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ABSTRACT

This paper reviews statistical methods for analyz-
ing output data from computer simulations of single
systems. In particular, it focuses on the problems
of choosing initial conditions and estimating steady-
state system parameters. The estimation techniques
include the replication/deletion approach, the re-
generative method, the batch means method, the
standardized time series method, the autoregressive
method, and the spectral estimation method.

1 INTRODUCTION

The primary purpose of most simulation studies is
the approximation of certain system parameters with
the objective of identifying parameter values that op-
timize some system performance measures. If some of
the input processes driving a simulation are random,
then the output data are also random and runs of the
simulation program only give estimates of system per-
formance characteristics. Unfortunately, a simulation
run does not usually produce independent, 1dentically
distributed (i.i.d.) observations; therefore “classical”
statistical techniques are not directly applicable to
the analysis of simulation output.

A simulation study consists of several steps such as
data collection, coding and verification, model valida-
tion, experimental design, output data analysis, and
implementation. This paper focuses on the use of
output data for estimating system performance mea-
sures.

There are two types of simulations with regard to
output analysis:

1. Terminating simulations. The termination of a
transient simulation is caused by the occurrence of an
event E. An example is the simulation of a computer
network until n jobs are completed.
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2. Steady-state simulations. The purpose of a
steady-state simulation is the study of the long-run
behavior of the system of interest. A performance
measure of a system is called a steady-state param-
eter if it is a characteristic of the equilibrium dis-
tribution of an output stochastic process (Law and
Kelton 1991). An example is the simulation of a con-
tinuously operating communication system where the
objective is the computation of the mean delay of a
data packet.

Section 2 discusses methods for analyzing output
from terminating simulations. Section 3 reviews ap-
proaches for removing bias due to initial conditions
in steady-state simulations. Section 4 presents tech-
niques for point and interval estimation of steady-
state parameters. Finally, section 5 contains conclu-
sions and recommendations for additional studies by
the interested reader.

2 TERMINATING SIMULATIONS

We start with the output analysis methodology for
terminating simulations. Suppose that we simulate a
system until n output data Xy, Xs,...,.X, are col-
lected with the objective of estimating p = E(.\7,),
where X, = 157"  \; is the sample mean of the
data. For example, X; may be the transit time of
unit 7 through a network of queues or the total time
station 7 is busy during the ith hour. Clearly, X,
1s an unbiased estimator for p. Unfortunately, the
X;’s are generally dependent random variables mak-
ing the estimation of the variance Var(X',,) a non-
trivial problem. In many queueing systems the X;'s
are positively correlated making the familiar estima-
tor S%(n)/n = Y7 (Ni — Xn)?/[n(n — 1)] a highly
biased estimator of Var(X',,).

To overcome this problem, one can run k in-
dependent replications of the system simulation.
Assume that run ¢ produces the output data
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i1, Xio, ..., Xin. Then the sample means

1 n
}z = ; X; ‘\'i]'
J=

are 1.1.d. random variables,

1 &
Yi= E;h

is also an unbiased estimator of y, and
&
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VR = Z,--l( )

is an unbiased estimator of Var(.\',,). If in addition n
and k are sufficiently large, an approximate 100(1—«)
percent confidence interval for p is

pE€ Yittioii-a2\ Vr/k, (1)

where t4 , represents the y-quantile of the ¢ distribu-
tion with d degrees of freedom.

Law and Kelton (1991) review sequential proce-
dures for determining the number of replications re-
quired to estimate pu with a fixed error or precision.
Their procedure for obtaining an estimate with a rel-
ative error | X, —p|/|u| < v and a 100(1 — &) percent
confidence interval has performed well for initial sam-
ple size ng > 10 and v < 0.15. A well-known sequen-
tial procedure for constructing a 100(1 — ) percent
confidence interval for p with a small absolute error
|X» = p| < B is due to Chow and Robbins (1965)
(see also Nadas 1969). Law (1980) observed that the
proedure is very sensitive to the value of 3.

