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ABSTRACT

A simulation model is composed of inputs and logic;
the inputs represent the uncertainty or randomness
in the system, while the logic determines how the
system reacts to the uncertain elements. Simple in-
put models. consisting of independent and identically
distributed sequences of random variates from stan-
dard probability distributions, are included in every
commercial simulation language. Software to fit these
distributions to data is also available. In this tutorial
we describe input models that are useful when simple
models are not.

1 INTRODUCTION

Input models are used to represent the uncertainty
or randomness in a simulation. Input modeling—
choosing the representation—is often characterized as
“picking a probability distribution.” And it may be
that simple if the following approximations are rca-
sonable:

e The input process can be represented as a se-
quence of independent random variables having a
common (identical) distribution; in other words,
a sequence of i.i.d. random variables.

e The common distribution is one of the standard
families that are included in nearly all commer-
cial simulation languages: beta, empirical, Er-
lang, exponential, gamma, lognormal, normal,
Poisson, triangular, uniform or Weibull.

e Data are available from which to select and fit
the distribution using methods such as maximum
likelihood or moment matching.
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e A standard distribution provides a good fit to
the data, as verified by a visual inspection or a
goodness-of-fit test.

There are a number of software packages to sup-
port simple input modeling, including ExpertFit, the
Arena Input Processor and BestFit. Unfortunately,
simple models often fail for one of the following rea-
sons:

e The limited shapes represented by the standard
families of distributions are not flexible enough
to represent some characteristics of the observed
data or some known aspects of the process.

o The input process is not inherently independent,
cither in time scquence or with respect to other
input processes in the simulation.

e The input process changes over time.

e No data are available from which to select a fam-
ily or assess the fit.

This tutorial describes models and techniques that
are uscful when simple models fail. We emphasize re-
cent advances for which there cxists some software
support, cven if the software is research software
rather than commercial softwarc. The related issue
of random-variate generation is also discussed.

The paper is organized according to univariate in-
put models (Section 3), arrival-counting processes
(Section 4) and multivariate input models (Section 5).
Section 2 defines notation that is used throughout the
paper, and Section 6 gives directions for obtaining the
software.
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2 NOTATION

The generic univariate input random variable is de-
noted by .\, with cdf Fy, and density function fy or
mass function py. The mean of a random variable
is denoted by u, variance by ¢, and correlations be-
tween random variables by p. Subscripts are added
as needed.

A sequence of i.i.d. inputs is X;,i=1,2,..., while
a time-series input process is {\y;t = 0,1,2,...}.
The term “time series” means that the random vari-
ables may be dependent in sequence. If we have
a sample X7, Xs,...,.\,, then the order statistics
(sorted values) are denoted Y () < X(u) < -+ < X(,,.

When the inputs are random vectors, then boldface
type is used; e.g.,

is a k x 1 random vector with joint cdf Fy.

Greek letters, such as /3,0 and «, denote parame-
ters of input models. We use ™ to indicate an_esti-
mate, or ~ if the estimate is an average; e.g., # and
X

3 UNIVARIATE INPUT MODELS

In this section we consider alternative input models
for univariate distributions. These models are useful
for representing i.i.d. sequences X,,i = 1,2,..., and
are most often needed when the process data has un-
usual characteristics (e.g., more than one mode), or
when we have no data and want to construct a distri-
bution that has certain properties (c.g., moments or
percentiles). The input models presented here range
from a flexible family (Section 3.1), to a method for
modifying any standard family (Section 3.2), to a
method for constructing a distribution with any de-
sired properties (Section 3.3).

3.1 Johnson Family

In the case of modeling data with an unknown dis-
tribution, an alternative to using a standard family
of distributions is to usc a more flexible system of
distributions, such as the Johnson translation system
(Johnson 1949). Onc mecthod for fitting target dis-
tributions from Johnson’s translation system is via
least-squares estimation, which is implemented in a
software program called FITTR1 developed by Swain,
Venkatraman and Wilson (1988). Sce Schmeiser and

Deutsch (1977) for another flexible family that is easy
to use in simulation.

