traffic simulators, like
communication network simulators, have to handle
many events because hundreds of entities move through a
traffic system at the same time. Our goal here is to create
a very fast simulator, designed specifically for traffic
simulations, which is not limited in model size.

We gave our special simulator tailored features to
handle the high volumes of specialized events that can
occur under conditions characterizing traffic networks.
We wanted to know whether it is possible Lo justify the
amount of time needed to develop the basic routines for a
special simulator and whether such a special simulator

PUTSTRING FILE=GPS, (' INTEGER &IPATH CURRENT NUMBER')
PUTSTRING FILE=GPS, (' INTEGER &NPATH TOTAL NUMBER')
PUTPIC FILE=GPS,LINES=2, (&NPATH, &NPATH)
LET &NPATH=*
PATHS FUNCTION &IPATH,S*,F,L,S,C,XB,XH, XF,XL,B ALL PATHS
MFNGEN STARTMACRO GENERATING OF FREE FORMAT
* FUNCTION FOLLOWER STATEMENTS
LET &INBUF=''
DO #A=1, 4B
LET &INBUF=&INBUF| | «<CZAHL (#A) | | «<KOMMA| | #C (#A) || ' /"
IF (LEN(&INBUF)>60)OR(#A=#E) THEN
PUTPIC FILE=GPS, (&INEUF)
*
LET &INBUF=""
ENDIF LEN. . .
ENDDO #A
ENDMACRO

MFNGEN MACRO &IPATH, &NPATH, &PATHS FUNCTION FOLLOWER STATEMENTS

(a) Some of the GPSS/H Statemeants in a GPSS/H Code-Generating Program

INTEGER &IPATH CURRENT NUMEER
INTEGER &NPATH TOTAL NUMBER
LET &NPATH=61
PATHS FUNCTION &IPATH,S61,F,L,5,C,XB,XH,XF,XL,B ALL PATHS

1,5CCSN/2,5CCSN1/3,5CCSN2/4,5CCSS/5,SCCSS1/6,5CCss2/7,5CG0S/8, SCPIS/
9,5CCSNX/10,SCCSSX/11,SCGOSX/12,SCPISX/13,SCCSNG1/14,SCCSNRL/

(b) Part of the GPSS/H Code Produced by the GPSS/H Code Generator
Figure 4: An Example of GPSS/H Code Generation Using GPSS/H

Automated Traffic Simulators 1089

will execute fast enough to support needed statistical
experimentation in the time frame within which finalized
decisions have to be made.

Turbo Pascal was chosen as the implementation
language because in many cases other existing
engineering tools for traffic planning are written in
Turbo Pascal. Were this not so, another reasonable
choice of implementation language would have been C.

The Pascal simulator we have built uses structured
programming techniques and is based upon an event-
oriented simulation approach. The steps carried out by
the simulator are outlined in Figure S.

Allocate all needed
model elements

*, INITIAL

Files
Initiate all needed
model elements

— 1

Run one experiment

Y

Clear all elements

|

e Compute statistics

'

Change

{

Report
File

input parameters

Figure 5: Processing Steps Carried Out
by the Simulator Implemented in Pascal

In one approach, a traffic simulation model could be
written in Pascal for each new application. Such an
approach is not of interest here, however, because our
objective is to dramatically reduce the amount of time
needed to create and validate new traftic system modeling
applications. The Final Path File of Figure 1 describes
the structure of the specific traffic system of current
interest. Using information read from this file, the
Pascal simulator creates the elements used to produce a

corresponding traffic simulation model. The model
elements consist solely of dynamically allocated data,
resulting in a customized traffic simulation model
produced without the need to compile any Pascal code.
To provide some insights into the construction of the
Pascal simulator, consider how paths are handled. Paths
provide a mechanism for the guided movement of
entitics. A path is determined by two basic types of
elements: edges and nodes. Figure 6 is an extract from
the Pascal Type definition component of the Pascal
simulator which shows the attributes of edges and nodes.

