Proceedings of the 1994 Winter Sumulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

MASSIVELY PARALLEL SIMD SIMULATION OF
DISCRETE TIME STOCHASTIC PETRI NETS

Subhas C'. Roy

Department of Computer Science
College of William and Mary
Williamsburg, Virginia 23185, U.S.A.

ABSTRACT

Performance modeling using Petri nets is becoming
increasingly popular due to their versatility. Simula-
tion remains the only feasible method of solving Petri
nets with generally distributed firing times. Previous
work on parallel simulation of Petri nets mostly in-
volved some restricted classes of timed Petri nets that
have been simulated on MIMD machines. This paper
proposes a synchronous algorithm for SIMD simula-
tion of a general class of timed Petri nets with discrete
transition firing times. Implementation on a Mas-
Par MP-2 shows that good speedups are achievable
and a parallel implementation can significantly out-
perform a sequential implementation using a work-
station.

1 INTRODUCTION

Petri nets (see [Murata 1989] for a survey on Petri net
theory) provide a graphical and mathematical mod-
eling formalism that is well-suited for describing and
studying systems that exhibit concurrency, synchro-
nizations and conflicts. When augmented with the
notion of time, Petri nets can be used for performance
modeling and evaluation. However, for large complex
systems solving Petri net models using analytic meth-
ods is formidably difficult and may be possible only
at the cost of generality. Analytic techniques need
to make Markovian assumptions for tractability and
even then the associated exponential time and space
complexities limit their usefulness beyond modest net
sizes. Therefore, discrete event simulation of Petri
nets is an attractive alternative since it imposes lit-
tle restriction on the modeler. However, the compu-
tational resource requirement for simulation of large
Petri nets can be enormous. Therefore, parallel exe-
cution of such simulations is desirable.

Discrete-time stochastic Petri nets are an impor-
tant class that is suitable for modeling “clocked sys-

1370

tems” i.e. systems where activity durations are multi-
ple of a common time unit. Most computer hardware
systems operate on a basic clock and so such systems
may be modeled using discrete-time Petri nets. Also,
many practical continuous-time systems can be ap-
proximately modeled with discrete-time Petri nets.
This work deals with techniques of efficient parallel
discrete event simulation (PDES) of a general class
of discrete firing time Petri nets running on a SIMD
machine.

Petri net (PN) is a directed weighted bipartite
graph containing two types of nodes called places
(represented by circles) and transitions (represented
by bars) which are connected by directed arcs. Places
may contain tokens (shown as dots) which determine
the dynamic behavior of the net. The marking of a
PN is the vector of token counts for all the places. A
transition is enabled if each of its input places con-
tains at least as many tokens as there are arcs from
the place to the transition. An enabled transition
can fire (in one atomic operation) by removing all of
its enabling tokens from its input places and adding
to each of its output places one token for each out-
put arc. Many variations and extensions to this basic
model are used by the researchers. In Petri nets with
transition firing delays, a transition must remain en-
abled for a certain duration of time before it can fire.
For modeling system behavior, transition firing times
can be random variates thus leading to stochastic fir-
ing time Petri nets (called SPNs). In case multiple
transitions sharing a common input place are enabled,
the one with the least remaining firing time (RFT)
fires. This firing policy is called the “race policy”.
A set of enabled transitions may form a conflict set
such that firing one disables another thereby requiring
a conflict resolution policy. For Petri nets, a simula-
tion run explores one sample path (one sequence of
transition firings).

Although several researchers have explored the
techniques of PDES of Petri nets, the context of their

SIMD Simulation 1371

work is MIMD only. However, execution of PDES of
Petri nets on SIMD machines offers an additional set
of challenges. In either case, partitioning the net is an
important issue that needs serious attention in order
to achieve good performance. To expose maximum
level of parallelism, [Thomas and Zahorjan 1991] al-
lows each place node or transition node to become an
LP at the cost of extra communications. However for
real parallel machines, the cost of communication is
too high to make such fine granularity useful. There-
fore, [Nicol and Roy 1991}, [Nicol and Mao 1993], and
[Chiola and Ferscha 1993) suggest conflict-set based
LP partitioning which reduces the number of LPs and
alms at minimizing the communication overhead by
carefully exploiting the net structure.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the discrete time Petri nets and the
underlying formalism used in this work. Section 3 dis-
cusses the SIMD algorithm for the simulation. Sec-
tion 4 reports on our empirical study.

