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ABSTRACT

This paper gives an overview of multivariate sta-
tistical techniques that can be useful for analyzing
discrete-event simulation output, and describes some
of the latest directions in research on multivariate
output analysis. A general discussion is given of con-
structing joint confidence regions on the mean vec-
tor of multivariate output from independent replica-
tions of terminating models. The multivariate batch
means method of simultaneous estimation of means
from one long run of steady-state simulation models
is described. References are also given for autoregres-
sive, spectral analysis and regenerative methods of in-
ference, as well as variance-reduction and sequential
techniques.

1 INTRODUCTION

There has been considerable activity recently by re-
searchers on the problem of simultaneously making
statistical inferences on more than one output mea-
sure of interest in simulation modeling (Seila 1982,
1983, 1984, 1990; Chen and Seila 1987; Chen and
Chen 1988; Chen and Cheng 1989; Chen 1991; Munoz
1991; Yang and Nelson 1988, 1992; Charnes 1990,
1991; Charnes and Kelton 1988, 1993; Raatikainen
1993; Gallagher, Bauer and Maybeck 1994). The in-
tent of this paper is to describe some of the latest
directions of research in this area. It will attempt to
highlight some of the important multivariate statisti-
cal techniques that may be found useful in analyzing
simulation output.

The methods presented here will be of most interest
to those analysts wishing to extract more informa-
tion from their simulation models. Novice analysts
looking for basic information on simulation output
analysis should consult simulation textbooks, such as
Bratley, Fox and Schrage (1987) or Law and Kelton
(1991), or one of the tutorial papers published in pre-
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vious Proceedings of the Winter Simulation Confer-
ence and the references therein. This paper is an
update of Charnes (1991).

The next section discusses multivariate output
from simulation models and contrasts multivariate
analysis to univariate. Section 3 discusses terminat-
ing simulation models. Section 4 discusses steady-
state models. Section 5 concludes the paper and gives
references to more advanced techniques of multivari-
ate output analysis.

2 MULTIVARIATE OUTPUT

Most simulation models produce outputs on more
than one measure of interest, and these outputs are
usually cross-correlated as well as being autocorre-
lated. If cross correlation of the output measures
is important to the simulation analyst, a multivari-
ate technique should be used with the output data
generated by the simulation model. Two examples
llustrate the usefulness of considering multivariate
output from simulation models.

Example 1: Bank Lobby Layout. A bank man-
ager is considering changing the present configuration
(Layout 1) of the teller windows in the lobby from one
in which both private and corporate customers are
served by any of the available tellers, to one in which
certain tellers serve only private customers, and cer-
tain tellers serve only corporate customers (Layout 2).
The two different. layouts are illustrated schematically
in Figure 1. Corporate customers are represented by
the crosses () and private customers are represented
by the open circles (o). The bank manager is willing
to change the lobby layout if it decreases the time
spent waiting in the bank by corporate customers,
even if it means the time spent waiting by private
customers increases by a small amount. To help make
the decision, the manager wants to know the correla-
tion between the average times spent waiting by both
types of customers, because she feels that private cus-
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Figure 1: Two Bank Lobby Layouts

tomers may be more tolerant of slightly longer delays
if they observe corporate customers experiencing long
delays when they do.
Example 2 Tandem Queueing System. Two
states of a simple tandem queueing system are shown
in Figure 2. The customers, depicted as open circles
(o), arrive to the system and wait on line, if necessary,
to be served individually by Server 1. The customers
then proceed to Server 2, and wait on line there, if
necessary, to be served individually by Server 2, af-
ter which they depart from the system. Server 1 has
a mean service rate g3 = 1 customer per unit time,
while Server 2 has a mean service rate of us = 10
customers per unit time. If only the total number
n system is observed, the two states appear to be
identical; in both State 1 and State 2, there are six
customers in the system. However, the difference be-
tween the two states is quite noticeable to an arriv-
ing customer who occupies the last spot on line in
Server 1’s queue. In State 1, which has only two cus-
tomers at Server 1 (the slower server), the customer
1s likely to get through the system much more quickly
than in State 2, which has four customers at Server 1.
Thus by looking only at univariate output data (such
as total number in system), rather than multivariate
(such as the 2-dimensional vector of number of cus-
tomers at each server), a simulation analyst might
miss important information about the system that
could be useful for making decisions.

