Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

DISTRIBUTED PARALLEL OBJECT-ORIENTED ENVIRONMENT
FOR TRAFFIC SIMULATION (POETS)

Susan L. Mabry

Advanced Technology

& Design Center
Northrop Grumman Corporation
Pico Rivera, California

ABSTRACT

POETS is an experimental traffic simulation
incorporating parallel processing, object-oriented
methods and data-flow scheduling on a distributed
workstation platform. Primary emphasis of this project
is on the integration of these advanced computing
methods in the development of a fundamental traffic
model. Traffic modeling provides an ideal application
environment, representative of the demand for parallel

processing in real-world simulations. Usage of
distributed parallel processing, object oriented
approaches, and data-flow scheduling in traffic
simulation  achieves  objectives of  enhanced

performance, efficiency, representation and scalability
in a pragmatic environment. The implementation
employs C++ and a new parallel language system,
Mentat. An overview of the project, challenges
encountered, Mentat usage, and preliminary findings
are presented in this paper.

1 INTRODUCTION

POETS depicts a simplistic transportation system in a
mesoscopic simulation model incorporating approaches
of parallel and distributed processing, object-oriented
modeling and data-flow scheduling on a distributed
workstation platform.  The model is a hybrid system,
possessing both continuous and discrete event
properties.

Traffic modeling exemplifies the demand for parallel
and distributed processing in real-world simulations.
The potential quantity of vehicles and parallel events
render sequential processing inadequate. It is our
intention to explore and evaluate distnbuted and
parallel processing techniques in improving efficiency
and accuracy of large scale simulations. Parallel
performance, accurate model representation, data

1093

Jean-Luc Gaudiot

Department of Electrical

Engineering-Systems
University of Southern California
Los Angeles, California

distribution, application scalability and hardware
scalability must all be realized at an effort and cost that
make parallelism worthwhile.

Based upon extended C+ +(Stroustrup,1986), the
Mentat Language System(Grimshaw,1993) combines
features of the object-oriented paradigm with the data-
driven computation model, described in Section 4.3.
Mentat exploits a hybrid approach of explicit and
compiler-based parallelism and interprocess
communication management. Since Mentat uses the
data-driven computation model, it is suited for
message-passing, distributed memory architectures.
Abstraction of complexity and encapsulation of
behavior sustain integration, interconnection, and also a
greater degree of parallel programmability.

This paper will begin with a discussion of motivation
for this work and an introduction to the traffic model.
Consideration is then given to the attractions and issues
of parallel and distributed simulation, object-oriented
approaches, data-driven computation model, and a brief
overview  of Mentat  Language  concepts.
Implementation approaches and issues are examined.
Finally, we shall discuss preliminary findings, further
research and conclusions.

2 MOTIVATION

Traffic simulation is an important area for evaluation of
traffic flow and traffic control. Simulation is being
used to measure the effectiveness of technologies such
as IVHS (Intelligent Vehicle Highway System).
Intensive computation characteristics displayed in
traffic simulation can benefit from parallel, distributed
processing. Present methodologies in computer
processing have become inadequate due to execution
times for computation-intensive and data-intensive
simulations. Interconnections of distributed systems
and parallel processing of such distributed data is



1094 Mabry and Gaudiot

becoming a necessity for effective simulation,
providing performance enhancement and more accurate
event representation in real world systems. In the
past, parallelism has often been achieved through brute
force algonithms on expensive hardware platforms with
limited scalability. This is an unacceptable
application environment for widespread acceptance of
parallelism because of the level of programming effort
and cost effectiveness. It is our goal to explore
approaches that provide more user-friendly development
or programmability on an affordable  distributed
workstation platform.

Object-oriented methods are coveted for realistic data
representation, encapsulation of costly communication
overhead and as a basis for interconnection of models.
Although the object-oriented paradigm offers
advantageous features, these features are often obtained
at the cost of performance and execution control. Data-
driven scheduling offers a high degree of parallelism
and execution upon principles of operand availability,
thus significantly improving performance and execution
control. Object-orientation addresses communication
overhead associated with traditional fine-grain data-
flow. Indeed, the blend of these two persuasions
complement one another.  We will explore the
application of object oriented and data-flow
methodologies within a C+ + and Mentat programming
framework.