The Johnson translation system is defined by the
cdf

F(r) = @ {y+dg[(x —&)/N]}, —o0 <z <00 (1)

where @ is the standard normal cdf, v and ¢ are shape
parameters, £ is the location parameter, A is the scale
parameter, and g is one of the following transforma-
tions:

log(.r) for the lognormal family
sinh™! () for the unbounded family
log[x/(1 — )] for the bounded family

&r for the normal family.

g(r) =

The appropriate transformation is chosen by estimat-
ing the skewness and kurtosis from a random sample
X1, X, ...,.Y, and finding the unique Johnson cdf
that matches the pair.

The basis for the least-squares fitting procedure
implemented in FITTRI is to minimize a quadratic
form of the differences between each parametrically
approximated uniformized order statistic, R;, and
its corresponding expected value, 7;, where R; =
F(X(;)) and n; = j/(n+1). The E[R}] = j/(n +1)
if F' is the true distribution of .. The transformed
variate R; can be written as R; = n; + £;, where
the {;} are translated uniform order statistics with
mean zero. Then for € = (e1,€2,...,6,) and some
n x n weight matrix W, the least squares estimation
problem is

min €' We
7.6,6,A
subject to
>0
>0 unbounded family
A¢ > X)) — & bounded family
=1 lognormal, normal families

¢ < X(1) lognormal, bounded families
=0 normal family

Swain, Venkatraman and Wilson (1988) investigate
various choices for the weight matrix, including
the identity matrix (which leads to ordinary least
squares), a diagonal matrix with ith diagonal ele-
ment 1/Varle;] (which leads to diagonally weighted
least squares), and a matrix that is the inverse of the
matrix with ¢, jth element Cov(e;, e;] (which leads to
weighted least squares). They conclude that diago-
nally weighted least squares is a good overall choice.

The FITTRI1 software is available in Fortran or as
an MS-DOS executable. In addition to the various
least-squares fits, FITTER1 will estimate parameters
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via moment matching, percentile matching, or min-
imum L; or Lo norm. FITTRI1 does not produce
graphics, but the user can export data to gencrate
plots in standard graphics programs.
Random-variate generation can be accomplished by
transforming a standard-normal variate Z (generated
in any way) into .\" = £ + Ag7}[(Z — v) /4], where
e’ for the lognormal family
(¢ —¢7%)/2  for the unbounded family
1/(1+e~*) for the bounded family
a for the normal family.

9 a) =

3.2 Inverse Distribution with a Polynomial
Filter

To generate random variates from an unknown con-
tinuous distribution, the inverse cdf, fitted to a sam-
ple of data, is often used; i.e.,, X\ = F_QI(U), where
Ul ~U(0,1) and F'y is the chosen distribution. The
philosophy behind “inverse distribution with a poly-
nomial filter” (IDPF) is to improve the fit by modi-
fving the transformation to X' = Fy'(¢(U)), where g
is a polynomial in U.

Let X;.i = 1,2....,n be an ii.d. sample. The
typical first step in input modeling is to decide
what general family—such as gamma, exponential or
Johnson—provides the shape that best matches the
empirical distribution. The IDPF method makes no
assumption about the initial input model F'x, called
the reference distribution, except that it has a con-
tinuous density function. Once a reference distribu-
tion is selected, the second step is to establish the set
of parameters that best fit the general family to the
data. The third step is to determine the quality of
the fit. If visual inspection or a goodness-of-fit test
show either a local or general problem with the fit,
then IDPF can be applied.

The IDPF procedure, as a fourth step, creates
a modified F_Ql that improves the fit compared to
the reference distribution. IDPF was developed by
Avramidis and Wilson (1994) and is an update to
a method originally proposed by Hora (1983). The
method is to replace U with an rth order polynomial

q(U),
qU) =byU + bU? + - +b,U".

The {b;;1 =1,2,...,7} are chosen in such a way that
F;l(q(U)) remains a legitimate inverse cdf, which
is equivalent to the statement that ¢(U) is strictly
increasing in U with the boundary conditions ¢(0) =
0 and ¢(1) = 1.

Estimation of the b; for the IDPF procedure is
formulated as a least squares estimation problem.

The ordinary-least-squares distance is the distance
between the empirical inverse cdf—represented by the
order statistics of the sample—--and the modified in-
verse reference distribution. Specifically,

n . 2
o . ) 1 —0.5
fum gy S (s ()]

Avramidis and Wilson (1994) also develop a
weighted-least-squares formulation that compensates
for the differences in variability of the order statistics.