For example, if this simple system represented some
portion of a factory, and the factory configuration
were such that the queues at Server 1 and Server 2
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Figure 2: Tandem Queueing System

were able to share plant-floor space, the plant man-
ager may well be interested in the correlation between
the numbers in queue. Frequent occurrences of the
numbers in queue being large simultaneously (indi-
cated by alarge positive correlation) could require the
allocation of more floor space to the servers’ queues.

By using multivariate statistical methods with the
data obtained from valid simulation models, deci-
sion makers can extract more information from which
to make inferences on the processes being modeled.
Constructing multivariate confidence regions on the
mean vector of the data-generating process is one way
to summarize information about each of the univari-
ate processes composing the multivariate process, as
well as the correlations among processes. The next
two sections describe techniques for constructing con-
fidence regions that could be applied to the two ex-
amples given above.

3 TERMINATING MODELS

There are two different types of discrete-event simu-
lation models that call for different basic approaches
to experimental design as well as to constructing con-
fidence regions on the mean. In the terminating sim-
ulation case, where the system being modeled has
specific start-up and shut-down times (e.g., the bank
described in Example 1, which opens at 9 A.M. and
closes at 3 P.M.), the simulation analyst can make in-
dependent replications of the model, each represent-
ing one complete succession from start up to shut
down.

If the simulation analyst calculates point estimates
of the parameters of interest from each replication
(such as the averages of the time spent in the bank by
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the private and the corporate customers), the result
will be a sequence of independent and identically dis-
tributed (iid) random vectors that can be analyzed
using classical multivariate statistical methods. By
viewing the output as vectors and using multivari-
ate methods, rather than analyzing the components
of the vectors separately with univariate statistical
methods, the analyst can get an estimate of the cor-
relations among the vector components that can pro-
vide useful information to the decision maker about
the process being modeled.

3.1 Joint Confidence Regions

One multivariate technique that can be applied is the
construction of a joint confidence region on the mean
vector. The procedure is based on Hotelling’s T
distribution, and is the generalization to higher di-
mensions of the univariate ¢-distribution confidence-
interval procedure for a single mean. The validity
of the procedure rests upon the assumption of mul-
tivariate normality of the data. See an introductory
multivariate statistics text such as Anderson (1984),
Johnson and Wichern (1988), or Morrison (1976) for
a fuller discussion of this procedure.

Consider a simulation model that is replicated R
times, and that has D measures of interest. The ob-
servations are denoted by X" = (x{7 (" )’

(" denotes matrix transposition), where ,\'L(ir) 1s the
value of the dth measure of interest on the rth repli-
cation. The measure of interest might be the average
cycle time of a specific product, time-average number
in a selected queue, or some other point estimator cal-
culable from each replication. The analyst wishes to
construct a confidence region on the true mean vector
of the parameters i = E [X'7)] = (p1,...,up)"

To form the confidence region, first find X =

LR Xt = (0F xR, XS R
The vector of point estimators X is an unbiased
estimator of the mean vector 4. An unbiased es-
timate of the variance-covariance matrix of X is
S = (1/(R- 1) E (X - X)X — XY, and
a 100(1 — @)% confidence region for the true mean
vector of the parameters of interest is given by the
set of all vectors ® such that (X -@®)'S (X -0) <
(D(R—1)F4.p r-p)/(R(R— D)) where F, p r_p is
the upper (100« )th percentile of the F' distribution
with D and R — D degrees of freedom.

With two parameters of interest, the confidence re-
gion can be plotted as an ellipse in two-dimensional
space. For three parameters, the region is a three-
dimensional ellipsoid. For more than three param-
eters, the region cannot be plotted; however, it is
a straightforward calculation to check whether any

given vector will be in the confidence region, so that
one can casily check for combinations of parameters
that are undesirable (such as short corporate cus-
tomer delays and long private customer delays).

