Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

THE USE OF VARIANCE REDUCTION TECHNIQUES IN
THE ESTIMATION OF SIMULATION METAMODELS

Joan M. Donohue

College of Business Administration
University of South Carolina
Columbia, South Carolina 29208, U.S.A.

ABSTRACT

Variance reduction techniques can be useful strategies
for improving the estimates of simulation metamodel
coefficients. Depending upon the goals of the experi-
menter, the type of metamodel being estimated, and
the characteristics of the system being simulated, an
appropriate variance reduction technique can be ap-
plied. This paper provides a review of recent research
that investigates the application of variance reduction
techniques in the simulation metamodeling context.
One strategy, Schruben and Margolin’s (1978) assign-
ment rule, which utilizes a combination of antithetic
and common random number streams, is found to be
a particularly useful variance reduction technique for
the estimation of simulation metamodels.

1 INTRODUCTION

In this paper, we use the term “simulation meta-
model” to describe a mathematical equation that re-
lates the input and output variables of a computer
simulation model. Since a computer simulation model
is, in itself, only a modcl of the true system, the term
metamodel is generally used to describe the mathe-
matical model that approximates the relationship be-
tween the variables of a simulation model.

For example, in the research of Galbraith and Stan-
dridge (1994), the true system of interest is an elec-
tronics assembly plant where circuit boards are man-
ufactured. Their computer simulation model mimics
the operation of the true system, over time, using in-
put distributions that are estimated from the actual
manufacturing facility. The stochastic model com-
ponents (those requiring random number generators)
include assembly times, routing times, time between
equipment failures, etc. After validating and verify-
ing the computer simulation model of the manufac-
turing facility, a metamodel is then used to explain
the relationship that exists between the input vari-
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ables and the simulated output response. The out-
put variable, denoted y, is typically a performance
measure of the system (e.g.; mean production time
for circuit boards). The controllable input variables
(e.g.; type of solder and the method of component
placement on circuit boards) are termed factors and
denoted z; (¢ = 1,...,k). An experimenter may be
interested in maximizing or minimizing y, determin-
ing the sensitivity of y to the input variables, or sim-
ply studying the nature of the relationship between y
and various ;.

The type of metamodels most commonly used in
simulation studies are polynomial regression models,
such as the first-order model
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where v = 1,...,n is the simulation run number, y,

is the simulated response (often the mean of obser-
vations collected during a simulation run), z;, is the
setting of the ith input factor on the uth simulation
run, the g’s are model coefficients to be estimated us-
ing regression analysis, and ¢, is unexplainable error
in the regression model.

Barton (1994) identifies some “alternative” meta-
models for simulation studies, including frequency do-
main approximations, kernel smoothing models, ra-
dial basis functions, spatial correlation models, and
spline models. The advantage of these alternative
models is their ability to fit a wide variety of curvilin-
ear relationships, often in a piecewise manner. The
disadvantage of the alternative metamodels is that
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their use requires sophisticated statistical knowledge.
Not many simulation practitioners are familiar with
the alternative models and few statistical packages
provide routines for the estimation and analysis of
such models. In addition, using variance reduction
techniques with the alternative models has not yet
been investigated. Polynomial regression models, on
the other hand, are familiar to many experimenters,
most statistical packages support their estimation
and analysis, and the application of variance reduc-
tion techniques has been investigated in many re-
search studies.

In terms of the type of metamodel, the scope of
this paper is limited to traditional polynomial regres-
sion metamodels. It is assumed that the experimenter
has developed a valid simulation model, identified the
output variable of interest y, and selected a set of k
controllable input variables r;. The experimenter’s
objective 1s to develop a polynomial regression meta-
model that can be used for optimization, prediction,
or sensitivity analysis. The question we address in
this paper is: What type of variance reduction tech-
niques would be appropriate for the experimenter’s
simulation metamodeling study?

We present an overview of recent fundamental ad-
vances on the application of variance reduction tech-
niques in a simulation metamodeling context. The
paper is organized as follows. Section 2 provides ref-
erences to some examples of simulation metamodel-
ing studies. Section 3 describes commonly used ex-
perimental design plans and variance reduction tech-
niques. Section 4 discusses recent research findings on
the use of variance reduction techniques in simulation
metamodeling studies.