2 DISCRETE TIME PETRI NET (DTPN)

The firing time for each of the transitions of a SPN of
this type is taken from a discrete distribution where
probability weights are assigned to a finite or count-
ably infinite number of constants. Synchronous sys-
tems can be naturally modeled by DTPNs. An SPN
formalism with discrete timings was first introduced
in [Molloy 1985] which allowed only geometric dis-
tribution, the discrete analogue of exponential distri-
bution. Although we allow non-geometric distribu-
tions, in the context of this paper, we assume that
there is a basic time-step w for a DTPN such that
all events (transition firings) occur only at multiples
of w. Any discrete firing time distribution can be
approximated arbitrarily well with a discrete distri-
bution with a small enough basic time-step w. SPN
with deterministic firing times that are multiple of w
are just a special case of this model. If the distribu-
tions are geometric, the underlying stochastic process
is a discrete time Markov chain (DTMC). Using state
expansion, a DTMC can still be obtained [Ciardo,
German, and Lindemann 1993] even if the distribu-
tions are not geometric as long as the firings occur
only at some multiple of a basic step w.

2.1 Conflict Sets

Since in a DTPN a firing can only occur at a time
9 € {iw|i € IN}, there is a nonzero probability that
multiple transitions will attempt to fire at the same
time. This gives rise to the possibility of conflict situ-
ations where two or more enabled transitions are try-

ing to fire at the same instant and firing one disables
some other.

We define ‘conflicts with’ relation for a DTPN
(with a set of transitions T') at time # and with a
marking g such that the transitions in a set T, C T
are said to conflict with each other if (a) all transitions
€ T, are enabled in p, (b) all transitions € T, have
equal RFTs at 6, and (c) the firing of any subset
S C T, results in a marking in which some other
transition t € T, and t ¢ S is disabled.

A set with property P is a mazimal set with prop-
erty P if it is not a proper subset of any other set with
property P. A conflict set of a DTPN at time 6 and
with a marking p is a maximal set of transitions in
the DTPN with the property that its members con-
flict with each other at time 6 and in marking p. A
static conflict set is a maximal set of transitions in
the DTPN with the property that its members con-
flict with each other in a legal marking at some point
of time (‘conflict with each other’ is not meant to be
symmetric—it is possible in the presence of inhibitor
arcs to have asymmetry in the ‘conflicts with’ rela-
tion).

If there is an inhibitor arc (the arrowhead of such
an arc is pictorially shown by a small circle) from a
place to a transition, the transition remains disabled
as long as the place contains a token. The presence
of immediate transitions (which have zero firing de-
lay) and inhibitor arcs significantly complicates the
conflict situations. In a marking many transitions to-
gether may form an extended conflict set due to the
transitive ‘conflicts with’ relation. Figure 1(b)—(d)
illustrate a few conflict situations assuming that in
each case all transitions are enabled and they have
the same RFTs. In Figure 1(b) and 1(c), the con-
flicts are due to the sharing of common input places
(called decision places). In Figure 1(d), although the
transitions ¢; and t2 do not share any input place,
they cannot be allowed to fire at the same time-step
because the resulting marking would be an illegal one
(i.e. the new marking cannot occur in the un-timed
version of the PN).

The conflict situations must be resolved in a way
that is meaningful to the modeler and avoids reach-
ing a forbidden marking. This is an important and
difficult problem in DTPN and no easy and satisfac-
tory conflict resolution scheme is available. During a
simulation execution, it is computationally expensive
(exponential complexity in the worst case) to detect
a conflict situation, compute the conflict set dynam-
ically and fire the transitions of the conflict set using
a resolution scheme. One way [Ciardo, German, and
Lindemann 1993] to ensure unambiguous semantic,
is to sequentialize the simultaneous firing attempts

1372

(a) no conflict (b) simple conflict

-0 o

(c) extended conflict

(d) extended conflict set
with inhibitor arcs

?h SER IS
_‘2
O @

Figure 1: Conflict Sets

of the transitions of a conflict set. The next transi-
tion to be fired is stochastically chosen by using firing
weights assigned to the conflicting transitions. We
have adopted this approach due to its simplicity.