Although this model is currently of limited scope
with significant system boundaries in its initial state,
the traffic flow type of model has been chosen because
it will experience rapid growth of size and complexity.
Consequently this model benefits tremendously from
parallel and distributed processing. Clearly other
simulations such as in manufacturing, medical or
defense could similarly benefit from a programmable
approach to parallelism and distribution.

3 MODEL DESIGN

POETS represents traffic flow of a freeway system as a
mesoscopic simulation model. Every vehicle 1s viewed
as a distinct entity and updated periodically while
maintaining individual statistics for each vehicle object,
thereby reflecting microscopic aspects. Yet the model
also demonstrates macroscopic tendencies. Conditions
or travel characteristics are determined by link status
rather than individual vehicle trajectories. An
individual vehicle object is advanced to another link
when it has satisfied the required time to travel that
link, the required time being a function of link
attributes.  Rate of travel on the link is derived from
aggregate link conditions of capacity, volume, mean

speeds, occurrence of incidents, day of the week and
time of the day.

The network is viewed as having vehicle entity
objects that travel through queue objects and are
maintained by member functions which are also viewed
as objects to be distributed for processing. Figure 1
depicts the interconnection nodes and classes
representing objects in the traffic system. An
inheritance hierarchy exists of lanes, ramps, links,
sections, intersection nodes, freeways and regions. A
vehicle is an entity possessing an origin and
destination, local timer and allocated route. A lane is a
queue of vehicles, with ramps being a specialized type
of lane. Links are ordered collections of lanes with the
same source and destination. Intersect nodes are
connectors for links, consulting the router for future
connections. Regions are collections of intersect nodes
and their associated links. Regions provide scope of
responsibility for routers and also assure validity of
connecting links. For simplicity, we will hereafter
refer to travel as in links, although advancement
actually consists of travel through a hierarchy of lanes,
links, ramps, sections, freeways and regions.

Rogion
Section
Ramp V
Link
—
Vehicles ~@— Lanes
Link
— % S -
— — Link
—_— -
Laes o |
Link R’ *

Figure 1: Logical Class Representation

The model displays properties of both continuous
and discrete event simulation. At some levels the
simulation varies continuously on a timed basis while
on other levels the simulation responds to discrete
events. For example, status of vehicles are updated in
a continuous manner on timed intervals. However, the
transitions from link to link, through intersection
nodes, links, ramps and lane lists are in response to
occurrence of events.

Provided to the executing program are command line
arguments time_to_run, day of week, and time of
day. These arguments are used to establish initial base
conditions of the regions and links. They are also used
to establish the initial volume of vehicles and
distribution intervals for introduction of additional
vehicles during the simulation execution. Interval



POETS

scanning is applied for the update of vehicle positions
and traffic conditions. A central timing mechanism is
provided for control of the overall simulation time.
Individual timer objects are spun off with each vehicle
object for the purpose of local vehicle advancement,
such as within the lane object list.

Figure 2 illustrates the individual vehicle logic flow
through the network. Vehicle objects require routing
procedures to enter, exit or transition logically
connecting regions, links or ramps. Routing structures
include origin-destination matrices, route tables, route
parsers and router. Advancement from links to nodes
occur when a vehicle has satisfied the required time to
travel that link. Routes or paths, are treated as linked
lists to allow dynamic storage. Routing is currently
performed on a static basis, routes are parsed and
initially assigned to the vehicles. Our next stage of
development incorporates dynamic routing assignments.
Individual route assignment is maintained in the vehicle
object with assignments currently made and verified on
a node-by-node basis.

Figure 2: Logic of Individual Vehicle Movement

4 METHODOLOGIES

The goal of this experiment is to apply parallel and
distributed processing, object-oriented paradigms, and
data-driven  scheduling to the design and
implementation of this model. In doing so, we hope to
explore implementation ease and methodology
usefulness for general parallel simulations of real-world
events. We will now briefly describe each of these
concepts separately and related issues involved.