2 APPLICATIONS OF METAMODELS

There are many articles in the simulation literature
that use simulation metamodels to study real-world
systems. A few such studies are mentioned here. Gor-
don, Ausink, and Berdine (1994) develop a simulation
model of a spacecraft in orbit. The simulation model
has 6 stochastic components (e.g.; changes in solar
radiation and changes in transmission voltage) and 5
controllable input variables (e.g.; tracking error and
thrust input) that effect the output variable of in-
terest (cost of controlling the spacecraft’s orbit). A
second-order metamodel is developed in order to ef-
ficiently learn about the relationships that exist be-
tween cost and the controllable input variables.
Kuei and Madu (1994) and Madu and Kuei (1992)
develop simulation models of 2 machine maintenance
queueing systems in order to determine the num-
ber of machines and repair persons needed for var-

ious service levels (the output variable of interest).
The simulation models have a number of stochastic
components (e.g.; machine repair times and time be-
tween failures) and a number of controllable input
variables (e.g.; number of repair persons and num-
ber of standby machines). Second-order metamodels
of the simulations are developed in order to advise
management on issues related to the service levels of
the maintenance systems.

Friedman and Pressman (1988) develop simulation
models of 3 systems with known theoretical solutions
in order to ascertain whether simulation metamodels
can be trusted. The first system is an M/M/s queue-
ing system. A metamodel relating time-in-system to
3 input variables (arrival rate, service rate, and num-
ber of servers) is developed. The second system is
time-shared computer system with a single central
processing unit. A metamodel relating job response
time to 3 input variables (arrival rate, service rate,
and proportion of time used for overhead) is devel-
oped. The third simulation is an order-level inven-
tory control system. A metamodel relating annual
inventory costs to 3 input variables (item demand,
review period, and target inventory level) is devel-
oped. For each of the simulated systems, a first-order
metamodel using natural logarithms of the variables

Iny, =Ingo + Bilnzy + Falnzy,

+ B3lnzs, + Iney, (3)

or, equivalently, the multiplicative model
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provides results similar to the analytic solution.

There are many other studies that develop simu-
lation metamodels of real-world systems. Excellent
sources of such applications can be found in the Pro-
ceedings of the Winter Simulation Conference and in
the Simulation journal.

3 BACKGROUND INFORMATION

In this section we discuss experimental design plans
and variance reduction techniques that are particu-
larly useful in simulation metamodeling studies.

3.1 Experimental Design Plans

In order to estimate the [ coefficients of the poly-
nomial regression model in (1) or (2), experimental
data must be collected. Specifically, information on
the response variable y at a variety of input conditions
Z;y 18 needed. Ezperimental design is a scientific ap-
proach to deciding how to collect such information.



196 Donohue

Classical experimental design procedures involve find-
ing efficient approaches to collecting and analyzing
data for the development of a mathematical model of
a system.

In a simulation context, an experimental design
must specify the values of the k controllable input
factors (x; ; 7 = 1,..., k) on cach simulation run such
that the g coeflicients can he efficiently estimated.
For the first-order model in (1), the most commonly
used experimental designs are the 2-level (full or frac-
tional) factorial plans. These designs minimize the
variances of the estimated g coefficients. Other first-
order designs have been developed for specific experi-
mental goals (c.g.; screening designs) but the proper-
ties of the factorial plans make them the most widely
used first-order designs.

For the second-order model in (2), a number of
experimental designs have been developed for the ef-
ficient estimation of the B coefficients. The 3-level
factorial designs are often used because of their intu-
itive appeal, but these designs have the drawback of
requiring a large number of experiments. For exam-
ple, if a simulation model has k=7 input factors, then
a full 3-level factorial plan requires 37 = 2187 simula-
tion runs for 1 replication of the experimental design.
A 1/3 fractional replication would require 729 runs.
For complex simulation models, the computer time
needed to collect the data for 3-level factorial designs
may be prohibitively large.

There are many other commonly used second-order
designs that have desirable properties in certain situ-
ations (e.g.; Box-Behnken, central composite, equira-
dial, Notz, and small composite designs). Thus, un-
like the case of fitting a first-order metamodel, an
experimenter has a wide variety of choices for an ef-
ficient second-order experimental design. However,
despite the design choices available, the central com-
posite design is the most popular of the second-order
designs.