The IDPF software is available in Fortran or MS-
DOS executable. The software assumes the refer-
ence distribution is from the Johnson family, and
uses the techniques described in Section 3.1 to ob-
tain the initial fit. The key output consists of the
four parameters of the reference distribution from
the Johnson family, followed by the set of b;s that
define the rth-order polynomial. These two sets of
parameters provide all that is necessary to generate
variates. Variate generation is accomplished in the
obvious way by first generating U ~ U(0,1), then
returning .\\' = E\Tl(q(U)).

3.3 Univariate Bézier Distributions

Univariate Bézier distributions provide a flexible al-
ternative to standard distributions (Wagner and Wil-
son 1993, 1994a). The univariate Bézier distribution
is a special case of a spline curve and is constructed by
fitting a curve to a specified number of points called
control points. Let p; = (a3, z;)" be the ith control
point for ¢« = 0,1,2,...,n. The control points are
not data points; instead, they act as “anchors” for
the Bézier cdf and can be moved so as to alter the
shape of the distribution. Typically, the Bézier cdf
is a continuous distribution. The Bézier cdf interpo-
lates the first and last control points exactly (and is
thus a bounded distribution) but might only pass in
close proximity to control points 1,2,...,n — 1.

A Bézier distribution with n + 1 control points is
defined as

_ x(t) B n |
Pl = ( Fy(a(t)) ) - ;Bn,z(t)pi

for t € [0,1], where B, ;(t) is the Bernstein polyno-
mial
(Mt (=0, forte[0,1]
B, (t) = _
0, otherwise.
Although the Bernstein polynomial may initially

seemn complex, it is helpful to think of it in terms
of the probability mass function (pmf) of a binomial
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random variable. For a binomial random variable 1",
the probability of 7 successes in n trials is

Pr{}Y =i} = (2)])1(1 -

for i = 0,1,...,n, where p is the probability of suc-
cess. The parameter p is fixed, and probability state-
ments are made about the random variable Y for dif-
ferent values of ¢. The Bernstein polynomial differs
from the pmf of a binomial random variable in that it
fixes 1 and varies ¢ (the continuous analog of p) within
the interval [0, 1]. Thus, for ¢ equal to p, the valuc of
the Bernstein polynomial is equal to the valuc of the
pmf of a binomial random variable evaluated at «.

At any value of t in the interval [0, 1], the value of
the Bézier distribution is simply a weighted average
of the control points. To observe this, notice that the
Bézier distribution can be written as

I(t) - n [ n—1

P(t) = < F ((t)) > = lz_; (’L)t (1-1) Pi
for ¢ € [0,1]. For any fixed value of ¢t the sum of the
weights is 1.

PRIME is a software tool used to construct univari-
ate Bézier distributions with or without data. It is an
interactive, graphical software program that requires
an IBM-compatible PC with a math coprocessor run-
ning Microsoft Windows 3.1 or higher.

PRIME’s main workspace is a window displaying
the .Y and F'x coordinate axes along with the Bézier
cdf. The initial starting point for PRIME is a cdf con-
sisting of six control points arranged in a straight line.
The shape of the distribution is changed by reposi-
tioning the control points within the window. Ad-
justments to the position of a control point are made
by clicking and dragging the point to a new location
on the screen. Control points can be both added and
deleted. As control points are repositioned, added,
or deleted, the shape of the Bézier distribution is up-
dated. Furthermore, PRIME has the ability to detect
infeasible cdfs (i.c., ones that are not nondecreasing)
and highlights an invalid distribution in red.

PRIME also allows the user to view and manipulate
the probability density function. Just like the cdf, the
pdf is updated as the control points arc moved. Al-
though it is possible to manipulate the pdf, it is not
as intuitive as adjusting the cdf. Because the total
area under the pdf must reinain equal to 1, adjusting
one control point simultaneously adjusts both adja-
cent control points (unless one of the adjacent control
points is the last control point) in order to satisfy this
constraint.