The method of replications can also be used for
estimating performance measures other than means.
For example, suppose that we want to estimate the
p-quantile, say y,, of the maximum queue size in a
single-server queueing system during a fixed time win-
dow. We run k independent replications, denote by
Y; the maximum observed queue length during repli-
cation ¢, and let (1), ¥(3), ..., Y(x) be the order statis-
tics corresponding to the Y;’s. Then a point estimate
for y, is

if kp is an integer
otherwise

jp = { Yikp)
Yilkp+1))
and a confidence interval for y, is described in Welch
(1983, pp. 287-288).

3 INITIALIZATION PROBLEMS
STEADY-STATE SIMULATIONS

FOR

One of the hardest problems in steady-state simula-
tions is the removal of the initialization bias. Suppose

that {X; : ¢ > 1} is a discrete-time output stochas-
tic process from a single run of a steady-state sim-
ulation with initial conditions I and assume that,
as n — oo, P(X, < z|I) — P(X < z), where X
is the corresponding steady-state random variable.
We consider the estimation of the steady-state mean
p# = lim, ., E(X,|I). The problem with the use of
the estimator X', for a finite n is that E(X,|I) # p.

The most commonly used method for eliminating
the bias of .\, identifies a index 1 <[ < n — 1 and
truncates the observations Xi,..., X;. Then the es-
timator

is generally less biased than X', because the initial
conditions primarily affect data at the beginning of a
run. Several procedures have been proposed for the
detection of a cutoff index ! (see Fishman 1972; Ga-
farian, Ancker, and Morisaku 1978; Kelton and Law
1983; Schruben 1982; Schruben, Singh, and Tierney
1983; Wilson and Pritsker 1978a,b). The procedure of
Kelton (1989) uses a pilot run to estimate the steady-
state distribution and starts a production run by sam-
pling from the estimated distribution. More sophis-
ticated truncation rules and initialization bias tests
have recently been proposed by Chance and Schruben
(1992), Goldsman, Schruben, and Swain (1993), and
Ockerman (1995).

We now briefly discuss the graphical procedure of
Welch (1981, 1983) which is popular due to its sim-
plicity and generality. Another graphical method
has been proposed by Fishman (1978a,b) in con-
Junction with the batch means method (see section
4.3). Welch’s method uses k independent replica-
tions with the ith replication producing observations
Xi1, Ni2, ..., Xin and computes the averages

k
- I
,\,_Ez_E_l:,\ij, j=1,...,n

Then for a given time window w, the procedure plots
the moving averages

< g Lome—w Vitm  wH1<j<n-
Xj(w) = 1 j-1 b 1< i<
25-1 Zm:—j+1 “j+m SJsw

against j. If the plot is reasonably smooth, then [ is
chosen to be the value of j beyond which the sequence
of moving averages converges. Otherwise, a different
time window is chosen and a new plot is drawn. The
choice of w is similar to the choice of an interval width
for a histogram.

w
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4 STEADY-STATE ANALYSIS

Several methods have been developed for the estima-
tion of steady-state system parameters. Below we
briefly review these methods and provide the inter-
ested reader with an extensive list of references. We
focus on the estimation of the steady-state mean p
of a discrete-time output process {.\; : ¢ > 1}. Anal-
ogous methods for analyzing continuous-time output
data are described in a variety of texts (Bratley, Fox,
and Schrage 1987; Fishman 1978b; Law and Kelton
1991). The process {.\;} is called strictly stationary if
the joint distribution of X ;,, Xiyj,, ..., Xiyj, 1sin-
dependent of 7 for all indices ji, j2, ..., jk. If E(X; ) =
i, Var(X;) < oo for all 7, and the Cov(.X;, Xiy;) =

is independent of 7, then {X;} is called covanance-
stationary .

