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ABSTRACT

This paper is an advanced tutorial on the use of statisti-
cal techniques in sensitivity analysis, including the
application of these techniques to optimization and
validation of simulation models. Sensitivity analysis is
divided into two phases. The first phase is a pilot
stage, which consists of screening or searching for the
important factors; a simple technique is sequential
bifurcation. In the second phase, regression analysis is
used to approximate the input/output behavior of the
simulation model. This regression analysis gives better
results when the simulation experiment is well desig-
ned, using classical statistical designs such as fractional
factorials. To optimize the simulated system, Response
Surface Methodology (RSM) is applied; RSM com-
bines regression analysis, design of experiments, and
steepest ascent. To validate a simulation model that
lacks input/output data, again regression analysis and
design of experiments are applied. Several case studies
are summarized; they illustrate how in practice statisti-
cal techniques can make simulation studies give more
general results, in less time.

1 INTRODUCTION

The objective of this paper is to examine the problem
of sensitivity analysis in simulation, including the
related issues of optimization and validation. To solve
these problems, this contribution gives a survey of cer-
tain statistical techniques, namely Design Of Experi-
ments (DOE) and its analysis through regression analy-
sis (also known as ANOVA, ANalysis Of VAriance).

This paper is an advanced tutorial, which discusses
not only methodology, but also applications. The reader
is assumed to have a basic knowledge of mathematical
statistics and simulation.

133

More specifically, the following questions are ad-
dressed (which should be answered for all simulation
models):

1. What if: what happens if the analysts change param-
eters, input variables or modules (such as subroutines
for priority rules) of the simulation model? This ques-
tion is closely related to sensitivity analysis and opti-
mization, as we shall see. The literature on DOE uses
the term factor to denote a parameter, input variable or
module.

2. Validation: is the simulation model an adequate
representation of the corresponding system in the real
world? This paper addresses only part of the validation
problem.

To answer these practical questions, this paper takes
techniques from the science of mathematical statistics
(briefly, statistics). It is not surprising that statistics is
so important in simulation: by definition, simulation
means that a model is 'solved’ by experimentation. But
experimentation requires a good design and a good
analysis! DOE with its concomitant analysis is a stan-
dard topic in statistics. However, the standard statistical
techniques must be adapted such that they account for
the particularities of simulation. For example, there are
a great many factors in many practical simulation mod-
els. Indeed, one application (discussed later) has hun-
dreds of factors, whereas standard DOE assumes only
up to (say) fifteen factors. Moreover, stochastic simula-
tion models use pseudorandom numbers, which means
that the analysts have much more control over the
noise in their experiments than the investigators have
in standard statistical applications (for example, com-
mon and antithetic seeds may be used; sce Kleijnen
and Van Groenendaal 1992).

The main conclusions of this paper will be:

(i) Screening may use the simple, efficient, and cffec-
tive technique of sequential bifurcation; see Bettonvil
and Kleijnen (1994).
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(i) Next, regression analysis generalizes the results of
the simulation experiment, since it characterizes the
input/output behavior of the simulation model.
(iii) Statistical designs give good estimators of main
(first-order) effects and interactions among [aclors;
these designs require fewer simulation runs than intu-
itive designs do.
(iv) Optimization may use RSM, which builds on re-
gression analysis and DOE; see (11) and (iii).
(v) Validation may use regression and DOE, especially
if there are no data on the input/output of the simula-
tion model or its modules.
(vi) These statistical techniques have already been ap-
plied many times in practical simulation studies, in
many domains; these techniques make simulation stud-
ies give more general results, in less time.

The remainder of this paper is organized as follows.
§2 discusses sensitivity analysis by means of DOE,
which treats the simulation model as a black box. More
specifically, §2.1 studies the screening phase of a
simulation study: which factors among the many poten-
tially important factors are really important? A sub-
subsection (§2.1.1) discusses a very efficient screening
technique, called sequential bifurcation. §2.2 discusses
how to approximate the input/output behavior of simu-
lation models by regression analysis. First it discusses
graphical methods, namely scatter plots; see §2.2.1.
Next it presents regression analysis (which formalizes
the graphical approach), including standardization of
factors, Generalized Least Squares (GLS), and cross-
validation; see §2.2.2. Next, §2.3 discusses statistical
designs. First the focus is on designs that assume only
main effects (§2.3.1). Then follow designs that give
unbiased estimators for the main effects, even if there
are interactions between factors (§2.3.2). Further, this
section discusses designs that allow estimation of indi-
vidual interactions (§2.3.3). §2.3 ends with designs for
estimating the curvature (quadratic effects) of the in-
put/output approximation (§2.3.4). §3 proceeds with the
role of sensitivity analysis in validation, emphasizing
the effects of data availability. §4 presents the optimi-
zation of simulated systems through RSM. §5 gives a
summary and conclusions. Seventeen references con-
clude the paper. This paper is based on Kleijnen
(1996).