Another useful feature of PRIME is that it allows
a comparison between the first four moments of the

Bézier distribution and an empirical data set. In the
absence of empirical data, this comparison is useful
for constructing an input model having any first four
moments. PRIME also allows the user to insure that
the Bézier distribution has certain fixed percentiles,
and to construct a distribution that is a concatenation
of two or more independcent Bézier curves.

In addition to allowing the user to construct a cdf
interactively, PRIME has the ability to apply stan-
dard statistical cstimation procedures to Bézier dis-
tributions. Specifically, maximum likelihood, mo-
ment matching, least squares, L; norm and Lo norm
estimation can be accessed when empirical data has
been imported.

Bézier random-variates are generated via the in-
verse transform method. Given a random number
U ~ U(0,1), a search procedure is implemented to
find the associated value of the parameter ¢t such that
Fx (x(t)) = U. Once t is determined, .X = z(¢).

4 ARRIVAL-COUNTING PROCESSES

Arrival-counting processes are among the most im-
portant of all input models because simulations of
industrial and service systems are typically driven
by the arrivals of customers, orders, materials, in-
formation, etc. Renewal arrival-counting processes,
in which the times between arrivals are i.i.d. random
variables, are a standard feature of commercial simu-
lation languages. A marginal distribution that is of-
ten chosen is the exponential distribution with mean
1/A, which implies that the renewal arrival process is
a Poisson arrival process with constant arrival rate A
arrivals per unit time.

In many practical situations there is need for an
arrival process whose rate is a function of time, A(t).
The nonhomogeneous Poisson process (NHPP) is a
well-known generalization of the Poisson process that
allows a time-dependent arrival rate. However, fitting
the function A(t) to data is a very difficult problem.
Lee, Wilson, and Crawford (1991) consider fitting an
NHPP with an exponential rate function containing
a polynomial component (for long term trend) and a
trigonometric component (for cyclic behavior).

Let {N(t) : t > 0} be a nonnegative integer valued
stochastic process representing the cumulative num-
ber of arrivals up to time t. Consider a sequence of
n arrivals for this process at times t; < t, < --- <ty
over a fixed time interval (0,S5]. A reasonable start-
ing point for modeling such a process would be an
NHPP with a rate function, A(¢), that could capture
any cyclic or long term trends in the data. Lee, Wil-
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son, and Crawford (1991) consider the rate function

At) = exp {zm:aiti + Bsin(wt + ¢)} . (2)

i=0

The vector, ©, of unknown parameters consists of
m + 1 coefficients for the polynomial component, and
the amplitude (8), frequency (w) and phase (¢) for
the trigonometric component. Using the properties of
an NHPP gives the following log-likelihood function
of O©:

m n S
L©) =) aTi+p Y sin(wt; +¢) - / Mz)dz
i=0 j=1 0

where T; = 3°7_) ¢¢.

Notice that the degree m of the polynomial compo-
nent is also unknown. Since m must be a nonnegative
integer, it is difficult to determine via maximum like-
lihood. Therefore, Lee, Wilson and Crawford (1991)
recommend that estimation of © be conditioned on a
fixed value of m, and the final value of m be deter-
mined by a likelihood ratio test. Differentiating the
log-likelihood function with respect to each unknown
parameter individually results in a system of m + 4
nonlinear equations which can be solved numerically.
See Johnson, Lee and Wilson (1994a) for details on
parameter estimation.

Johnson, Lee, and Wilson (1994b) describe two
software programs to estimate parameters for, and
simulate, an NHPP with rate function (2). NPPMLE
computes maximum-likelihood estimates for the rate
function parameters given a set of arrival epochs. The
program requires additional input from the user re-
garding the length of the observation interval, num-
ber of arrivals, maximum degree of the polynomial,
significance level for the likelihood ratio test to se-
lect m, and other items concerning the trigonometric
component. The output provides estimated values for
all parameters.

NPPSIM uses rate function parameters (such as es-
timates from NPPMLE) to simulate arrivals by the
method of thinning with a piecewise linear majoriz-
ing function. Inputs required by NPPSIM are the
rate function parameters and the length of the obser-
vation interval. The output of the program is a series
of arrival epochs written to a file, and the piecewise
linear majorizing function which is written to the ter-
minal. This rate function is displayed with an upper
limit, slope, and intercept for each interval. Both of
the software programs are written in FORTRAN 77.