In [Holliday and Vernon 1987], another approach
based on enumeration of Maximal sets is proposed
(note that this term has its M as a block letter in
order to differentiate it from the set theoretic term
‘maximal set’). For a conflict set S, a Maximal set
U C S has a property such that all transitions in
U can successfully fire simultaneously and no other
transition in S can also fire at the same time-step.
In Figure 1(c) the only Maximal sets are {t1,¢3} and
{t2}. In this scheme, the idea is to enumerate all
the Maximal sets pertaining to the conflict set, as-
sign a probability weight to each of the Maximal sets,
stochastically choose a Maximal set using the proba-
bility weights, and then fire all the transitions of that
Maximal set (in any order). A problem with this
scheme is the exponential time and space complexity
(in the worst case) of enumerating the Maximal sets.
Also, we expect this approach to be not well-suited
for execution on the SIMD architecture.

2.2 DTPN Formalism

We have adopted a DTPN formalism that is based
(with some modifications) on [Ciardo, German, and
Lindemann 1993]. Formally, we define a DTPN as a
tuple A = {P,T,1,0, H, 5, 7°, F,w} where

e P ={p1,p2,...,pp|} is a finite set of places. A
marking p € IN'Pl is a vector of token counts of

Roy

the places and #(p, i) denotes the token count
of place p in marking p.

o T = {ty,ta,...,t|7|} is a finite set of transitions.

e Vpe PVLeT, I, €IN,O,; € N and Hp; €N
denote the multiplicities of the input arc from p
to t, the output arc from ¢ to p and the inhibitor
arc from p to t respectively.

e g € IN'Pl is the initial marking. Since the state
at time 0 may reflect transitions which have been
enabled for some time, 70 € {iw|i € IN} is the
RFT at time § =0 fort € T'.

e V¢t € T, Fy is the CDF (cumulative distribution
function) for the firing time distribution fort € T'
such that rnd(F}) € {iw|i € IN} where rnd(D) is
a random variate from the distribution D.

e Vi€ T \VS € 2T,w,|5 € R is the firing weight
for transition ¢ when the transitions in S are all
attempting to fire simultaneously.

A transition t € T is enabled in marking p iff

Vp S P) Ip,t S #(P,ﬂ)/\ (Hp,t > #(pvu)VHp,i = 0)

After a transition ¢ enabled in marking p fires, the
marking changes to a new marking f(¢, 1) such that

Vpe P, #(p, f(t, 1)) = #(p, 1) — Ipt + Op

A DTPN changes state only at a time 6 € {iw]i €
IN}. Since there can be non-geometric distributions
too, the state s of a DTPN needs to specify the RFT
vector as well (as does the underlying Markov chain
in such a case). Thus as a vector of markings and
residual firing times the state is expressed as s =
(¢, 7), where 7, denotes the RFT of ¢ € T. Assume
that, at time 6, DTPN is in state s = (g, 7). Define
E(u) to be the set of enabled transitions in marking p.
Also let 7" = minyeg(y){m} and S = {t € E(p)|n =
7*}. Then, at time 8 + 7*, the probability that ¢t € S
will fire next is w!|5/(zues wy|s). After firing t, the
new state of the DTPN will be s’ = (g, 7'), where
the new marking is ¢/ = f(¢,). The new RFT vector
' = g(t,p,7) is given as follows. Vu € T,

md(F,) if (u=tVvugE(u)Aue EW)
T, =9 Tw—7" if u#FtAu€ E(p)Aue E(QY)
00 if ug E(y)

2.3 DTPN Simulation : Formal Description

Consider the transient simulation of a DTPN A from
the time 0 to a finite time §p. Algorithm 1 outlines
a formal way how to simulate one sample path of A
(based on our adopted formalism).