The shape and orientation in parameter space of
the ellipsoid depends upon the magnitudes and al-
gebraic signs of the off-diagonal terms of the matrix
S. Because il is the relative magnitude of the off-
diagonal clements that is important, it is informa-
tive to compute the correlation matrix, C, for the
mean vector. The correlation matrix is calculated as
Cij = S$ij/\/5ii%;;, where s;; is the (i, j)th element of
S. The element ¢;; of C gives the correlation between
point estimator i and point estimator j and thus will
be such that —1 < ¢;; < 1.

Note that the validity of this procedure rests upon
the assumption of multivariate normality and inde-
pendence of the vector observations taken from each
replication. Obtaining independent vector observa-
tions from replications in simulation modeling is not
usually a problem, and averaging over each replica-
tion will tend to make the point estimates normally
distributed. However, the analyst should be aware
that the validity of this procedure rests upon these
two assumptions.

3.2 Simultaneous Confidence Intervals

Because joint confidence regions can be difficult to
interpret, the analyst might want to construct indi-
vidual confidence intervals on the mean of each com-
ponent process in the output vector. Two methods
for doing so are Scheffé and Bonferroni intervals.

3.2.1 Scheffé Intervals

Scheffé confidence intervals (also known as Roy-Bose
mntervals) are the shadows of the ellipsoidal confidence
region on the coordinate axes. Using the elements of
the matrix S given above, the Scheffé intervals are
given by Z; + \/(D(R — 1)F.. p r-ps:;)/(R(R = D))
for ¢« = 1,..., D, where T; is the ith clement of the
vector X.

These intervals define a rectangular region that cir-
cumscribes the ellipsoid given above. Regardless of
the dependence structure of the individual estima-
tors, the overall level of confidence that the Scheffé
intervals cover their respective means will thus be
greater than or cqual to (I — @) when the assump-
tions above hold for the ellipsoidal region.

The Scheflé intervals are easier to interpret than
the ellipsoidal region because they yield a range for
each component of the output vector. However, be-
cause they utilize all the information contained in
the variance-covariance matrix, S, they require more
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computation than do the confidence intervals result-
ing from univariate procedures.

3.2.2 Bonferroni Intervals

A naive approach to analyzing simulation output is
to use univariate procedures on each output measure
without being aware of the limitations of doing so.
One must be careful in constructing more than one
confidence interval from simulation output with the
usual univariate procedures because the overall level
of confidence that all intervals with the same nomi-
nal confidence level will cover their respective means
is less than the nominal confidence level of each in-
terval. The exact amount less is usually difficult to
determine and is affected by the dependence structure
of the univariate estimators; however, the Bonferroni
Inequality yields a simple method of setting the in-
dividual confidence levels for a group of univariate
procedures in order to obtain a lower bound on the
overall level of confidence in the set of inferences.

Let Pr(C; true) = 1 — «; for i = 1,..., D where
C; denotes a confidence statement about the mean
value of the ith component of the output vector. The
Bonferroni Inequality holds that Pr(all C; true) >
1 —(a; 4+ a2+ -+ ap). This result is often used as
follows. If each one of D confidence intervals is con-
structed at the 1 —a/D level, then the overall level of
confidence is at least 1 — « that all D parameters lie
in the D-dimensional box defined by these confidence
intervals.

If the vector X and the matrix S have been calcu-
lated as described above, individual Bonferroni Inter-
vals can be constructed on each component mean as
follows: Z; £ t,/2p.r-1V/$ii/R for i = 1,...D where
ta/2p,rR—1 15 the upper (100a/(2D))th percentile of
the t distribution with (R — 1) degrees of freedom.