4.1 The Replication/Deletion Approach

This approach runs k£ independent replications, each
of length n observations, and uses the method of
Welch (1981, 1983) to discard the first [ observations
from each run. One then uses the 1.i.d. sample means

1 n
Y= —y > Xy

j=l+1

to compute point and interval estimators for the
steady-state mean p (see section 2). The method
is characterized by its simplicity and generality and
works well if n and k are sufficiently large.

4.2 The Regenerative Method

This method assumes the identification of time in-
dices at which the process {X;} probabilistically
starts over and uses these regeneration epochs for ob-
taining i.i.d. random variables which can be used for
computing point and interval estimates for the mean
p. The method was proposed by Crane and Igle-
hart (1974a, 1974b, 1975) and Fishman (1973, 1974).
A complete treatment of the regenerative method is
given in Crane and Lemoine (1977). More precisely,
assume that there are (random) time indices 1 <17 <
T, < --- such that the portion {X7, + j,j > 0} has
the same distribution for each 7 and is independent
of the portion prior to time T;. The portion of the
process between two successive regeneration epochs is
called a cycle. Let ¥; = Z]Tz"qi Njand Z; =T =T
for i = 1,2,... and assume that E(Z;) < oco. Then
the mean p is given by

E(Y1)
E(Z1)

/j:

Now suppose that one simulates the process {\;}

over n cycles and collects the observations Y7, ..., Y,
and Z1,...,Z,. Then

V.

=g

is a strongly consistent, although typically biased for
finite n, estimator of . Furthermore, confidence in-
tervals for 4 can be constructed by using the random
variables Y; — uZ;,i1 = 1,...,n and the central limit
theorem (see Iglehart 1975). For small sample sizes
and bounded Y; and Z;, one can compute the confi-
dence interval in Alexopoulos (1993) which provides
superior coverage over confidence intervals based on
the central limit theorem at the expense of increased
width.

The regenerative method is difficult to apply in
practice because the majority of simulations have ei-
ther no regenerative points or very long cycle lengths.
A class of systems the regenerative method has suc-
cessfully been applied to is inventory systems.

4.3 The Batch Means Method

The method of batch means is frequently used to es-
timate the steady-state mean p or the Var(X,) and
owns its popularity to its simplicity and effective-
ness. Basic references on the method are Conway
(1963), Fishman (1978a,b), Law and Carson (1979),
and Schmeiser (1982).

The classical approach divides the output
X1,..., X, of a long simulation run into a number
of contiguous batches and uses the sample means of
these batches (or batch means) to produce point and
interval estimators.

To motivate the method, assume temporarily that
the process {.X;} is covariance-stationary and split
the data into k batches, each consisting of b observa-
tions (assume n = kb). The ith batch consists of the
observations

Ni—)p41 Nim1)b42s -5 Xib

fort =1,2,...,k and the ith batch mean is given by

b
1 .
=3 E N(im1)b45
=1

Since the process is covariance-stationary, it can be
shown that

1(b)

COVD (b it )]
Z, —-1- b( )Clb+j
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1s independent of 7. Therefore, if the autocovariance
function {Cj} is such that Ci(b) — 0 as b increases,
we can lidentify a batch size b for which the batch
means Y;(b), i = 1,..., k are approximately 1.1.d. nor-
mally distributed. Then we form the grand batch
mean

k
voov, =l
Yi=XNn= ) Yilh),

estimate the Var[Y;(b)] by
L&

o T S bY — V)2

Vg = P ;:I(L(b) Yi)?,

and compute the approximate 100(1—«) percent con-
fidence interval for p

p € Yitteo1,1-a/2\/ VB/k. (2)

The main problem with the application of the batch
means method in practice is the choice of the batch
size b. If b is small, the means Y;(b) can be highly cor-
related and the resulting confidence interval will fre-
quently have coverage below the user-specified nom-
inal coverage. Alternatively, a large batch size will
likely result in very few observations and potential
problems with the applicability of the central limit
theorem. An extensive study of batch size effects was
conducted by Schmeiser (1982).