SIMD Simulation 1373

0 —0; pp— poj 7 = 1%
repeat forever
T — mine gy {n};
if 6 + 7 > 0p then stop simulation.
S—{te E(u)n=r1"}
select ¢ € S with probability w5/ Zues Wy|s;
po= fp) T =gt p)
po—pi T =l
0 — 0+ 7

Algorithm 1: Sequential Simulation of DTPN

Note that in Algorithm 1, all firings are strictly se-
quentialized. Although this eliminates any ambigu-
ity, strict sequentialization is not always essential—
from a given marking there may be many transi-
tions enabled to fire which are independent in the
sense that the order in which they fire does not
matter. Also note that the algorithm is not prac-
tical for direct implementation since it theoretically
requires all |T'| x 27! firing weights for specifying
wys : T x 2T — IR*. In practice, however, most of
this values are not necessary and we can avoid speci-
fying them.

3 SIMD SIMULATION OF DTPN

A DTPN simulation jumps through the time-steps
€ {iw|i € IN}. For a large sized DTPN consisting
of many thousands of places and transitions, it is ex-
pected that a large number of firing events occur at
each of these time-steps. Such abundant parallelism
can be naturally exploited in a SIMD (Single Instruc-
tion Multiple Data) machine where the processors ex-
ecute in a locked-step manner. The SIMD architec-
ture is characterized by numerous synchronized PEs
which are broadcast a single instruction stream by
a control processor. The PEs process the local data
in their respective local memories using the common
instruction thread. Conditional instructions are exe-
cuted by the active set of PEs that are enabled by the
data dependent condition code. Efficient support for
global reduction operations and near neighbor com-
munications are provided.

However, ensuring correct parallel execution
(which avoids reaching an illegal marking) of DTPN
simulation needs some careful considerations regard-
ing the decision on choosing the transitions for si-
multaneous firing. Although strict sequentialization
similar to Algorithm 1 is unnecessary, sometimes it is
needed as in the case of Figure 1(d). For efficiency,
we want to make the execution model model fit the
SIMD architecture. This may call for breaking away

from the traditional future-event-list oriented simula-
tion approach.

3.1 Partitioning the Net into LPs

For simulation of a DTPN on a parallel machine, we
need to partition the net into LPs such that correct-
ness of the DTPN execution semantics is ensured as
well as communication among LPs is kept to a min-
imum. Like [Nicol and Roy 1991] and [Chiola and
Ferscha 1993], our partitioning scheme is essentially
based on static conflict sets. However we make addi-
tional restrictions in order to deal with the immediate
transitions. Our partitioning scheme makes it possi-
ble to keep all firing decisions (in particular conflict
resolutions) at any time-step completely local to an
LP. To allow the LPs to determine the enabling sta-
tus of its transitions, we allocate each place to the
same LP as that of its output transitions. Thus all
inter-LP arcs originate from transitions only.

Using the previous notations, suppose at time 0 €
{iw|i € IN}, the state of the DTPN to be simulated is
(i, 7). Suppose, based on the firing weights, we have
selected for firing the transition t € E(u), 7, = *
where 7 = minicp(u){n}. Also, after the firing at
time §+7*, the resulting state becomes (y’, ') where
p' = f(t,pu) and 7' = g(t, u, 7).

To form n LPs, we carefully partition T into n dis-
Joint subsets T1,T%, ..., T,. Define FS(k,) to be the
set of firable transitions in LP k at time 8 such that
all transitions in F'S(k,) have the same RFTs and
they are scheduled to fire at £.

Let the transition that is selected for firing at time
" =0 + 7 belongs to LP 7 which means t € T;,1 <
t < n. We do the partitioning such that there will
not exist any transition u € Tj,1 < j < n,i # j for
which any of the following assertions holds:

(a) ue E(u) ATy =7" Aug E(y)
(b) ug E(u) Au€ E(u)Ar; =0

‘The assertion (a) cannot hold true’ implies that
firing t € FS(i,0') cannot disable u € FS(j,0') if
t # j. This condition holds if the static conflict sets
are not split across LPs.