An advantage of using Bonferroni Intervals rather
than Scheffé is their ease of construction. Many com-
mercial simulation software packages provide one or
more methods of obtaining confidence intervals us-
ing standard univariate procedures. If so, Bonferroni
Intervals can be constructed by using one of the avail-
able methods with an appropriate choice of the con-
fidence coefficient. The disadvantage is that for large
D the intervals may be very wide, and thus not very
precise. Further, the same caveats in regard to the
independence and normality assumptions given pre-
viously for joint confidence regions apply here. The
actual lower bound on the coverage probability for
the Bonferroni method depends upon the true cover-
age probabilities of the individual confidence inter-
vals. If the univariate confidence intervals do not
obtain their nominal coverage individually, then the
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Figure 3: Comparison of Confidence Regions

Bonferroni Inequality will not ensure that the bound
on the nominal coverage given by the inequality will
obtain.

Figure 3 illustrates the three confidence regions de-
scribed above. The Scheffé and Bonferroni regions are
labeled and the ellipse labeled “E” represents an el-
lipsoidal region obtained as described in Section 3.1.
Similar comparisons have been given by Miller (1981)
and Chen (1991).

The three 90% confidence regions depicted were
constructed from the variance-covariance matrix S =

1‘127 1'227) for R = 22. Without loss of general-

ity, the sample mean vector was taken to be X = 0.
The plot shows the typical pattern in that the Scheffé
region is larger than the Bonferroni region. It also
shows that portions of the ellipsoidal confidence re-
gion are not covered by the Bonferroni Intervals.

4 STEADY-STATE MODELS

In a steady-state simulation, the system being mod-
eled has no specific “start-up” or “shut-down” times.
An example is the simulation of a factory that op-
erates twenty-four hours a day, seven days a week.
In cases like this, the simulation analyst is most of-
ten interested in estimating steady-state parameters
of the model. That is, the analyst assumes that if the
model is in operation long enough, it will reach a state
of statistical equilibrium, in which the means, cross
covariances, and autocovariances (defined below) of
the output process will be invariant to the passage of
simulated time.

As in the univariate case, if the initial conditions for
the simulation are not representative of steady-state,
the simulation must be allowed to “warm up” by run-
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ning for a suitable length of time to mitigate any bias
induced by the non-representative initial conditions.
Schruben (1981) and Gallagher, Bauer, and Mayheck
(1994) give multivariate methods for deciding when
the simulation appears to have reached steady state.

Once the initial transient observations have been
identified, they are usually discarded and the remain-
ing observations are analyzed. However, as in the
univariate case, the autocorrelation problem makes it
more difficult to analyze these data than the serially
independent data obtained from terminating models.
This section deals with analyzing multivariate output
obtained from steady-state models.

4.1 Awutocorrelation Function

Assume that the initial transient observations gener-
ated by a simulation model have been discarded. In
general, if a simulation model produces the station-
ary sequence of D-dimensional vector observations
{Xl,Xg‘ . ,XT}, where Xt = (‘\’u,‘\’gt, .. .,4\'D¢)l
and E[X:] = g = (p1, 2, ..., pp)", the output vec-
tors will not be iid. The dependence among the ele-
ments and across time is characterized by the autoco-
vartance function, T(h) = E[(X; — ) (Xegn — £)']
which is a function of only the lag, h, for a stationary
sequence. For univariate processes, the autocovari-
ance function is a scalar function of h but for mul-
tivariate processes, I'(h) is a matrix. The autoco-
variance of the ith component of the vector output
sequence is given by the corresponding diagonal el-
ement in T'(k), which is denoted 7;;(h). The cross
covariances are given by the off-diagonal terms in the
autocovariance function, +;; (h) (i # j).

In practice, if the observations are simultaneous (all
elements of the observation vector are taken at the
same point in simulated time), and equally spaced in
simulated time, it may be informative to compute the
sample autocorrelation function, R(h), whichis a nor-
malized version of the sample autocovariance func-
tion, G(h), calculated from the simulation output.
The sample autocovariance function is found from the
data as G(h) = S_T (X — X)(Xewn — X)' /(T = h)
for h =0,1,2,...,T — 1. For large h, the estimates
will be calculated from only a few observations, and
thus may be poor; however, much insight can be
gained from calculating these matrices for small lags
(e.g., h = 0,1,2,3). Then the sample autocorrelation
function is computed from the elements of the auto-
covariance function as r;j(h) = g;;(h)//9i:(0)g;;(0).
Because these are correlations, it will be true that
—1<rj(h) <1 Vi j,h