2 SENSITIVITY ANALYSIS

The vast literature on simulation does not provide a
standard definition of sensitivity analysis. This paper
defines sensitivity analysis as the systematic investiga-
tion of the reaction of the simulation responses to
extreme values of the model’s input or to drastic chan-
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ges in the model’s structure. For example, what hap-
pens to a queueing simulation’s response, when the
customer arrival rate doubles; what happens if the
priority rule changes from First In First Out (FIFO) to
Shortest Processing Time (SPT)? So the focus is not
on marginal changes (or perturbations) in the input
values.

Morcover, the simulation model is treated as a
black box: the simulation inputs and outputs are ob-
served, and from this input/output behavior the factor
effects are estimated. This approach is standard in
DOE.

DOE has advantages and disadvantages. One bene-
fit is that this approach can be applied to all simulation
models. A drawback is that it can not take advantage
of the specific structure of a given simulation model,
so it may take many simulation runs to perform the
sensitivity analysis. But DOE requires fewer runs than
the naive approach often followed in practice (as we
shall see).

Note: The intricacies of the specific simulation
model at hand are considered in perturbation analysis
and in modern importance sampling, also known as
score function; see Ho and Cao (1991), Glynn and
Iglehart (1989), and Rubinstein and Shapiro (1993)
respectively. Perturbation analysis and score function
require only one run. Unfortunately, these methods also
require more mathematical sophistication.

2.1 Pilot or Screening Phase

In the pilot phase of a simulation study there are usual-
ly a great many potentially important factors. For
example, in a queueing model with m servers there are
m service rates; the queueing priority rule may also be
a factor. It is the mission of science to come up with a
short list of the most important factors; it is unaccept-
able to say ‘everything depends on everything else’:
parsimony principle.

In practice, analysts often restrict their study to a
few factors, usually no more than ten. Those factors
are selected through intuition, prior knowledge, and the
like. The factors that are ignored (kept constant), are -
explicitly or implicitly- assumed to be unimportant. For
example, in the simulation of queueing networks, it is
traditional to assume equal service rates. Of course,
such an assumption severely restricts the generality of
the simulation study!

The statistics literature includes screening designs.
These designs provide scientific methods for finding
the important factors. There are several types of scree-
ning designs: random, supersaturated, group screening
designs, and so on; see Kleijnen (1987).
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Unfortunately, the statistics literature pays too little
attention to screening designs. The reason for this
neglect is that in standard statistical applications it is
virtually impossible to control hundreds of factors;
fifteen i1s hard enough. In simulation, however, models
may have hundreds of parameters, and yet their control
is simple: just specify which combinations of parameter
values to simulate. Nevertheless, screening applications
in simulation are rare, because most analysts are not
familiar with these designs. Yet these designs are sim-
ple and efficient.

Recently, screening designs have been improved
and new variations have been developed; details are
given in Bettonvil and Kleijnen (1994). The next sub-
subsection discusses the most promising type, namely
sequential bifurcation.

2.1.1 Sequential Bifurcation

Sequential bifurcation uses the aggregation principle,
which is often applied in science when studying com-
plicated systems. So at the start of the simulation ex-
periment, sequential bifurcation groups the individual
factors into clusters. To make sure that individual fac-
tor effects do not cancel out, sequential bifurcation as-
sumes that the analysts know whether a specific indi-
vidual factor has a positive or negative effect on the
simulation response: known signs. In practice this as-
sumption is not very restrictive. For example, in the
queueing example it is known that increasing the ser-
vice rates decreases waiting times (but it is unknown
how big this decrease is; therefore the analysts use a
simulation model).