We now focus on consistent estimation batch means
methods. These methods assume the existence of a
parameter o2, often referred to as the variance of the
process {.X;}, such that a central limit theorem holds

\/H(Yn—u)—d»aN(O,l) as n — 0o (3)
and aim at constructing an asymptotically consistent
estimator for o2. In the following, N(0,1) denotes

the standard normal distribution, “ 2 » denotes con-
vergence in distribution, and “ %% ” denotes conver-
gence with probability 1 (see Billingsley 1968). Also,
{W(t) : ¢ > 0} is the standard Brownian motion pro-
cess. The limiting result (3) 1s implied under the fol-
lowing assumption.

Assumption of Strong Approximation (ASA).
There exist finite constants g, ¢ > 0 and A € (0,1/2]
such that

(N, —p)=oW(n)+0nY**) wp. 1.

This assumption states that for almost all sample
paths, the process {n(X, — p)/c} is close to a stan-
dard Brownian motion.

The ASA is not restrictive as it holds under rela-
tively weak assumptions for stationary ¢-mixing pro-
cesses, Markov chains and regenerative processes. See
Damerdji (1994a) for details. Here we should point
out that the constant X is closer to 1/2 for processes
having little autocorrelation while it closer to zero for
processes with high autocorrelation.

The ASA also implies X, > p as n — co. Now
consider sequences of batch sizes {b, : n > 1} and
numbers of batches {k, : n > 1} such that kb, <
n and kpb,/n — 1 as n — oo. Assume that the
following assumptions are satisfied.

(A.1) b, — oo and k, — oo monotonically as n — oo
(A.2) b;1n'=2Inn — 0 as n — oo

(A.3) There exists a finite positive integer a such that
[ee]
> (ba/n)* < oo.
n=1
Damerdji (1994a) shows that, as n — oo,

kn
Vp(n) = g D (Yilba) = Vi) “Ho? (4)
n i=1

and o

_Anop
Ve(n)/kn

The last display implies that

IS Tnzl::l_a/g VB(")/kn

is an asymptotically valid 100(1 — «) percent confi-
dence interval for p. One can easily verify that the
batching sequence b, = |n®| satisfies assumptions
(A1)-(A3)if 6 € (1 — 2),1). Damerdji (1994b) dis-
plays additional limiting properties of the variance
estimator Vpg(n).

We now elaborate on the following two batching
rules.

The Fixed Number of Batches (FNB) Rule.
Fix the number of batches at k. For sample size n,
use batch size b, = [n/k].

The Square Root (SQRT) Rule.  Choose
batch sizes b, and number of batches k, so that

limp_0obn/v/n =1 and lim,_, o kn/\/n = 1.

The FNB rule produces asymptotically valid con-
fidence intervals for p but does not yield an asymp-
totically consistent estimator for 2. The confidence
interval has the form (2) with b in the expression for

Ty = < N0, 1). (5)

n
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Vb replaced by b,,. Since consistent estimation meth-
ods produce confidence intervals whose half-widths
have minimal expectation and variance (Glynn and
Iglehart 1990), the FNB rule will induce confidence
intervals that tend to be wider than confidence inter-
vals resulting from consistent estimation methods.
The SQRT rule results from a theorem in Chien
(1989).  Under some additional stationarity as-
sumptions on {X;}, the theorem implies that

Zy,, 4 N(0,1) and the convergence will be fastest
if b, and k, grow proportionally to \/n. Unfortu-
nately, in practice the SQRT rule tends to seriously
underestimate the Var(.\',) for fixed n.

Fishman and Yarberry (1993) studied the estima-
tion of the steady-state mean customer waiting time
in an M/M/1 queue. The coverage rates of the con-
fidence intervals produced by the FNB rule converge
much faster to the nominal coverage than the cover-
age rates of the confidence intervals resulting from the
SQRT rule. Furthermore, this disparity grows with
increasing traffic intensity.