4.1 Parallel and Distributed Simulation

It is widely recognized that parallel and distributed
processing provides solutions to current speed
limitations of large network models, such as traffic
simulations(Hsin and Wang,1992). Obvious objectives
in parallel and distributed simulation are the
exploitation of parallelism and the distribution of data
and operations. These objectives are valued for

1095

qualities of faster performance, cost efficiency, and
increased accuracy of model representation. However,
these assets are not attained without difficulty.

Parallel and distributed processing under any type of
application typically present scheduling, load balancing
and communication overhead difficulties. The most
significant difficulties facing distributed and parallel
discrete event simulation efforts are synchronization
and partition of events(Fujimoto,1990). The
partitioned events must be distributed across a loosely
coupled environment and processed concurrently for
high performance, yet the events require timing and
scheduling coordination. Furthermore, the approaches
to address these challenges are what makes the
environment less than hospitable to the user. The
challenge for parallel simulation support is to provide
efficient solutions to communication, load balancing,
and scheduling issues, while taking full advantage of a
distributed platform. A preferable environment would
provide these solutions in a manner somewhat
transparent to the user.

4.2 Object-Oriented Paradigm

Object-oriented approaches offer promise for the
facilitation of dynamic linkage, efficient data structure
handling, code reuse and expressive data representation
(Booch,1993).  The object-oriented paradigm is also
inherently scalable. A disadvantage of object-oriented
representation is the fact that performance frequently
suffers. In our approach, data-driven scheduling and
concurrent processing on multiple processors address
this degradation. Data-driven scheduling, concurrent
processing and encapsulation of costly communication
overhead result in overall performance enhancement.
Abstraction of complexity and encapsulation of
behavior fundamentally support integration of such
objects as vehicles in geographical objects and result in
a greater degree of parallel programmability.
Significant attention has recently been given to object-
oriented paradigms. However, in order to truly reap
the recognized benefits, alternate technologies such as
data-driven scheduling must also be employed.

4.3 Data-Driven Computation Model

In the data-driven model(Gaudiot,1993), a program is
considered a directed acyclic graph in which nodes
represent instructions and the edges represent the data
dependency relationship between the connected nodes.
A data element produced by a node flows directly to its
destination node(s) for consumption. An actor is then
declared executable when its input data becomes ready
for consumption. This means that every node is purely



1096 Mabry and Gaudiot

functional in that it causes no side-effect (data can only
be read by those actors which need it). Also,
sequencing the various parts of the computation is
inherently parallel since the actors themselves can
"decide” whether they are executable or not. This
obliviates the need for a central controller such as the
Program Counter in the von Neuman environment.

There are two different interpretation models of data-
driven execution. The first is the static model
pioneered by Dennis(Dennis,1991) in which only a
single data token can exist on an edge. Although this
simple model can be easily implemented, 1t is not
flexible enough to handle execution mechanisms like
recursion.

The other execution mechanism is the dynamic model
pioneered independently by Arvind/Gostelow, 1982
and Watson/Gurd, 1982. This is a more flexible
execution mechanism which allows multiple tokens to
exist concurrently on an edge. In order to distinguish
tokens that belong to different instances of a node, a tag
field containing some unique identifier is added to a
token. Thus a set of input tokens belonging to the same
instance of a node can be identified through tag
matching. While this model is more powerful than the
static model, it is also more difficult to implement.
Executable nodes as only fast as the token matching.

The data-driven computation model is recognized for
its high degree of inherent parallelism. As explained in
the following section data-driven concepts are
incorporated into the Mentat Language System for the
execution scheduling of distributed class objects.

4.4 Mentat Language System

Mentat i1s an object-oriented, parallel language system
that has been developed at the University of Virginia
under the leadership of Andrew Grimshaw. It
combines features of the object-oriented paradigm with
a hybrid data-driven computation model.  Unlike
traditional functional languages, state of objects may be
designated for maintenance between executions thus
preserving object-oriented persistence as necessary in
some classes. Since Mentat uses a hybnd data-driven
computation model it promises easy usability for
previously difficult to program distributed memory
MIMD architectures (Grimshaw,1990a).