‘The assertion (b) cannot hold true’ implies that
firing t € FS(i,0') cannot add a member to the set
of firable (at time 6') transitions in LP j if i # j. We
need to satisfy this condition in order to deal with
the immediate transitions. Consider Figure 2 where
the transition ¢; is an immediate transition (firing
distribution is Const(0)). If we assign p; and ¢, to
LP 7 and the rest of the transitions and places to LP
J where i # j, then condition (b) is violated, because
if t; fires, t» will become enabled and will try to fire

1374

at the same time-step as t;. Therefore ¢, must be
assigned to the same LP as t;.

Figure 2: Partitioning and Immediate Transitions

This way of partitioning forces all transitions of a
conflict set to be completely included in an LP. This
scheme allows all conflict resolution decisions to be
taken completely locally within an LP without any
need for communication with other LPs. The imple-
mentation of the “race policy” too is done locally.

So, we partition the net into LPs as follows. First
partition the set of transitions 7" into the static con-
flict sets Ty,7%,...,Tn. Now, for t; € T; and an im-
mediate transition t; € T; where i # j, if the set
of output places of t; and the set of input places of
t are not disjoint, then merge T; and T;. Finally,
allocate each place to the unique LP which contains
its output transitions. Multiple LPs each containing
small number of nodes may be merged together for
better load balancing.

For conflict resolution, we specify the firing weights
on a per-LP basis. For LP i, wys values need to be
specified for each t € T; and each S C T; where T; is
the set of transitions assigned to the LP . In an ac-
tual implementation this can be further simplified by
the knowledge of the problem. For example, in some
restricted classes of Petri nets such as Free Choice
nets, the number of subsets € {S C T;} that actually
are required to be specified is very small.

3.2 SIMD Algorithm for DTPN Simulation

The basic idea is that if we do the partitioning as
described, then at a given time-step, we can correctly
simulate two firing events belonging to two different
LPs in parallel. There is a common global clock. At
a given time 6, within an LP i we compute F'S(¢,8)
and we pick a transition from that firable set using
the discrete probabilities distribution involving the
firing weights. As a result of firing tokens may be
deposited to other LPs which may involve inter-PE
communication. Due to the firing of ¢, some other
transitions in LP i may get disabled or enabled. New

Roy

RFTs are computed. Now the clock is incremented
by the global minimum RFT (among all LPs).

The SIMD algorithm for PDES of DTPN A4 =
{P,T,1,0,H,po,7°, F,w} is described as Algo-
rithm 2. The set of transitions is partitioned into
Ti,Ts,...,T, thus forming n LPs. For simplicity of
exposition, we assume here that each PE contains
only one LP. However, this restriction is not neces-
sary.

1. (a) Initialize (g, T);
(b) Assign the LPs to the PEs;
(c) 6 —0;
2. ™= minteE(”){Tt}; 8 — 6+ 7™
3. If § > Tp, stop simulation.
4. For each LP i, S; — FS5(¢,0);
5. For PE i do in parallel:
ifS;#0
(2) Choose a transition t € S; to fire with
probability wys,/ 3, s, Wuls:;
(b) Fire the transition t: move the tokens

to obtain the new marking and update
RFTs of the local transitions;

6. Go to step 2;

Algorithm 2: SIMD Algorithm for Simulating DTPN

Our DTPN model allows a border transition ¢ to be
an immediate transition or to be a part of a conflict
set. If ¢ is an immediate transition, it may fire in-
stantly as a consequence of the firing of another tran-
sition which feeds t’s input place(s). On the other
hand, if ¢t € S belongs to a conflict set S where
|S] > 1, then a previously enabled ¢ may get disabled
due to either the “race policy” or an inhibitor arc or
a conflict resolution. Immediate transitions, inhibitor
arcs, conflicts, and the “race policy” are handled by
Algorithm 2 quite naturally. However a standard sim-
ulation based on event-lists needs to do explicit event
preemption to handle these features. More impor-
tantly, computation of good lookaheads for such a
general case is difficult. An enabled stochastic border
transition can get disabled and later re-enabled with
possibly smaller firing duration time. Thus the final
firing instant of a transition may be hard to predict.
A common way of computing the lookahead in PDES
of Petri nets is to estimate the lower bound on the
firing time of a border transition. In presence of such
event preemption, obtaining good lookaheads is dif-

SIMD Simulation 1375

ficult. A general algorithm that can efficiently com-
pute the lookaheads by extensively analyzing the net
pertaining to the LP is not available. For restricted
class of DTPNs with only non-immediate border tran-
sitions which are also non-preemptive (i.e. singleton
conflict sets), the computation of lookahead is sim-
pler.