5 MULTIVARIATE INPUT MODELS

In this section we consider input models for de-
pendent random variables, either random vectors or
time-series processes. Standard models for these two
cases are the multivariate normal distribution (de-
noted MVN) for random vectors, and the Gaussian
autoregressive order-p process (denoted AR(p)) for
time-series input. The univariate marginal distribu-
tion in both cases is normal, limiting the usefulness
of these models in simulation applications. Neverthe-
less, since many alternative input models are based on
the MVN or AR(p) models, we review each of them
briefly.

The standard multivariate normal distribution de-
fines a k x 1 random vector Z with mean vector

©=(0,0,...,0) and correlation matrix
1 p12 - pix
5 - P?l 1 P?k
b e 1

such that the ith element Z; is distributed N(0,1)
and p;; = Corr(Z;,Z;]. The parameters u and X
uniquely specify a multivariate normal distribution.
For multivariate vectors with other marginal distri-
butions, however, this is not enough information to
determine a unique joint distribution.

The standard AR(p) process is a time series
{Z;;t=0,1,2,...} defined by the recursion

P
Zy = Z onZi_n + € 3)
h=1

where {g,} is a sequence of i.i.d. N(0, 02) random vari-
ables. Let pz(h) = Corr[Z;, Z44], the autocorrela-
tion at lag h. If this process is appropriately ini-
tialized, the parameters ay, as, ..., ap satisfy certain
conditions, and 02 = 1-Y"%_, anpz(h), then each Z;
is marginally N(0, 1) with autocorrelations that are a
known function of ai,as,...,ap. Similar to the case
of random vectors, alternative time-series input mod-
els with other marginal distributions are not uniquely
determined by the autocorrelation structure.

5.1 Time-Series Input Processes

The goal is to construct a stationary time series
{X;;t = 0,1,2,...} with given marginal distribu-
tion Fx and given first p autocorrelations px (h),h =
1,2,...,p. There are two basic approaches:

1. Construct such a process using properties spe-
cific to the particular marginal distribution of
interest F'y.
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2. Construct a process {l/;;t = 0,1,2,...} with
U(0, 1) marginals and whose autocorrelations are
easily controlled. Then form the input process
via the transformation Xy = F'(U,).

Because of its generality, we only discuss the second
approach here. In addition to the two approaches
we describe, see Song, Hsiao and Chen (1995) and
Willemain and Desautels (1993).

5.1.1 TES Processes

TES (Transform-Expand-Sample) is a stochastic pro-
cess with corresponding software, called TEStool, for
developing models of autocorrelated data. We briefly
describe the basic theory of TES and its implementa-
tion in TEStool. Further development of this model
is described in Jagerman and Melamed (1992ab), and
TEStool is described in Melamed, Hill and Goldsman
(1992).

There are two principle aspects to a TES input
model: A TES process, which is a method for gener-
ating autocorrelated U (0, 1) variates; and a stitching
transformation, which is a technique for smoothing
the sample path of a TES process.

TES processes cover the full range of lag-1 auto-
correlations. TES™ covers the positive range [0, 1]
and TES~covers the negative range [—1,0]. TES™ is
defined as

while TES™ is defined as

U- - Ut t is even
ET 1 1-Uf tisodd

where Uy ~ U(0, 1), and 17 is a random variable that
is independent of {Uy, Uy, ...,U;}. The notation (z)
denotes modulo 1 arithmetic.

The key result is that these recursions produce ran-
dom variables with U(0, 1) marginals, and the depen-
dence structure depends on the random variable V;.
Therefore, the autocorrelations can be manipulated
by modifying the distribution of 1} without changing
the marginal distribution of U;. TEStool allows the
distribution of V; to be constructed graphically.

The random variable V; is called the innovation and
can have any distribution, but TEStool defines it as

K
V= Zlk ALk + (R — Li)Wy)

k=1

where 117} is a sequence of i.i.d. U(0, 1) variates, with
the conditions that —0.5 < L; < Ry < 0.5 and Ry <

Liyi for k=1,2,..., K —1. The random variable I}
is an impulse function

1
=]

with K Po=1and T/, I = 1.