In practice, sequential bifurcation was applied
to an ecological simulation with 281 parameters. The
ecological experts felt comfortable specifying in which
direction a specific parameter affects the response (this
response is the future carbon-dioxide or CO, coiicentra-
tion; CO, creates the greenhouse effect). Moreover, if a
few individual factors have unknown signs, then these
factors can be investigated separately, outside the
sequential bifurcation design.

Sequentialization means that factor combinations to
be simulated, are selected as the experimental results
become available; that is, as simulation runs are exc-
cuted, insight into factor effects is accumulated and
used to select the next run. As the experiment pro-
ceeds, groups of factors are eliminated, because se-
quential bifurcation concludes that these clusters con-
tain no important factors.

Also, as the experiment proceeds, the groups be-
come smaller. More specifically, each group that seems
to include one or more important factors, is split into

two subgroups of the same size: bifurcation. At the end
ol screening by means of sequential bifurcation, indi-
vidual factors are investigated.

In the ecological application, sequential bifurcation
took 154 simulation runs to identify and estimate the
I5 most important factors among the original 28]
factors. Moreover, had the analysts assumed no interac-
tions between factors, then the number of runs could
have been halved (154/2 = 77 runs).

The ecological case study concerns a deterministic
simulation model (consisting of a set of non-linear
difference equations). There is a need for more re-
search, applying sequential bifurcation to large random
simulations, such as simulations of queueing networks
in telecommunications.

2.2 Approximating the Input/Output Behavior of
Simulation Models by Regression Analysis

2.2.1 Introduction: Graphical Methods

After the screening phase (§2.1), the number of factors
to be further investigated is reduced to a small number
(for example, fifteen).

Practitioners often make a scatter plot with on the
x-axis the values of one factor (for example, service
rate) and on the y-axis the simulation response (say,
average waiting time). This graph indicates the input/
output behavior of the simulation model, treated as a
black box. It shows whether this factor has a positive
or negative effect on the response, whether that effect
remains constant over the domain (experimental area)
of the factor, etc.

This scatter plot can be further analyzed: fit a curve
to these (x, v) data; for example, fit a straight line (y =
B, + B,x). Of course, other curves can be fitted: qua-
dratic (second degrce polynomial), exponential, loga-
rithmic (using paper with a log scale), and so on.

To study interactions between factors, scatter plots
per factor can be combined. For example, the scatter
plot for different service rates was drawn, given a
certain number of servers. Plots for different numbers
of servers can now be superimposed. Intuitively, the
curve for a low number of servers lies above the curve
for a high number of servers (if not, the simulation
model is probably wrong; see the discussion on valida-
tion in §3). If the response curves are not parallel,
there are interactions, by definition.

However, superimposing many plots is cumber-
some. Moreover, their interpretation is subjective: are
the response curves really parallel straight lines? These
shortcomings are removed by regression analysis.
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2.2.2 Regression analysis

A regression model is a metamodel of the simulation
model; that is, a regression model approximates the
input/output behavior of the simulation model that gen-
erates the input/output data to which the regression
analysis is applied. Consider the second degree polyno-
mial

k k k
Y,‘ = Bo + 'Z’ Bh“m * hzl ’ZI th Xine * Ei (1)
(i =1,.,n),
with
Y simulation response of factor combination
(stochastic variables are shown in capitals);
B, overall mean response or regression intercept;
B,: main or first-order effect of factor h;
Xy value of the standardized factor A in Combi-
nation { (see Equation (2) below);
B interaction between factors & and h’ with hz
h’
Bin: quadratic effect of factor A;
E;: fitting error of the regression model for

factor combination i;
n: number of simulated factor combinations.

First ignore interactions and quadratic effects, for
didactic reasons. Then the relative importance of a
factor is obtained by sorting the absolute values of the
main effects B,, provided the factors are standardized.
So let the original (non-standardized) factor h be denot-
ed by z,. In the simulation experiment z, ranges be-
tween a lowest value /, and an upper value u,; that is,
the simulation model is not valid outside that range
(see the discussion on validation in §3) or in practice
that factor can range over that domain only (for exam-
ple, the number of servers can vary only between one
and five). The variation (or spread) of that factor is
measured by a, = (u, - [,)/2; its location (or mean) by
b, = (u, + 1,)/2. Then the following standardization is
appropriate:

x, =(z, - b)la,. (2)

th

The classic fitting algorithm, which determines B of
the regression model in Equation (1), uses the ordinary
least squares (OLS) criterion. Software for this algo-
rithm is abundant.