The central composite designs require that each in-
put variable z; be set at 5 different levels, but require
far fewer runs than the 3-level factorial designs. A
central composite design consists of 3 parts: a 2-level
factorial design, an axial design, and one (or more)
experimental run at the center of the design. The
number of runs required is 2% + 2k + 1, or 143 when
k=7. Depending upon the levels of the variables cho-
sen for the axial portion, the central composite design
can be developed to have a variety of desirable prop-
erties. Since one part of the design is a first-order
2-level factorial, experimenters often fit a first-order
model before augmenting the design with an axial
portion in order to fit a second-order model. This ca-
pability of being performed sequentially is one of the

main reasons for the popularity of the central com-
posite design.

Table 1 illustrates a central composite design for a
metamodel with & = 3 input variables. The top por-
tion of the design (runs 1-8) is a 2-level factorial plan
with the z; levels specified as +1 and —1 for each
variable. (The experimenter must “code” the levels
of each controllable input variable such that 41 cor-
responds to the highest value and —1 corresponds to
the lowest value within the region of experimenta-
tion.) The bottom of the design (runs 10-15) is the
axial portion with the 3 levels specified as +a, 0, and
—a. The design also includes 1 experiment (run #9)
at the center of the region, z; = ¢ = 23 = 0.

Table 1: k = 3 Central Composite Design

Run # Input Variables
u Ty T T3
1 [ 41 41 41
2 +1 +1 -1
3 +1 -1 +1
4 +1 -1 -1
5 -1 41 +1
6 -1 +1 -1
7 -1 -1 +1
8 -1 -1 -1
9 0 0 0

10 +a 0 0
11 —a 0 0
12 0 4« 0
13 0 —a 0
14 0 0 +a

15 0 0 -«

Classical experimental design procedures require
that the experimenter choose the high and low lev-
els of each factor. These levels would generally
be selected such that the output variable y is ad-
equately described by the second-order metamodel
in (2). Other issues facing the experimenter are the
number of experiments to perform at the center and
the number of times to replicate each design point.

In a simulation context, the experimenter has a
number of additional experimental design consider-
ations. Here we assume that the length of the sim-
ulation runs, the length of any warm-up period, the
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initial conditions, and other such tactical issues have
already been addressed. (See Nelson 1992 for recom-
mendations concerning these tactical issues.) There
1s also the strategic issue of how to assign random
number streams to the stochastic model components.
The use of independent streams for each stochastic
model component on each simulation run would re-
sult in independent output responses (similar to most
real-world studies). However, due to the high vari-
ability often associated with simulation output, the
use of a technique to reduce variability through the
manipulation of random number streams can be de-
sirable.

The next section discusses the variance reduction
techniques that are applicable to simulation meta-
modeling studies.

3.2 Variance Reduction Techniques

Variance reduction techniques were originally devel-
oped for the estimation of integrals in mathematics
and physics (Kleijjnen 1977). In order to use these
techniques 1n simulation, changes were needed due
to the autocorrelation of simulated observations and
the complex relationships between stochastic model
components and simulated response output. Fishman
(1974) appears to be the first researcher to investigate
the use of variance reduction techniques in the design
of simulation experiments. Unfortunately, the re-
sults of that study were pessimistic. Since that time,
new research studies have brought optimism into the
area. In this paper, we briefly describe 4 variance
reduction techniques (common random numbers, an-
tithetic random numbers, the assignment rule, and
control variates) that are potentially uscful in simu-
lation metamodeling studies.

Consider the simulation of an M/M/1 quencing sys-
tem. Let the output variable y be the steady state
time-in-system, and let the single input variable x be
the server utilization. Suppose the experimental de-
sign involves 2 replications of the following 2 design
points: £=0.5 and r=0.7. Another aspect of the ex-
perimental design 1s the assignment of random num-
ber streams to the 2 stochastic model components:
arrivals and services. Let the vector R; (i = 1,...)
denote the ith stream of uniform (0, 1) random num-
bers used to generate stochastic inputs. If no vari-
ance reduction technique is used, the experimental
design might be performed using the stream assign-
ments shown in Table 2. This assignment of a unique
random number stream to each stochastic component
on each simulation run is termed independent random
numbers, resulting in independent output responses,
yuiu=1...,4