The two facets of Mentat are the Mentat
Programming Language(MPL) (Grnimshaw  and
Liu,1988) and the Mentat Run-Time System(RTS)
(Grimshaw,1990a). These dual components provide a
combined approach of both explicit and compiler-based
parallelism management. Mentat emphasizes the
underlying assumption that the programmer is capable
of making better granularity and partitioning decisions

while the compiler more appropriately manages
synchronization and communication. In Mentat, the
programmer may thus designate partitioning based on
familiarity with the problem domain. Interprocess
communication and management of extensive and
intricate asynchronous tasks are more easily handled by
the compiler. The Mentat Run-Time System manages
all aspects of communication, synchronization and
scheduling(Grimshaw,1993b). Mentat developers
stress that the programmer is thus freed to concentrate
on domain and algorithms at hand rather than being
concerned with communication primitives, scheduling,
and load balancing.

The Mentat Programming Language consists of
extensions to C+ + with the objective of extending
encapsulation principles to include encapsulation of
parallelism. This extended encapsulation exploits intra-
object as well as inter-object parallelism so as to claim
an easy-to-use parallelism for distributed systems. An
object has state, behavior and identity; the structure and
behavior of similar objects are defined in their common
class (Booch,1993). Inherent data parallelism is upheld
through object inheritance and common attributes of
objects.

The data-driven computation model in Mentat
consists of graph-based, data-driven, medium grain,
asynchronous and self-synchronizing aspects of data-
flow. Program graphs are dynamically constructed by
the Mentat front end compiler at run-time by
determined data dependencies, allowing dynamic
function binding as required by the object-oriented
paradigm.  Performing in an asynchronous manner,
processing upon operand availability, and having little
or no side effects, it is appropriate for message passing
and distributed memory architectures such as the
distributed workstation cluster.

5 POETS PROJECT

Timing, partitioning, scheduling and message-passing
between processors all contribute to an extremely
difficult environment for the user. We would like to
accomplish the preceding issues on a traffic flow
simulation in a programmable, user-friendly manner.
Towards this goal Mentat is explored as a vehicle for
achieving distributed and parallel processing of a
simulation application in an easy-to-use manner.

5.1 Implementation Environment

Load balancing, process synchronization and
interprocess communication are performed
automatically by the Mentat Run-Time System. A
round robin placement algorithm and sixty percentile



POETS

CPU load threshold transfer policy were enacted for
this experiment. Running on each host of an active
Mentat network are an Instantiation Manager daemon
and a Token Manager Unit daemon (Mentat,1993).
These background daemons coordinate the execution of
the application objects. Existing clusters of Sun/SGI
workstations were used as the distributed platforms.
Workstations are extremely attractive as industry
application platforms for parallel processing because of
their power, versatility and affordability. The
underlying architecture permits the processing to
proceed as though on a MIMD architecture.

Independent objects are communicated and
distributed for processing to autonomous host
processors through asynchronous message passing.
This allows multiple types of objects to be processed
independently and concurrently across multiple
workstations. Once the objects have been set, process
scheduling of functions is performed at the compiler
level without intervention by the programmer.

5.2 Language Implementation

The model was implemented in C+ + with adaptations
to Mentat. Use of C++ allows a powerful and
commonly accepted foundation. The Mentat compiler
incorporates embedded Mentat Run-Time System(RTS)
calls into C++. The RTS provides instantiation and
scheduling of Mentat objects, data-flow program graph
construction and management. The C+ + compiler is
then invoked to generate executable C code.

A general logic overview of the main function of the
system is provided in Figure 3. In main the program
sets up the network, instantiating classes, declaring
variables and calculating initial volume of traffic flow.
Vehicles are then generated, assigned start times,
vehicle identifications, random origins and destinations.
An initial route is determined and assigned to the
individual vehicle. The vehicle is then injected into the
system. A distribution interval is determined for
introduction of additional vehicles during the
simulation run. The simulation is run until the period
that the simulation has executed is greater than an input
time to_run.  Region->update instigates a whole
updating, testing, and advancing procedure, cascading
down through sections, links, ramps and lanes. Also
during the loop, additional vehicles are gradually
introduced as periods exceed calculated distribution
intervals.

main(int arge, char *argv(]) {
// SETUP
// DECLARATIONS AND INSTANTIATIONS
// DETERMINE DAY_LOAD, TIME_RANGE, AND
TYPICAL INITIAL VOLUME

1097

startup.calc_volume(day_of_week, time_of_day);