If statistical assumptions about the fitting error are
added, then there are better algorithms. Consider the
following assumptions.

It is realistic to assume that the variance of the
stochastic fitting error E varies with the input combi-

nation of the random simulation model: var(E)) = 0,3.
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(So Y, the response of the stochastic simulation, has a
mean and a variance that both depend on the input.)
Then weighted least squares (with the standard devi-
ations ©; as weights) yields unbiased estimators of the
factor effects, but with smaller variances than OLS
gives.

Common pseudorandom number seeds can be used
to simulate different factor combinations. Then GLS
gives minimum variance, unbiased estimators. Unfor-
tunately, in practice the variances and covariances of
the simulation responses Y are unknown, so they must
be estimated. The following equation gives the classic
covariance estimator, assuming d independent replica-
tions (or simulation runs) per factor combination (so Y,g
and Y, are correlated, but ¥, and Y, . are not):

cov(Y, Y, =
4 - - 3)
Y ¥, - Y)Y, - Yold - 1),

s =1

Fortunately, the resulting estimated GLS gives good
results; see Kleijnen and Van Groenendaal (1992).

Of course, it is necessary to check the fitted regres-
sion metamodel: is it an adequate approximation of the
underlying simulation model? Therefore the metamodel
may be used to predict the outcomes for new factor
combinations of the simulation model. So replace [ in
the specified metamodel by the estimate [, and substi-
tute new combinations of x (there are n old combina-
tions). Compare the predictions ¥ with the simulation
response V.

A refinement is cross-validation: do not add new
combinations (which require more computer time), but
eliminate one old combination (say combination 7) and
re-estimate the regression model from the remaining
n - 1 combinations. Repeat this elimination for all
values of i (with i = 1, ..., n; see Equation (1)). Statisti-
cal details are discussed in Kleijnen and Van Groe-
nendaal (1992).

Applications of regression metamodeling will be
discusses below (§2.3 through §4).

2.3 Statistical Designs

The preceding subsection (§2.2.2) used regression
metamodels to approximate the input/output behavior
of simulation models. Such a metamodel has (say) ¢
regression parameters 3, which measure the effects of
the k factors; for example, g equals k + 1 if there are
no high-order effects; if there are interactions between
factors, then g increases with k(k - 1)/2; and so on.

It is obvious that to get unique, unbiased estimators
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of these g effects, it is necessary to simulate at least q
factor combinations. Moreover, which n combinations
to simulate (provided that n > g), can be determined
such that the accuracy of the estimated factor effects is
maximized (variance minimized). This is the goal of
the statistical theory on DOE (which Fisher started in
the 1930s and Taguchi continues today).

2.3.1 Main Effects Only

Consider a first-order polynomial, which is a model
with only k& main effects, besides the overall mean (see
the first two terms in the right-hand side of Equation
().

In practice, analysts usually first simulate the ’base’
situation, and next they change one factor at a time;
so, all together they simulate 1 + k runs.

However, DOE proves that it is better to use or-
thogonal designs, that is, designs that satisfy

x'x =nl )
with
bold letters: matrices;
x = (x,) design matrix with i = 1,..., n; j = 0,
1., k;n>k;
Xy =1t dummy factor;
Xy see text below Equation (1);
I identity matrix (this capital letter does

not denote a stochastic variable).
Orthogonal designs give estimators of P that are unbi-
ased and have smaller variances than the estimators
resulting from designs that change one factor at a time.

Orthogonal designs are tabulated in many publi-
cations. The analysts may also learn how to construct
those designs; see Kleijnen (1987). Recently, software
has been developed to help the analysts specify these
designs; see Oren (1993).

A well-known class of orthogonal designs are 2° "
fractional factorials. An example is a simulation with k&
= 7 factors, which requires n = 2’ * = 8 factor combi-
nations (runs). Actually, these 2 " designs also require

8 runs when 4 < k < 7. See Kleijnen (1987).
References to many simulation applications of these
designs can be found in Kleijnen (1987) and Kleijnen
and Van Groenendaal (1992).
In practice, however, it is unknown whether only
main effects are important. Therefore orthogonal de-

signs with n = k + | should be used only in optimiza-
tion (see §4). Moreover these designs are useful as
building blocks if interactions are accounted for; see
the next sub-subsection (§2.3.2).