Table 2: Independent Random Numbers

Run  Repli- Arrival  Service
#  cation x Stream  Stream
l 1 0.5 R, Rs
2 1 0.7 R, R
3 2 0.5 Rs3 R~
4 2 0.7 R, Rg

The variance reduction technique of common ran-
dom numbers uses the same stream more than once in
order to induce positive correlations and reduce the
variances of certain output statistics. The technique
can be used within a simulation run (generating data
for 2 or more stochastic model components with the
same random number stream) and/or between simu-
lation runs (generating data for different sets of input
conditions using the same random number stream).
For the M/M/1 queueing system considered here, Ta-
bles 3 and 4 respectively illustrate experimental de-
signs that use common random numbers within and
between simulation runs.

Table 3: Common Random Numbers Within Runs

Run Repli- Arrival  Service
#  cation T Stream  Stream
1 1 0.5 R, R,
2 1 0.7 R, R,
3 2 0.5 Ry R;
4 2 0.7 R, Ry

Table 4: Common Random Numbers Between Runs

Run Replh- Arrival  Service
#  cation £ Stream  Stream
1 1 0.5 R, R3
2 1 0.7 R, R3
3 2 0.5 R, Ry
4 2 0.7 R, R,

The variance reduction technique of antithetic ran-
dom numbers uses antithetic pairs of random num-
bers in order to induce negative correlations that lead
to reduced variability of certain output statistics. An-
tithetic streams, defined as R; = 1 —R,;, are also uni-
formly distributed on the (0, 1) interval. Unlike com-
mon random numbers, replications of design points
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can be made with antithetic streamns (sec Table D).

Table 5: Antithetic Random Numbers

Run Repli- Arrival Serviee
#  cation X Stream  Stream
1 1 05 R, Ry
2 1 0.7 R, R,

3 2 0.5 I, R,
1 2 0.7 R, R,

There are many possibilities for combining the
strategies of independent, common, and antithetic
random number streams. ‘The third variance reduc-
tion technique discussed in this paper, Schruben and
Margolin's (1978) assignment rule, is just one way of
combining these strategies. The assignment rule uses
common and antithetic random number streams in
pairs of “orthogonal” blocks in order to induce both
positive and negative correlations that result in re-
duced variability of certain metamodel coefficients.
(See Box and Draper 1987 for the design requirements
of orthogonal blocking.) If we incorrectly assume that
the 2 design points, x=0.5 and £=0.7, of the M/M/1
queueing example represent orthogonal blocks, then
Table 6 illustrates the assignment rule strategy.

Table 6: The Assignment Rule*

Run Repli- Arrival Service
#  cation z Stream  Stream
1 1 0.5 R, R;
2 1 0.7 R, R3
3 2 0.5 R R,
4 2 0.7 R. R,

* A design with k=1 factor does not form orthogonal
blocks so this design only illustrates the assignment
rule, 1n concept.

Another variance reduction technique that s used
in simulation mectamodeling is control variates. Un-
like the 3 techniques deseribed previously, the use of
control variates does not affect the random number
stream assignments. ‘The control variates technique
only changes the statistical cstimators of the meta-
model coefficients. The basic idea of control variates
is to identify one or more random variables whose
expectations are known and correlated with the sim-
ulated output variable of interest. The new estimator

is computed as the old estimator plus a linear combi-
nation of the control variables. See Bauer and Wilson
(1992) and Lavenberg, Moeller, and Welch (1982) for
more information on control variates.

4 RECENT RESEARCH

In this seetion, we summarize the findings of current
metamodecling rescarch that investigates the variance
reduction techniques described above. Each of these
14 studies makes a significant contribution to the sim-
ulation metamodeling literature.

Schruben and Margolin (1978) develop and present
the assignment rule, thereby sparking research inter-
est 1n this arca. The authors appropriately comment
that the assignment rule’s “true value for simulation
has yet to be fully realized.”

Hussev, Myers, and Houck (1987a, 1987b) investi-
gate the assignment rule in comparison to indepen-
dent streams and common streams using 4 variance-
related design criteria (generalized variance, inte-
grated variance, prediction variance, and variance of
slopes). For both first- and second order metamod-
els, the assignment rule is found to be the preferred
variance reduction technique in most, but not all, ex-
perimental settings.