t_path = RECORD

edge : "“t_edge ; edge of the path
node : “t_node ; node for the path
end;

t_edge = RECORD
ident : ; path identification

next_edge
locked_ent_clas
destination
home_path
length
next_node
pred_node
signs
cross_edges:
move_dqueue:
walt_gueue:

end;

t_node = RECORD
ident
next_node
stop_by_lights:
input_edges
output_edges
owner

end;

handling all edges

path sometimes locked
reachable exit points
path including this edge
length of the path

next node

predecessor node

traffic sign on path
crossing edges

handle moving vehicles

handle waiting vehicles

node identification
handling all nodes
stopping signal lights
incoming edges
outgoing edges
blocked by an entity

Figure 6: An Example of Pascal Type Definitions
for the Edges and Nodes Making Up a Path

The Final Path File and other input data files have to
be read two times. Memory allocation for each element
and insertion of this element into the internal handler are
steps carried out in the first pass. Each element is
identified in this pass and pointers are established. The
needed remaining information is developed in the second
pass, during which the elements are connected via
pointers and initial events are created.

The run-time system is highly event oriented. There
are four types of events that can be scheduled for future

1090 Lorenz, Schulze, and Schriber

occurrence: move_end (to indicate that movement of an
entity along an cdge has been completed); stop_end (to
indicate that an cntity has stopped moving);
signal_switch (to indicate that the setting of a signal has
been changed); and create (corresponding to creation of a
new entity).

Special features for collecting statistics have also been
implemented in the Pascal simulator. Statistical
procedures are automatically called after every replication
of the simulation and after all replications have been
completed for the specified experimental design. In
addition, all aspects of the model are re-initialized
between consecutive replications.

6 AN APPLICATION OF THE GPSS/H
AND PASCAL SIMULATORS

The development of the new GPSS/H and Pascal traffic
simulation tools was carried out with the active
involvement of several German traffic engineering
companies. One of these companies had been contracted
to plan and install a traffic-light control system for an
intersection in Schoenebeck, a town near Magdeburg,
Germany. Figure 7 shows a layout of the intersection.

Type of No. of
Model Element Elements
Traffic load situations 6
Traftic light control programs 3
Paths 61
Cars per hour 100-2000
Pedestrians per hour 0-5000
Traffic lights 10
Detectors 8

Figure 8: Types and Numbers of Elements Used
to Model the Intersection of Figure 7

Figure 9 shows a view of the Proof Animation Layout
File corresponding to the Figure 7 intersection and used
to generate the Final Path File of Figure 1 and other
input data files. The Proof Animation Layout File

CSSFO CSSFOL C55702
CESFO3

CSEFW CEEFW1 CSEFMZ

CSNFM2 CSNFMD

\ cosFs3y

\ cosys2z

COSFM2
GOSFHL GosFSL

cosFn \\\ \\ \L Gosrs

Figurc 7: An Intersection in the Town of
Schoenebeck, Germany

Using the GPSS/H and Pascal traffic simulators, the
intersection of Figure 7 was modelled by making use of
the types and numbers of model elements summarized in
Figure 8.

Figure 9: The Proof Animation Layout File
for the Intersection of Figure 7

not only provides a means for supplying geometric spec-
ifications for the simulator, as pointed out in Section 3,
but is also instrumental in supporting post-simulation
animation of traffic simulations. In our experience,
animation itself is a very valuable validation tool for
traffic simulations. It is our judgment that whenever a
change is made in the structure proposed for a traffic
system, the corresponding animation of the changed
model should be viewed carefully. In this context, ani-
mation is useful for the following purposes:

v Detect collisions of entities;

v Analyze the reasons for traffic jams;

v Explain the model to various users;

v Establish credibility for the model.

Figure 10 shows a snapshot of an animation of the
Figure 7 intersection when it is in heavy use by pedes-
trian traffic. It is an attribute of so-called robust models
that they are capable of handling extreme conditions such
as this.