One difficulty with a TES process is that a discon-
tinuity is introduced in the sample path when U;_; is
near 0 or 1, because U;_; could be very near 1 while
U, is near 0, or vice versa. A stitching transforma-
tion, S¢(U;), mitigates this effect. The function S,
which is parameterized by £ with 0 < £ <1, is

— Ui/fa OSU <§
Sé(U‘)‘{ A-U)/(1-€ €<U <1

The process {S¢(Uy);t = 0,1,2,...} still has U(0,1)
marginals, but no longer has discontinuous jumps.
Unfortunately, stitching has a major impact on the
autocorrelation structure of S¢ (Uy), and changing the
stitching parameter, €, does not change the autocor-
relations in an intuitive way.

TEStool allows the user to interactively change the
distribution of the innovation process V;, then it dis-
plays the implied autocorrelation structure. The user
works with the innovation distribution until the auto-
correlations of the input process match the autocor-
relations of the data. A bit of experience is required
to adjust the innovation distribution in a systematic
way. Although not a theoretical necessity, TEStool
emphasizes using the empirical cdf as the marginal
distribution Fy of the time-series process. Random
variates are then generated via inversion.

with probability Py
with probability 1 — P

5.1.2 ARTA Processes

AutoRegressive To Anything (ARTA) processes de-
fine a U(0, 1) time series via the transformation U; =
®(Z;), where {Z;;t = 0,1,2,...} is a stationary, stan-
dard AR(p) process and & is the standard normal cdf.
Cario and Nelson (1995) have shown that the lag-h

autocorrelation of the time-series input process de-
fined by

Xt = FN(Uy) = Ft [9(2))] (4)

is a continuous, nondecreasing function of the lag-h
autocorrelation of the Z; process. The problem of
fixing the first p autocorrelations of the X, process
decomposes into p independent problems of determin-
ing the value pz(h) = Corr[Z;, Z;44) that maps into
the desired autocorrelation px (h) = Corr[X;, X¢4h);
for h=1,2,...,p. Since px(h) is a continuous, non-
decreasing function of pz(h), these problems are eas-
ily solved numerically. Variate generation is accom-
plished by generating a stationary, standard AR(p)
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process Z; by any method, then applying equa-
tion (4). Software is available in Fortran to fit
ARTA processes and generate variates for a variety
of marginal distributions.

5.2 Random Vectors

A large number of methods have been proposed for
representing and generating random vectors with spe-
cific distributions. See Devroye (1986) and Johnson
(1987) for general references. In addition, multivari-
ate extensions to the Johnson family have been de-
veloped (Johnson 1987, Chapter 5), and a bivariate
Bézier distribution has been defined and implemented
in PRIME (Wagner and Wilson 1994b).

A general method for obtaining random vectors
with arbitrary marginal distributions and correlation
matrix is to transform a standard MVN distribution.
Specifically, let

Fxl@(2)))

Fx,[2(25)]
X =

Fy,[2(Z))]

where Z = (Z,,22,...,2Zk)" is a standard MVN vec-
tor with correlation matrix ¥, and Fx,, Fx,, ..., Fx,
are the desired marginal distributions. The problem
then becomes finding a X that implies the desired cor-
relation matrix for X. However, the results of Cario
and Nelson (1995) suggest that this is not a difficult
numerical problem. Huifen Chen (personal communi-
cation) has implemented this transformation for the
special case when all the Fx, are from the gamma
family.

6 OBTAINING THE SOFTWARE

FITTER1 may be obtained from James R. Wilson
at jwilson@eos.ncsu.edu.

IDPF may be obtained from James R. Wilson at
jwilson@eos.ncsu.edu.

PRIME may be obtained from Mary Ann Flanigan
Wagner at maflanig@masonl.gmu.edu. PRIME
will soon be available commercially in SLAM-
SYSTEM and Extend.

NPPMLE and NPPSIM may be obtained from
James R. Wilson at jwilsonQeos.ncsu.edu.

TEStool was widely distributed in the past, but is
no longer available. However, for those who al-

ready have the software a tutorial is available via
the World Wide Web at

http://www.cis.ohio-state.edu/ ware/TES/
tutorial.html.

ARTA may be obtained from Barry L. Nelson at
nelsonb@primal.iems.nwu.edu.

Gamma Vector software may be obtained from
Huifen Chen at huifen@ccaxp.dyit.edu.tw.
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