// GENERATE VEHICLES
for(veh_ct=1; veh_ct<gen_veh; veh_ct+ +){
vehicle- > genVehicle(startup.getVeh_id(),
startup.getOrigin(), startup.getDest());
vehicle- > setroute(router- > getroute(*vehicle));
region- > inject(*vehicle);

}
// SET DISTRIBUTION INTERVAL
interval =startup .getDist_Interval();
timer.setSimTime();

// RUN the simulation
while(simulation_time < time_to_run){
// UPDATE ADVANCE VEH THROUGH LINKS
region- > update();
// INTRODUCE ADDITIONAL VEHICLES
if (gen_clock > interval){
vehicle- > genVehicle(startup.getVeh_id(),
startup.getOrigin(), startup.getDest();
vehicle- > setroute(router- > getroute (*vehicle));
region- > inject(*vehicle);

timer.setSimTime();
simulation_time = (float) timer.getSimTime();
gen_clock+ +;

bl

Figure 3: Pseudocode of Main Program Routine

Class designation is the crucial aspect of
implementation.  Some class functions require full
C+ + sequentiality while others could greatly enhance
performance by taking advantage of Mentat data-flow
classes. Mentat offers a regular mentat class that
provides pure data-flow parallelism with single
assignment and no side effects. This class offers the
highest parallel performance however will not maintain
persistence.  The persistent mentat class provides
limited data-flow parallelism as is possible within the
member functions of the class yet also maintains a state
of persistence. The sequential mentat class provides
an even more limited concurrency while maintaining an
ordered execution and persistence. For greatest
performance, developers strive for maximal usage of
data-driven scheduling. This is achieved by usage in
descending order of regular mentat class, persistent
mentar class and sequential mentat class to traditional
C++ classes with no parallelism. Various class
designations are determined by the particular class's
necessity for persistence of state or sequentiality of
operations. The full range of class types were used in
the model because of varying degrees of parallelism and
persistence found in model activities.

It is important to realize that classes and also member
functions encapsulated within those classes are all
considered objects eligible for distribution. This fact
enables both inter-object and intra-object parallelism.



1098 Mabry and Gaudiot

Figure 4 provides a portion of a regular mentat class
declaration and the associated definition of an
encapsulated mentat member function updateTimes.
Notice the mentat rtf call. This call forwards derived
values to other classes having data dependencies.

persistent mentat class Vehicle {
private:

int id, begin, end;

float linktime, lifetime, simtime;

clock_t time0, createtime;

Route *route; Router *router; Timer timer;

public:

Vehicle(int ident, int b, int e) : id(ident), begin(b),
end(e), linktime(0), lifetime(0),time0(0),
createtime(timer- > getSimTime() { };

void destroy();

int getidQ {return(id); };

void setroute(Route &r);

Route* getroute(){return(route); };

int getbeginQ{return(begin);};

void update();

void setTime0();

void updateTimes(clock_t, clock_t);

// Associated mentat member function declaration:
void Vehicle::updateTimes(clock_t tm0, clock_t cr0){
linktime = (float) (timer.getTime(tm0));
lifetime = (float) (timer.getTime(cr0));
rtf(0);
}

Figure 4: Example of Persistent Mentat Class

The Mentat class member functions provide logical
partitions for distribution of objects across multiple
processors.  Parallel event decomposition is explored
from the class member function and data-driven
scheduling perspective.  The class object designation
allows design partitioning into inherent behavioral
parallelism. This decomposition scheme bears
resemblance to the "natural partitioning” concept of
Blomquist and Brown(1994), exploiting the inherent
parallel nature of the physical process. Object-
orientation is also used to address communication
overhead. Fine-grain parallelism is encapsulated within
the member function units of decomposition, thus
resulting in medium granularity and thereby reducing
the amount of message passing required between
multiple processors.

5.3 Initial Findings

Combined approaches of careful class design and
Mentat usage address a majority of the parallel and
distributed simulation issues. Mentat does pose some
language constraints. Many of these constraints result

from the support of a truly distributed environment
while others are due to the evolving nature of the
language. For instance, the standard C+ + friend and
static variables are justifiably not supported by Mentat.
As globally shared entities, friend and static variables
would interfere with distributed memory concepts and
instances of Mentat classes treated as independent
objects. Yet unsupported C+ + features in Mentat
classes include overloaded operators, templates and
virtual functions. These lacking features limited full
C+ + object-oriented capabilities and also caused the
greatest implementation problems.