Nozari, Arnold, and Pegden (1987) develop statisti-
cal inference procedures for analyvzing metamodeling
data obtained with the assignment rule strategy. Ap-
propriate confidence intervals and hypothesis tests on
the 7 coefficients of linear models are derived.

Tew and Crenshaw (1990) examine the effect that
the absence of a pure error component has on the
statistical analysis procedures associated with the es-
timation of metamodel coefficients. They show that
in order to legitimize a proper statistical analysis, at
least one random number stream must be randomly
selected across all design points. The authors also
point out that inducing too much correlation within
a simulation design results in a poor estimate of the
experimental error variance.

Using first-order designs, Tew (1991) investigates
the use of independent versus correlated replications
of the assignment rule strategy. Correlated replica-
tions are achieved by using various combinations of
common and antithetic stream sets. Tew illustrates
that the variances of the metamodel coefficients can
be reduced by using correlated replications but, un-
fortunately, the bias of the coefficients was not con-
sidered in this study.

Tew and Wilson (1992) develop statistical proce-
dures for checking the assumptions associated with
the assignment rule, which include multivariate nor-
mality and the assumed correlation structure. Addi-
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tionally, statistical tests for lack-of-fit to the assumed
metamodel arc presented. Joshi and Tew (1995) ex-
tend these statistical procedures to the common ran-
dom number streams strategy.

Kleijnen (1992) compares ordinary and estimated
generalized least squares for computing the meta-
model’s g coefficients when common random number
streams are used. Interval estimates computed using
the ordinary least squares estimators have good cov-
erage probabilities. Also, it is found that common
random number streams reduce the confidence inter-
val widths of all ¢ coefficients except the intercept,
Bo-

Donohue, Houck, and Myers (1992, 1995) compare
the assignment rule with common and independent
streams using 2 mean squared error criteria (MSE of
predicted responses and MSE of slope coefficients).
For second-order metamodels, the assignment rule
performs well in terms of both design criteria; com-
mon streams perform well only in terms of the MSE
of slopes criterion.

Using central composite designs, Tew (1992) in-
vestigates the use common random numbers across
design points and antithetic random numbers across
replications in comparison to independent random
number streams. The variances of the second-order
metamodel coefficients are reduced by using Tew’s
common/antithetic combination strategy. Bias of the
metamodel coefficients was not considered here.

Schruben et al. (1992) consider the use of antithetic
random number streams in the context of Taguchi’s
parameter design framework. A simple example illus-
trates that this variance reduction technique may be
beneficial for robust designs in a simulation setting.
However, further research using variance rcduction
techniques combined with Taguchi analysis strategies
is called for.

Donohue, Myers, and Houck (1993a, 1993b) in-
vestigate the use of independent streams, common
streams, and the assignment rule for fitting a first-
order metamodel and for sequentially fitting a first-
and second-order 1etamodel using a central compos-
ite design. In terms of 2 different mean squared error
criteria, the assignment rulc was found, in general,
to perform the best of the 3 variance reduction tech-
niques.

Extending the earlier work of Crenshaw and Tew,
Zeimer and Tew (1994) address the probleim of select-
ing an appropriate method for gencrating cxperimen-
tal error when correlated replications of design points
are used. The authors find that the selection of such
a generator is closely linked to its ability to maintain
a prescribed correlation structure. Benefits can be
achieved from the use of correlated replications if the

desired correlation structures are achieved.

Clontrol variates, in combination with common and
antithetic random number streams, are investigated
by Tew and Wilson (1994). For first-order metamod-
els, the combined technique is shown to be superior
over any of the techniques used individually. Kwon
and Tew (1994) extend this research by comparing 3
different methods of combining control variates with
common and antithetic streams. The use of both con-
trol variates and antithetic streams is shown to per-
form the best in terms of prediction variance.

Lastly, the most recently published research in-
volves the application of yet another variance reduc-
tion technique in a simulation metamodeling study.
Hesterberg (1995) uses the importance sampling tech-
nique in a case study of oil inventory reliability at a
large electric power plant and finds the technique to
be very cfficient. Further research on this variance
reduction technique appears warranted.
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