Moving pictures (animation) can be impressive and
advantageous. but they arc not usable for the ultimate
evaluation and analysis of simulation results. The

Automated Traffic Simulators 1091

Figure 10: An Animation Snapshot
of the Figure 7 Intersection
(small squares are pedestrians and larger rectangles are cars;
the snapshot has been highly compressed to fit this column,
with a resulting loss of crispness in the details)

results of experiments must be extracted from a huge
amount of data by means of statistical methods. Figure
11 shows an example of statistical analysis and compar-

Mean Delay Times for Cars
Rush hour / Load Dependent Control 1

o >
ro Yalty W r »
B o gy v A
SRXAR, 3
R
SRR
R

)

by
RN
R
! o.‘o“o.g‘ ,":
A

E

A

£5

Delay time s
£

Direction

Figure 11: Average Car Waiting Times As a Function
of Traffic Intensity at the Intersection of Figure 7

ison of waiting times at the Figure 7 intersection for
automobiles under a range of traffic-load conditions. The
generation of graphs of the type in Figure 11 is easily
accomplished with the use of spreadsheet software and
simulator report files.

7 A SUMMARY OF EXPERIENCES
AND FINDINGS TO DATE

Our experiences to date in the development and use of the
GPSS/H- and Pascal-based traffic simulators can be

summarized as follows:
1. The concepts we have implemented have been applied
in the rigorous modeling of two traffic intersections in
Germany, one involving 10 traffic lights, as described in
Section 6, with the other being a larger scale system
involving 33 traffic lights and associated vehicle traffic
(cars, trucks and buses), street cars, bicyclists and pedes-
trians. The modeling of these intersections has been
judged successful in the sense of uncovering problems in
existing or proposed traffic-control procedures and finding
improved traffic-control schemes.
2. These successful applications demonstrate the feasi-
bility of basing traffic-model generators in part on
graphic representations of the system to be modeled, e.g.
extracting information from Proof Animation Layout
Files to support model generation. The use of Proof
Animation Layout Files has the additional follow-on
benefit of supporting realistic post-simulation animation
of the simulated traffic system.
3. Generation of the traffic models is additionally based
on computerized recognition of all geometrical and topo-
logical relations and of the various objects involved in
controlling the traffic system.
4. Our approach uses file-interfacing techniques to
achieve compatibility with traditional traffic engineering
software systems and thereby take advantage of tradi-
tional sources of traffic-engineering information.
5. Our concepts and methods for working with graphical
representations and taking traditional traffic engineering
information into account are general to the extent that
they seamlessly accommodate two quite different ap-
proaches for creating customized micro-level traffic
models: one approach based on an existing general
purpose simulation language (GPSS/H); the other
approach based on a model-specific simulation engine
written in a programming language (Pascal).
6. The GPSS/H-based and the Pascal-based approaches
are both easy to use and produce consistent results.
7. Our methodology substantially reduces the amount of
engineering effort required to create micro-level traffic
models with details faithful to the real system.
8. In our usage experience, the computer time required to
carry out simulations with the traffic models generated
under either approach are modest enough to invite com-
prehensive statistical investigation of system perfor-
mance in practice. For example, the application reported
in Section 6 required under 20 CPU seconds per replica-
tion on a 486-based PC, with the duration of each repli-
cation being 1 simulated hour. The simulators need to
be optimized with respect to their run-time performance,
however, before it will be appropriate to carry out rigor-
ous timing studies with them.

Work on and with the GPSS/H- and Pascal-based traf-
fic simulators is ongoing. For example, there is room

1092 Lorenz, Schulze, and Schriber

for refinements in some of the underlying algorithms
used to handle the detailed movement of traffic in such
areas as the modeling of car-following and lane-switch-
ing. And additional experience gained in practical appli-
cation of the simulators will no doubt produce insights
that will lead to enhancements in the usability and utility
of the methodology.