Difficulties are to be expected both in supporting the
notion of loosely coupled message passing architectures
and within the framework of a developing language. In
spite of implementation challenges encountered,
Mentat certainly boasts appealing approaches for
distributed and parallel processing. Unique in the
usage of Mentat is the capability to stipulate classes
with varying degrees of parallelism. The various types
of classes execute concurrently on different processors
with varying degrees of parallelism. This strength
enhances scalability in such an application taking full
advantage of the MIMD architecture, and generally
provides a more flexible environment for parallelism
than traditional SIMD architectures. Perhaps the most
attractive feature of Mentat is the RTS where all
scheduling, load balancing, and interprocess
communication are handled automatically. Support for
multiple load balancing policies by the RTS provides
additional flexibility and caters to diverse applications.

At the time of this analysis, testing was performed
on a network of 5 Sun SparcStations with minimal
vehicles generated. As evidenced in the following
graph, the system displays extremely efficient load
balancing. Notice that a minimal number of mentat
objects are scheduled for the host processor. This
allows for additional overhead of orginating host
processor node activities. A nearly even distribution of
objects occurs on the remaining processors. Figure 5
illustrates load balance.

Mentat
Vehicle
Objects ®

Processor Nodes (n)

Figure 5: Load Distribution of 50 Mentat Objects



POETS

Speedup depicted in Figure 6 is consistent with
expected trends of a small network with minimal
objects. The speedup includes network communication
costs a busy network. Speedup, S(n), is defined as the
execution time on one processor over n processors for
the given problem size of vehicles. Curves are low
before and after peaking because of network
interconnection overhead. These lows indicate when
communication 1is as expensive as computational
processing. The curves of 30 vehicles and of 50
vehicles begin to be indicative of the speedup of a
larger scale model. Preliminary results are encouraging
however inconclusive. Further testing is required on a
larger network with greater number of objects.

5 ——10 Vehicles
—0—20 Vehicles
—=—30 Vehicles
——50 Vehicles
4 e

Speedup

Processor Nodes (n)

Figure 6: Speedup with Communication Costs

System efficiency, E(n), in Figure 7 reflects the
relationship between speedup achieved and degree of
processor node utilization. Minimum efficiency is
equivalent to sequential execution. Maximum system
efficiency is achieved when all processor nodes are
fully utilized (Hwang,93).

—— 10 Vehicles
—o— 20 Vehicles
—+— 30 Vehicles
—=— 58 Vehicles

1

System 0.3
Efficiency

E(n) os

04

0.2

1 2 3 4 5
Processor Nodes (n)

Figure 7: System Efficiency on Busy Network

1099

6 Conclusions

This paper has presented a preliminary overview of
an evolving model. The authors realize there remain
several research issues that have not been fully
addressed in this paper. In particular, we wish to
explore dynamic routing algorithms for traffic flow.
We also wish to enhance the model's origin-destination
matrices and routing tables, addressing bottleneck
issues encountered in model representation on a
distributed network and frequent access to the routing
structures. The object partitioning scheme and possible
necessity of partial rollbacks require further
investigation. In theory, data-driven scheduling
precludes the necessity for rollbacks. Ongoing analysis
of consistency and serializability of partitioned objects
will either confirm or deny this hypothesis. Extensive
performance analysis is required on larger networks
with increased workload for conclusive results.

The project is distinctive in rather than being a
theoretical problem, the traffic model is a realistic
candidate for parallel processing with demanding
circumstances. The application  demonstrates
significant  parallelism  and  accurate  event
representation.  Also being of sufficient complexity,
the model provides an arema of typical problems
encountered in normal implementation of large
simulation systems. The project explored new methods
to meet demands in a programmable manner. These
employed methods are equally capable of supporting a
wide range of applications.