With the contrasts between the FNB and SQRT
rules in mind, Fishman and Yarberry (1993) proposed
two strategies that dynamically shift between the two
rules. Both strategies compute confidence intervals at
times n; ~ ng2/,j=0,1,...,J.

The LBATCH Strategy. At time n;, if a hypoth-
esis test detects autocorrelation between the batch
means, the batching for the next review is determined
by the FNB rule. If the test fails to detect correla-
tion, all future reviews omit the test and employ the

SQRT rule.

The ABATCH Strategy. If at time n; the hy-
pothesis test detects correlation between the batch
means, the next review employs the FNB rule. If the
test fails to detect correlation, the next review em-
ploys the SQRT rule.

Both strategies LBATCH and ABATCH yield ran-
dom sequences of batch sizes. These sequences imply
convergence results analogous to (4) and (5) (Fish-
man and Yarberry 1993). Preliminary experiments
indicate that the more conservative ABATCH strat-
egy comes closer to the FNB rule’s superior coverage
rates with shorter confidence intervals. These fea-
tures make it an attractive compromise between the
“extreme” FNB and SQRT rules.

We should point out that a plot of the batch means
is a very useful tool for checking the effects of initial
conditions, non-normality of batch means, and exis-
tence of correlation between batch means.

An interesting variation of the traditional batch
means method is the method of overlapping batch
means proposed by Meketon and Schmeiser (1984).

For given batch size b, this method uses alln — b+ 1
overlapping batches to estimate p and Var(X,). The
first batch consists of observations Xy,..., X, the
second batch consists of Xj,..., Xp41, etc. Welch
(1987) noted that both traditional batch means and
overlapping batch means are special cases of spectral
estimation (see section 4.6) at frequency 0 and, more
importantly, suggested that overlapping batch means
yield optimal variance reduction when one forms sub-
batches within each batch and applies the method to
the sub-batches. For example, a batch of size 64 is
split into 4 sub-batches and the first (overlapping)
batch consists of observations X, ..., Xg4, the sec-
ond consists of observations X7, ..., Xgo, €tc.

Another article in this volume (Sherman 1995) re-
views a variety of batching rules and tests their effi-
ciency.

4.4 The Standardized Time Series Method

This method was proposed by Schruben (1983). The
standardized time series is defined by

l_ntJ (—)Tn — —X—l"t_l)
ov/n '

and, under some mild assumptions (e.g., strict sta-
tionarity and ¢-mixing),

Ta(t) = 0<t<1

(Va(Xn = 1),0T,) = (eW(1),0B),

where {B(t) : t > 0} is the standard Brownian bridge
process (see Billingsley 1968). Informally, {.;} is ¢-
mixing if .\; and X;4; are approximately independent
for large j.
If A= fol o B(t)dt is the area under B, then the
identity
E(A%) = 02/12

implies that o2 can be estimated by multiplying an
estimator of E(A?) by 12. Suppose that the data
Xi,..., X, are divided into k (contiguous) batches,
each of size b. Then for sufficiently large n the random
variables

b
A=) [+ 1)/2= )Ny, P=1k

i=1

become approximately i.i.d. normal and an estimator

of E(A?) is

k
E(A2) = (_bB_im ;A?.
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Hence an (approximate) 100(1—«) percent confidence
interval for p is

p € Yittgi-ap\/Vr/n,

Ve = 12E(A%).