8 CONCLUSIONS

The use of geometric oriented data sources is a practica-
ble and efficient way to provide traffic-system simulation
models with the geometric and topological data needed to
generate models that have a high degree of correspon-
dence with the real system. Use of the Layout File in-
herent in Proof Animation provides one mechanism for
bringing this about. The Layout File has two roles to
play in this regard:

1. It provides topological and geometrical data to the
traffic model;

2. It supports a realistic post-simulation animation of
the simulated traffic system.

It is both possible and advantageous to extract topo-
logical and geometric data from available machine-read-
able sources of such information and to store these data
in an interface file formatted in a manner designed to be
usable by one or more simulators.

Preliminary results with our prototypes show that it is
possible to develop vehicle traffic simulators with favor-
able runtime performance characteristics. On this basis it
1s feasible to carry out appropriate statistical experimen-
tation in timely fashion to identify approaches that im-
prove the performance of traffic control systems.

Finally, we note that the techniques developed here in
the area of layout-based model generators (using tradi-
tional engineering drawings as the basis for computer-
supported model generation and follow-on animation) are
not restricted to traffic systems as an application area,
but have potential broader-based applicability as well.

ACKNOWLEDGEMENTS

The final form of this paper has benefitted substantially
from suggestions made by Robert C. Crain, James O.
Henriksen and Douglas S. Smith, of the Wolverine
Software Corporation.

REFERENCES

Henriksen, J. O., and R. C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Annandale, Virginia:
Wolverine Software Corp. (Translated into German by
Ines Kuhrau and available under the title GPSS/H
Referenzhandbuch.)

Henriksen, J. O, D. T. Brunner, and N. J. Earle 1992.
Using Proof Animation (with Student Proof
Animation on an included disk). Annandale, Virginia:
Wolverine Software Corporation.

Lieberman, E. B. 1991. Integrating GIS, Simulation and
Animation. In: Proceedings of the 1991 Winter
Simulation Conference, eds. B. L. Nelson, W. D.
Kelton, and G. M. Clark, 771-775. La Jolla,
California: The Society for Computer Simulation.

Lieberman, E. B., and B. Andrews. 1990. The Role of
Interactive Graphics when Applying Traffic
Simulation Models. In: Proceedings of the 1990
Winter Simulation Conference, eds. O. Balci, R. P.
Sadowski, and R. E. Nance, 753-758. La Jolla,
California: The Society for Computer Simulation.

Lorenz, P. 1993. Bilder und Modelle Ampelgesteuerter
Verkehrskreuzungen. Tagungsband des Achten Sym-
posium Simulationstechnik, 359-362. Berlin: Vieweg
Verlag.

Reitman, J. 1971. Computer Simulation Applications.
Wiley Interscience, New York, NY.

Smith, D. S., D. T. Brunner, and R. C. Crain. 1992.
Building a Simulator with GPSS/H. In Proceedings of
the 1992 Winter Simulation Conference, eds. J. J.
Swain, D. Goldsman, R. C. Crain, and J. R. Wilson,
357-360. La Jolla, California: Society for Computer
Simulation.

Walper, R. 1994. Generierung von Modellen der
Lichtsignalsteuerung fuer den Strassenverkehr. Masters
Thesis. Magdeburg, Germany: Department of
Computer Simulation and Graphics.

AUTHOR BIOGRAPHIES

PETER LORENZ is a Professor in the Department of
Computer Simulation and Graphics at The University of
Magdeburg. He has over 20 years of experience in the
field of simulation. A recent research interest of his is
picture-based generation of simulation models, using
both real and abstract pictorial system representations.

THOMAS J. SCHRIBER is a Professor of Comp-
uter and Information Systems at The University of
Michigan. The author of An Introduction to Simulation
Using GPSS/H (Wiley, 1991), he teaches, does research
and consults in the area of discrete-event simulation.

THOMAS SCHULZE is an Associate Professor in
the Department of Computer Simulation and Graphics at
The University of Magdeburg. His research interests
include modeling methodology, public systems modeling
and simulation output analysis. He is an active member
of ASIM, the simulation society for Germany, Austria
and the German-speaking part of Switzerland.