In summary, although implementation has been
quite challenging, initial findings have indicated
promising results with the usage of Mentat. The RTS
and Mentat class designations are especially beneficial
towards the goal of achieving a usable parallel and
distributed environment. As the Mentat Research
Group augments support of C++ features in the
compiler, the research language is anticipated to be
increasingly applicable for practical applications.
Further performance analysis is required on larger
networks with increased workload for conclusive
results.  Utilizing object-oriented design in this
approach, we have abstracted data and behavior for a
more workable environment and encapsulated
parallelism for minimization of communication
overhead. Our approach of medium granularity with
Mentat classes encapsulates and thereby minimizes
communication  overhead. Implicit  data-driven
scheduling affords parallelism, programmability and
adaptability in the modeling environment.



1100 Mabry and Gaudiot

REFERENCES

Arvind and Gostelow, K. The U-Interpreter, IEEE
Computer, February, 1982.

Blomquist, R. N. and Brown, F. B. Parallel Monte
Carlo Reactor Neutronics.  Proceedings of the
Conference on High Performance Computing '94.
1994. San Diego, California.

Booch B. Object-Oriented Analysis and Design with
Applications. Benjamin/Cummings Publishing
Company, Inc. 1993.

Dennis, J. The Evolution of Static Data-Flow
Architecture. Advanced Topics in Data-Flow
Computing, Prentice-Hall. edited by J-L Gaudiot and
L. Bic. 1991.

Fujimoto, R. M. Parallel Discrete Event Simulation.
Communications of the ACM. October 1990.

Gaudiot, J-L.. Data-Driven and Multithreaded
Architectures for High-Performance Computing.
The International Summer School on Parallel
Systems and Languages. Praha, Czech Republic.
July 1993.

Grimshaw, A. S. The Mentat Run-Time System:
Support for medium grain parallel computation.
Fifth Distributed Memory Computing Conference.
Charleston, SC. April 1990

Grimshaw, A. S. . Easy-to-use object-oriented parallel
processing with Mentat. Technical Report
CS-92-32. University VA. May 1993

Grimshaw, A. S. and Liu, J. W. The Mentat
programming langnage and architecture. Workshop
on Future Trends of Distributed Computing Systems.
Hong Kong. Sept 1988.

Hsin, V. J. K. and Wang, P. T. R. Modeling
Concepts for Intelligent Vehicle Highway Systems
Applications. Proceedings of 1992 Winter
Simulation Conference. Washington, DC. 1992.

Hwang, K. Advanced Computer Architecture.
McGraw-Hill, Inc. 1993.

Mentat Research Group. Mentat 2.6 Release Notes and
Mentat 2.5 System Reference Manual.  Dept.
Computer Science, University of Virginia. 1993.

Stroustrup, B. The C+ + Programming Language.
Addison-Wesley, 1986.

Watson, I. and Gurd, J. A Practical Data-Flow
Computer. IEEE Computer, February, 1982.

AUTHOR BIOGRAPHIES

SUSAN L. MABRY is a Software Engineer at
Northrop Grumman Corporation Advanced Technology
and Design Center. As a Northrop Grumman Fellow,
she is also a Ph.D. student in Computer Systems
Design Group, Information and Computer Science
Department at the University of California, Irvine. She
received both M.S. and B.S. Degrees in Computer
Science from the University of Southern California in
1993 and the California State University Fullerton in
1991 respectively. Her research interests include
parallel and distributed processing as applied to
simulation, parallel architectures, data-flow scheduling,
and distributed databases. She is a member of IEEE,
ACM, and SCS.

JEAN-LUC GAUDIOT (S'76-M'82-SM'91) received
the Diplome d'Ing'enieur from the Ecole Sup'erieure
d'Ind'enieurs en Electrotechnique et Electronique,
Paris, France, 1976, the M.Sc. and Ph.D. in Computer
Science from the University of California, Los Angeles
1977 and 1982, respectively. Since 1982, he has been
on the faculty of the Department of Electrical
Engineering-Systems,  University =~ of  Southern
California, where is currently an Associate Professor.
His research interests include data-flow architectures,
fault-tolerant multiprocessors, and implementation of
artificial neural networks. He has also consulted for
several aerospace companies in Southern California.
Dr. Gaudiot is a member of the ACM, the ACM
SIGARCH, the IFIP Working Group 10.3 (Parallel
Processing), and a senior member of the IEEE.