3.3 PDES on the SIMD Architecture

A SIMD machine has a single thread of control. There
are thousands of PEs each with a small amount of
memory. Due to these distinctions, we need to design
different PDES algorithms for SIMD machines which
may be quite different from the corresponding MIMD
algorithms. Not all problems are good candidates for
parallel execution on SIMD machines. The problems
which have some regular structure, finely partition-
able and without bottleneck communication pattern
are suitable for SIMD machines. Since these machines
support very efficient near neighbor communications,
effective mapping of the problem to the PE inter-
connection network topology can greatly improve the
performance. Also, problems with underlying syn-
chronous systems naturally fit the SIMD execution
style. Load balancing problems are more severe in
the SIMD context since there is no control parallelism
and the PEs are completely synchronized. For every
operation, the time taken is the worst case time for
all PEs. For example, in a PDES the time taken by
all PEs to do single insertions to their respective local
linked-lists is the same as the time taken by the PE
requiring the maximum number of node traversals.
Therefore a conventional MIMD algorithm for PDES
will perform poorly on the SIMD architecture.

For efficient execution of DTPN simulation on a
SIMD machine, we have deviated from the tradi-
tional PDES approaches. Algorithm 2 is essentially
synchronous time-stepping (with all LPs synchro-
nized by a common global clock) and can be con-
sidered to be a direct parallel extension of Algo-
rithm 1. Note however that the usual overhead of
a time-stepped simulation—scanning for work dur-
ing idle time periods—is absent, since the clock is
incremented by the global minimum RFT among all
transitions in all PEs. Global minimums are com-
puted quickly on a SIMD machine. Worst-case cost
for linked-list oriented simulation is avoided since no
list for future events is maintained. Although the
synchronization approach is conservative, it does not
involve lookahead computations. Event preemptions
(which are needed for the implementation of ‘race pol-
icy’ which means firing the transition with the ‘srhnall-
est RFT among the competing enabled transitions)

which complicates a standard PDES protocol, is au-
tomatically taken care of. Since the local memory of
a PE is very limited in a SIMD machine, the num-
ber of nodes (i.e. places or transitions) assigned per
LP should not be large. Instead of using linked-lists,
our SIMD implementation scans through the arrays
(with a small upper bound on the size) of places and
transitions.

4 EMPIRICAL STUDY

We have implemented Algorithm 2 on a Mas-
Par MP-2 with 1024 processors. MasPar’s MP series
SIMD architecture comprises a two-dimensional ma-
trix of PE array (size ranges from 1K to 16K) where
two separate communication mechanisms called r-net
and router are provided. The x-net communication is
supported by a two-dimensional toroidal mesh inter-
connect which allows efficient near neighbor commu-
nications along the rows, columns and the diagonals.
The global router communication mechanism (which
1s for general any-to-any inter-PE communications) is
supported by a butterfly-like multistage crossbar in-
terconnect. Each PE is a load/store arithmetic pro-
cessor with register space and 64K bytes of local data
memory. The instructions are broadcast to the PE
array from the array conirol unit (ACU). There is
efficient support for global reductions and the scan
operations.

As noted earlier, our program implementing Algo-
rithm 2 has a common global clock for all PEs. Since
all LP data arrays are bounded from above by rel-
atively small constants (due to the limited amount
of PE memory), instead of linked-lists, operations
are performed on fixed-sized arrays thus avoiding the
overhead of dynamic linked-list management on a
SIMD machine. The maximum number of commu-
nication partners for each LP is assumed to be rela-
tively small. In the cases where the Petri net to be
simulated involves only regular near neighbor com-
munications, the program uses the x-net mechanism.
Any sophisticated resolution policy for the conflicting
transitions has not yet been implemented—the firing
weights are assigned by the user in an application de-
pendent way using complete knowledge of the nature
of the conflicts involved.