The standardized time series method is easy to
implement and has asymptotic advantages over the
batch means method (see Goldsman and Schruben
1984). However, in practice it can require pro-
hibitively long runs as noted by Sargent, Kang, and
Goldsman (1992). The theoretical foundations of the
method are given in Glynn and Iglehart (1990). Ad-
ditional developments on the method, as well as other
standardized time series estimators, are contained in
Goldsman, Meketon, and Schruben (1990) and Golds-
man and Schruben (1984, 1990). Finally, Damerdji
(1994a) shows that under the assumption of strong
approximation in section 4.3, batching sequences sat-
isfying assumptions (A.1)-(A.3) yield asymptotically

consistent estimators for the process variance 2.

where

4.5 The Autoregressive Method

This method was developed by Fishman (1978b) and
assumes that the output process {.\;} is covariance-
stationary with mean p and Z;’i_w |Cj| < oo, and
can be represented by the autoregressive model of or-
der p

14
D b —p) =,
j=0

where by = 1 and {¢;} is a sequence of uncorrelated
random variables with mean 0 and variance 2. The
procedure in Fishman (1978b) determines an order
p and computes estimates b; and 62 of b; and o2
respectively. Then for large n an approximate 100(1—
«) percent confidence interval for p is

p € Npttai—asz\/Va/n,

o?

n (Zf:o bJ) 2
and the degrees of freedom are computed from
_ n Z?:o i’j
2 o(p - 24)b;
The major difficulty with the use of the autore-
gressive method is the validity of the autoregressive

model. A generalization of the method was proposed
by Schriber and Andrews (1984).

where
VA =

4.6 The Spectral Estimation Method

This method also assumes that the process {X;} is
covariance-stationary. Under this assumption, the
variance of X, is given by

n—1

Var(X,) = % Co+2) (1-j/n)C;

j=1

The name of the method is due to the fact that
if Z;’Z_w |Cj| < oo, then nVar(X,) — 2mg(0) as
n — 00, where g(A) is the spectrum of the process at
frequency A and is defined by

1 & s
=5 3 G, <,

j==—00

where 1 = \/—1. Therefore, for large n the estimation
of Var(X,) can be viewed as that of estimating g(0).
Estimators of this variance have the form

) 1/ - Pl
Vs = = 25w, G |,
s =~ Co+ ;wJCJ

where p and the weights are chosen for improving the
properties of the variance estimator Vg. The selection
of these parameters is discussed in Fishman (1978b)
and Law and Kelton (1984). Further discussions of
spectral methods are given in Heidelberger and Welch
(1981a,b, 1983).

4.7 Quantile Estimation

A variety of methods have been proposed for estimat-
ing quantiles of steady-state data (see Iglehart 1976;
Moore 1980; Seila 1982a,b; Heidelberger and Lewis
1984). The methods differ in the way the variance of
the sample quantile is estimated. It should be men-
tioned that quantile estimation is a harder problem
than the estimation of steady-state means.

4.8 Multivariate Estimation

Frequently, the output from a single simulation run is
used for estimating several system parameters. The
estimators of these parameters are typically corre-
lated. As an example, consider the average customer
delays at two stations on a path of a queueing net-
work. In general, Bonferroni’s inequality can be used
for computing a conservative confidence coefficient for
a set of confidence intervals. Indeed, suppose that D;
is a 100(1 — &) percent confidence interval for the pa-
rameter p;, i =1,..., k. Then

k
P (nle{/li € Di}) 2 I-Zai~
i=1
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This result can have serious implications as for
k =10 and «; = 0.10 the r.h.s. of the above inequal-
ity is equal to 0. If the overall confidence level must
be at least 100(1 — «) percent, then the a;’s can be
chosen so that Zle a; = «. The existing multivari-
ate estimation methods include Charnes (1989, 1990,
1991) and Chen and Seila (1987).

5 CONCLUSIONS

The purpose of this paper is to alert the user on a
variety of issues and methodologies related to the
analysis of output data from a simulation of a single
system. Several aspects of output analysis were left
out such as comparison of systems, design of simu-
lation experiments, and variance reduction methods.
These subjects are treated in a variety of articles in
this volume and in several texts including Bratley,
Fox, and Schrage (1987), Fishman (1978b), Kleijnen
(1974, 1975), and Law and Kelton (1991).
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