The sample autocorrelation function may reveal
important information about the dependence struc-

ture of the processes being modeled. For example, a
model of a factory with ten work centers on which a
10-dimensional vector of numbers at each work center
is observed at equally spaced timc periods will yield a
(10 x 10) autocorrelation matrix for each lag, h, that
will indicate how much a work center downline may
be affected by backups at previous work centers. High
values of 7;;(0) for instance, will tell the analyst that
the relative (to the mean) number at work center j
will follow closely the relative number at work center
i. High values of r;;(h) will indicate that high (low)
numbers at work center 7 will tend to be followed by
high (low) numbers at work center j, but not until a
lag of h time units later. The matrix autocorrelation
function may be worthwhile calculating for only this
reason—1it gives the analyst more information about
the characteristics of the operation.

4.2 Multivariate Batch Means

Consider a stationary process that produces a se-
quence {X;}7_; of D-dimensional vector-valued ob-
servations. The analyst wishes to estimate the mean
vector i = E(X;) with a joint confidence region. The
multivariate batch means (MBM) method calls for di-
viding the sequence of output vectors into B batches
of M (vector) observations each (where T > BM)
and computing the batch-mean vectors as Y, =
SN X(b—1)m4m/M for b=1,...,B. The B vec-
tors of batch means are then treated as if they are
uncorrelated observations from a multivariate nor-
mal distribution, and standard multivariate statisti-
cal techniques are used to form a confidence region
on the mean vector, [, just as for terminating mod-
els. Let S = Y0, (Y — X)(Ys — X)'/(B — 1) de-
note the sample variance-covariance matrix for the
batch mean vectors, where the point estimator of f
is the D-dimensional vector X = Y7 Y;/m. An
approximate 100(1 — @)% confidence region for /i is
then given by the set of all vectors @ such that (X —
O)YS~{(X-0) < (D(B-1)Fap5-p)/(B(B-D)).
C'hen and Seila (1987) proposed the use of the mul-
tivariate batch means method at a previous Winter
Simulation Conference.

An important step in forming the MBM confidence
region is the determination of the number of vector
observations per batch, M (equivalently, the number
of batches, B). One method of making this determi-
nation is to assume that the batch-means process can
be sufficiently approximated by the VAR(1) (first-
order, vector-autoregressive) model Yy = ®Y,_; + ¢
for b=1,..., B, where ® i1s a D x D matrix of au-
toregression coefficients and the ¢, are D x 1 inde-
pendent and identically distributed vectors of random
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errors drawn from the multivariate normal distribu-
tion. ‘T'hen A/ is chosen such that the null hypothesis
of no first-order serial correlation, 1l5: ® = 0, is not
rejected.

Anderson (1978) suggests Hp: @ = 0 can be tested
with one of the criteria given in Anderson (1984) for
testing the general linear hypothesis. Charnes (1990)
compared these criteria, which include the Lawley-
Hotelling trace criterion, the Bartlett-Nanda-Pillai
criterion, and three slightly different forms of the
Wilks likelihood-ratio criterion. Because the batch
sizes are chosen upon not rejecting Hg, the criteria
were compared on their power to detect departures
from Hy. The conclusion from the comparison was
that there is little difference in the power of each of
these statistics. However, Rao’s (1951) approxima-
tion to the Wilks likelihood-ratio procedure can be
recommended because (7) it has a degrees-of-freedom
correction, which makes it appropriate for a small
number of batches containing a large number of vec-
tors, and (i7) the critical value for the hypothesis test
comes from the F' distribution rather than tabulated
values in Anderson (1984), which makes it possible
to calculate the critical value with a computer al-
gorithm, thus making it amenable to inclusion in a
software package that automates simulation output
analysis.