2.3.2 Main Effects Biased by Interactions?

It seems prudent to assume that interactions be-
tween pairs of factors may be important. Then the k
main effects can still be estimated without bias caused
by these interactions. However, the number of simu-
lated factor combinations must be doubled; for exam-
ple, k = 7 requires n = 2 x 8 = 16. These designs also
give an indication of the importance of interactions;
also see the next sub-subsection (§2.3.3).

Details, including simulation applications are pre-
sented in Kleijnen (1987) and Kleijnen and Van Groe-
nendaal (1992).

Recent applications include the simulation of a
decision support system (DSS) for the investment anal-
ysis of gas pipes in Indonesia, and a simulation model
for the Amsterdam police; see Van Groenendaal (1994)
and Van Meel (1994) respectively.

2.3.3 Factor Interactions

Suppose the analysts wish to estimate the individual
two-factor interactions [, see Equation (1). There are
k(k - 1)/2 such interactions. Then many more simula-
tion runs are necessary. An example is k = 7, which re-
quires n = 2" "' = 64 factor combinations (runs). There-
fore only small values for k are studied in practice.
Kleijnen (1987) gives details, including applications.

Of course, if k is really small (say, k = 3), then all
2* combinations are simulated, so all interactions (not
only two-factor interactions) can be estimated. In prac-
tice, these full factorial designs are sometimes used
indeed (but high-order interactions are hard to inter-
pret). See Kleijnen (1987).

2.3.4 Quadratic Effects: Curvature

If the quadratic effects B,, in Equation (1) are to be
estimated, then at least & extra runs are needed (since h
= 1, ..., k). Moreover, each factor must be simulated
for more than two values.

Popular in statistics and in simulation are central
composite designs. They have five values per factor,
and require many runs (n >> g). For example, if there
are k = 2 factors, then g = 6 effects are to be estimated
but n = 9 factor combinations are simulated. See
Kleijnen (1987) and Kleijnen and Van Groenendaal
(1992).

Applications are found in the optimization of simu-
lation models; see §4.
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3 VALIDATION

This paper is confined to the role of sensitivity analysis
(§2) in validation; other statistical techniques for vali-
dation and verification are discussed in Kleijnen
(1995a). Obviously, validation is one of the first ques-
tions that must be answered in a simulation study; for
didactic reasons, validation is discussed in this part of
the paper.

True validation requires that data on the rcal sys-
tem be available. In practice, the amount of data varies
greatly: data on failures of nuclear installations are
rare, whereas clectronically captured data on computer
performance and on supermarket sales are abundant.

If data are available, then many statistical techni-
ques can be applied. For example, simulated and real
data on the response, can be compared through the
Student statistic for paired observations, assuming the
simulation is fed with real-life input data: trace driven
simulation. A better test uses regression analysis; see
Kleijnen, Bettonvil, and Van Groenendaal (1995).

However, if no data are available, then the follow-
ing type of sensitivity analysis can be used. The clients
of the analysts do have qualitative knowledge of cer-
tain parts of the real system; that is, these clients do
know in which direction certain factors affect the re-
sponse of the corresponding module in the simulation
model (also see the discussion on sequential bifurcation
in §2.1.1). If the regression metamodel (see §2.2.2)
gives an estimated factor effect with the wrong sign,
this is a strong indication of a wrong simulation model
Or a Wrong computer program.

Applications in ecological and military modeling are
given in Kleijnen, Van Ham, and Rotmans (1992) and
Kleijnen (1995b) respectively. These applications fur-
ther show that the validity of a simulation model is
restricted to a certain domain of factor combinations,
which corresponds with the experimental frame in
Zeigler (1976), a seminal book on modeling and simu-
lation.

Moreover, the regression metamodel shows which
factors are most important. If possible, information on
these factors should be collected, for validation purpos-
es.

4 OPTIMIZATION: RSM

There are many mathematical techniques for finding
optimal values for the decision variables of nonlinear
implicit functions (such as are formulated by simula-
tion models), possibly with stochastic noise. Examples
of such techniques are genetic algorithms, simulated
annealing, and tabu search. However, this paper is
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limited to RSM.