The implementation of a SINMD algorithm for
PDES of DTPN needs some special care. For exam-
ple, we need to correctly handle the memory conflicts
during which two or more PEs simultaneously at-
tempt to write to the same memory location belong-
ing to another PE. The result of such a simultaneous
operation may be incorrect or undefined—for exam-
ple the machine might automatically serialize those

1376

write attempts and thus the PE which writes last
prevails. Such situations can frequently occur in the
SIMD simulation of a Petri net as different transitions
belonging to different PEs attempt to add tokens to
their common output place contained in another PE.
To solve this problem, we do the following in order to
sequentialize all simultaneous write attempts. Each
PE which attempts to write to another PE flags itself
recording (i) that it intends to write, (ii) the destina-
tion PE’s id, (iii) the number of tokens to be added,
and (iv) the id of the place (in the destination PE)
where the tokens will be added. Once all such com-
peting PEs have recorded these informations in their
respective local variables, the destination PE starts
its action—it reads and checks those variables from
all of the PEs which might send tokens to it. If it
finds any such PE that intends to send tokens and
the destination PE id matches with its own processor
id, the token addition operation is performed.

4.1 Petri Net Model

We have run experiments using a discrete timed Petri
net which contains a mixture of deterministic and ge-
ometric distributions. There are also inhibitor arcs
and immediate transitions. This DTPN models com-
putation, communication and buffering synchroniza-
tions with the neighbors in a regular two-dimensional
torus network of processing elements. The net is built
using a replicated module (shown in Figure 3) that
models the logic for each processing element. The PN
model fits the MP-2 architecture nicely thus making
x-net communication attractive. Each LP (the mod-
ule) has 12 places, 9 transitions and 4 communication
partners (NEWS neighbors). The maximum size of
any conflict set is 2. The communication among PEs
is needed only when a transition adds tokens to a
place contained in a different PE.

Refer to Figure 3. BF (buffer-free) type places
D1, P2, P4 and pr are there to indicate that the data
supplied to the corresponding neighbor has been con-
sumed and the corresponding output buffer is now
free. The transition t4 cannot fire until all such
buffers are free. The place pg has an inhibitor arc to ¢4
so as to ensure that it cannot fire until the input data
from all the four neighbors have been fetched. DR
(data-ready) type places pg, p3, ps and pg are for in-
dicating that data from the corresponding neighbors
are available. The firings of transitions ¢g,¢;,%, and t3
model the fetching actions of those data. Transition
t4 fires after all the input data from the neighbors are
fetched and the output buffers are freed. The stochas-
tic firing time transitions ¢s5,%¢ and t7 jointly model
the variable (data-dependent) time needed to do the

Roy

BR{ } s
North
BF
BF
Q
5=
—
DR DR
I ’:'_,_, Py

DR =DataReady sssbess AL A
BF = Buffer Free BF{ ; s DR* ./

Figure 3: DTPN Model Used in the Empirical Study

computations on the input data. As soon the results
of the computations are available (as indicated by the
place p11), the neighbors are notified. The notifica-
tion action is modeled by the immediate transition
3.

4.2 Execution Performance

For a sample run, with approximately one million fir-
ing events, of the simulation of this Petri net with
1024 LPs, the timings (ignoring the I/O) observed
are shown in Table 1. An optimized sequential code
for the same simulation was run on a Sparc IPC
workstation for comparison. The parallel timings in
Table 1 were obtained using a 1024 processor MP-2
with one LP per PE.

Table 1: Comparison of Execution Timings

machine time relative
using x-net on MP-2 13.9 sec 1.0
using router on MP-2 16.9 sec 1.2

sequential (workstation) | 380 sec 27.3

Execution profile data of the runs on MP-2 show
that when we use the global router mechanism, about
20% of the execution time is spent in communications
whereas in the runs using x-net, only 2-3% of the
execution time is spent in communications. Com-
putation of the global minimum firing time (which
is done at every iteration) took less than 2% of the
total execution time. As we expected, the routine
where maximum amount (20-30%) of the execution

SIMD Simulation 1377

time was spent is the one that checks if a transition
is enabled or not.