First consider four general characteristics of RSM;
then some details:

(1) RSM relies on first-order and second-order polyno-
mial regression metamodels, now called response sur-
faces; see §2.2.2.

(i1) It uses the statistical designs of §2.3.

(i) It is augmented with the mathematical (not statis-
tical) technique of steepest ascent, to determine in
which direction the decision variables should be
changed.

(1v) It uses the mathematical technique of canonical
analysis to analyze the shape of the optimal region:
does that region have a unique maximum, a saddle
point or a ridge?

More specifically, RSM begins by selecting a start-
ing point. Because RSM is a heuristic (no success
guaranteed), several starting points may be tried later
on, if time permits.

RSM explores the neighborhood of that point. The
response surface is approximated locally by a first-
order polynomial in the decision variables (Taylor
series expansion).

The main effects B, are estimated, using a_design
with n = k + 1 (see §2.3.1). Suppose B, >> B, > 0.
Then obviously the increase of decision variable 1
(say) z, should be larger than that of z,. The steepest
ascent path means Az/Az, = B /B, (no standardiza-

tion; also see next paragraph).

Unfortunately, the steepest ascent technique does
not quantify the step size along this path. Therefore the
analysts may try a specific value for the step size. If
that value yields a lower response, then this value
should be reduced. Otherwise, one more step is taken.
Ultimately, the response must decrease, since the first-
order polynomial is only an approximation. Then the
procedure is repeated: around the best point so far, a
new first-order polynomial is estimated, after simulat-

ing n = k + 1 combinations of z, through z,. And so
on.

In the neighborhood of the top, a hyperplane can
not be an adequate representation. Cross-validation may
be used to detect this lack of fit. Other diagnostic
measures are R’ << | (where R’ denotes the multiple
correlation coefficient), va‘r(Bh) >>[3h, and modern
statistics such as PRESS, discussed in Kleijnen (1987).

So when a hyperplane no longer approximates the
local input/output behavior well enough, then a second-
order polynomial is fitted; see §2.3.4.

Finally, the optimal values of z, are found by
straightforward differentiation of the fitted quadratic
polynomial. A more sophisticated evaluation is canoni-
cal analysis.
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Consider the following case study. A decision
support system (DSS) for production planning in a
steel tube factory is simulated and is to be optimized.
There are fourteen decision variables, and two response
variables (namely, a production and a commercial
criterion). Simulation of one combination takes six
hours of computer time, so searching for the optimal
combination must be performed with care. Details can
be found in Kleijnen (1993).

More applications can be found in Hood and Welch
(1993), Kleijnen (1987), and Kleijnen and Van Groen-
endaal (1992).

5 CONCLUSIONS

In the Introduction (§1) the following questions were
raised:

1. Whar if. what happens if the analysts change para-
meters, input variables or modules of a simulation
model? This question is closely related to sensitivity
analysis and optimization.

2. Validation: is the simulation model an adequate
representation of the corresponding system in the real
world?

These questions were answered as follows.

In the initial phase of a simulation it is often neces-
sary to perform screening: which factors among the
multitude of potential factors are really important?
Screening’s aim is to reduce the number of really im-
portant factors to be further explored in the next phase.
The technique of sequential bifurcation is a simple,
efficient, and effective screening technique.

Once the important factors are identified, further
analysis with fewer assumptions (no known signs) may
use regression analysis. It generalizes the results of the
simulation experiment, since it characterizes the in-
put/output behavior of the simulation model.

Design Of Experiments (DOE) can give good esti-
mators of the main effects, interactions, and quadratic
effects that occur in the regression model. These de-
signs require relatively few simulation runs.

Once these factor effects are quantified, they can be
used in
(i) validation, especially if there are no data on the
input/output of the simulation model or its modules;
(it) optimization through RSM, which builds on regres-
sion analysis and experimental designs.

These statistical techniques have already been ap-
plied many times in practical simulation studies, in
many domains. Hopefully, this survey will stimulate
even more analysts to apply these techniques. The goal
is to make simulation studies give more general results,
in less time.

In the mean time the research on statistical tech-
niques adapted to simulation, continues in both Europe
and the USA.
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