The efficiency of the parallel program improves as
we increase the number of LPs per each PE. This is
apparent from Figure 4 which shows that the average
execution time per firing decreases with the higher
number of LPs per PE. Since within each PE there
are multiple LPs, as soon as the current LP being
attended to runs out of firing events to be processed,
the PE can switch to another LP which has firable
transitions. Thus idle time is reduced.

13.0 |-»
125 | .

120

105 -

Average time (\Ls) per firing
n
T

10.0 -

L ! ! I | | T
1 2 4 8 16 32 64

Number of LPs per PE

Figure 4: Effect of LP Aggregation

5 CONCLUSION

This paper presents techniques of efficient parallel
simulation of a general class of discrete time Petri
nets (DTPNs) on SIMD machines. Such Petri nets
are useful in modeling many synchronous systems
that operates on a basic clock. In this paper DTPNs
have been discussed in detail and we elucidated on
the problem involving conflict sets which poses chal-
lenge to the parallelization particularly in presence of
inhibitor arcs and immediate transitions. We have
proposed a synchronous SIMD algorithm that we be-
lieve naturally suits the simulation of DTPNs with an
underlying basic time-step. In the context of SIMD
simulation of generalized discrete timed Petri nets,
we consider this simple algorithm to be more suitable
than the standard PDES synchronization protocols.
The partitioning technique we have used is essentially
static conflict based. Experiments with an implemen-
tation of the algorithm on a 1024 processor SIMD
machine MP-2 demonstrates the viability of the syn-
chronous approach of the algorithm which does not
use any linked-list of future events. We are presently
working towards a more efficient SIMD algorithm as

well as studying the partitioning and load balancing
problems that arise in this context.

ACKNOWLEDGEMENT

We are indebted to Gianfranco Ciardo and David
Nicol for many useful discussions. This work is par-
tially supported by the NASA under Grant No. NAG
1-1132.

REFERENCES

Chiola, G., and A. Ferscha. 1993. Distributed Sim-
ulation of Petri Nets. IEEE Parallel & Distributed
Technology:Systems and Applications 1(3):33-50.

Ciardo, G., R. German, and C. Lindemann. 1993.
A characterization of the stochastic process un-
derlying a stochastic Petri net. In Proceedings of
the Fifth International Workshop on Petri Nets
and Performance Models (PNPM93). Toulouse,
France.

Holliday, M. A., and M. K. Vernon. 1987. A General-
1zed Timed Petri Net Model for Performance Anal-
ysis. IEEE Transactions on Software Engineering
SE-13(12):1297-1310.

Molloy, M. K. 1985. Discrete Time Stochastic Petri
Nets. IEEE Transactions on Software Engineering
SE-11(4):417-423.

Murata, T. 1989. Petri nets: Properties, Analy-
sis and Applications. Proceedings of the IEEE
77(4):541-580.

Nicol, D. M., and S. C. Roy. 1991. Parallel Simu-
lation of Timed Petri Nets. In Proceedings of the
1991 Winter Simulation Conference, 574-583.

Nicol, D. M., and W. Mao. 1993. Automatic Paral-
lelization of Timed Petri-Net Simulations. Techni-
cal Report 93-91, ICASE, NASA Langley Research
Center, Hampton, Virginia.

Thomas, G. S., and J. Zahorjan. 1991. Parallel Sim-
ulation of Performance Petri Nets: Extending the
Domain of Parallel Simulation. In Proceedings of
the 1991 Winter Simulation Conference, 564-573.

AUTHOR BIOGRAPHY

SUBHAS C. ROY is a PhD candidate in the
department of Computer Science at the College of
William and Mary, Williamsburg, Virginia. He re-
ceived a B.E. degree in Computer Science and Engi-
neering from Jadavpur University, Calcutta, India in
1987 and M.S. degree in Computer Science from Col-
lege of William and Mary in 1991 respectively. His
research areas of interest include distributed simula-
tion, parallel computation and modeling.