Rao’s approximation to Wilks’s procedure uses
R ={((ks—7)/D?-[(1—U3)/U'5]) where the scalar
U =1S(0) — S(1)S~(0)=1S(1)'|/|S(0)|, the D~ D ma-
trix $7(0) = SS25(Ys — X)(Yy — X)', the D x D
matrix $(0) = "2 (Y, — X)(Ys — X)', the D x D
matrix S(1) = Zf::,(Yb —X)(Ypo1 — X)', and the
scalars s = /(D4 — 4)/(2D? = 5), r = D*/2—1, and
k = B —1/2. R has approximately the F distribu-
tion with D” and ks—r degrees of freedom (Anderson
1984). A procedure for selecting the number and size
of the batches is to begin with some maximum num-
ber of batches, B — Bpax (D), compute the sequence
of batch means, {Y;,}szl, and test Hy with R. If Hg
1s rejected, decrease B, compute the new sequence
{Y,}E |, and test Hg again with R. Continue until
either Hy is not rejected, or until a prespecified min-
imum number of batches, By (D), 1s reached. If Hy
1s not rejected, compute the region given above. If
the minimum number of batches 1s reached, run the
simulation for a longer amount of time, and repeat
this procedure.

Schmeiser (1982) provides guidelines for choosing
the minimum and maximum number of batches for
the univariate batch means method (D = 1), but
an open topic for further research is the best choice
of the minimum and maximum number of batches
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for multivariate analysis. Yang and Nelson (1992)
give some guidelines for choosing Bmin (D) for D < 5;
however, little else has been published to date on this
topic.

4.3 Simultaneous Confidence Intervals

As in the terminating simulation case, an analyst wil]
probably want to construct individual confidence in-
tervals on the true mean of each component process.
One way to accomplish this is to use the univariate
batch means method with each component process
taken individually (see Schmeiser 1982), while being
mindful of the Bonferroni Inequality when choosing
the percentile of the ¢t distribution used to construct
each interval.

An alternative is to use the elements of S from the
MBM method to compute Ty & to/(2p).B—1/5ad/B
for d = 1,...,D. Note that by using this alternate
method, the analyst is forcing the batch sizes to be
the same for each component process. This is not nec-
essarily true when the univariate batch means tech-
nique is applied to each process individually. How-
ever, by calculating the matrix S from the MBM
method, the analyst can also get an estimate of the
correlation among the estimators of the means. This
will not be true, in general, for any univariate method
applied individually to the component processes.

4.4 Advanced Techniques

More advanced multivariate techniques have been
proposed for analyzing data generated by steady-
state simulation models.

4.4.1 Autoregressive Models

Charnes and Kelton (1993) use a vector autoregres-
sive (VAR) model to obtain confidence regions on the
mean vector, g. This approach differs from the MBM
method in that the VAR method uses the information
contained in the autocorrelation of the output, while
the MBM method attempts to eliminate the autocor-
relation by batching. The empirical evidence shows
that VAR compares favorably with MBM and other
methods.

4.4.2 Spectral Analysis

Kabaila and Nelson (1985) give a frequency domain
time-series technique that was used to make infer-
ences on the earth’s mean atmospheric response to
external forcing. The method uses an estimate of the
spectral density function at frequency zero for con-
structing a confidence region on 7. Charnes and Kel-
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ton (1993) compare this method empirically to MBM
and VAR.

4.4.3 Standardized Time Series

Munoz (1991) extends the method of standardized
time series, initially proposed to estimate a single
steady-state mean, to the case where simultaneous
inferences on the components of /i are desired.

4.4.4 Regenerative Method

The regenerative method is a way to analyze steady-
state data in a manner similar to that used in ana-
lyzing terminating data. The idea is to identify “nat-
urally occurring” cycles in the output processes from
which point estimates of the parameters of interest
can be calculated. Seila (1990) and Chen and Cheng
(1989) discuss estimation in regenerative simulations.

4.4.5 Variance Reduction Techniques

Yang and Nelson (1988, 1992) discuss the extension
of a univariate variance-reduction technique, the use
of control variates, to the multivariate case. Yang
and Nelson’s (1992) work can be used to gain insight
as to the minimum number of batches to specify in
the MBM method.

4.4.6 Sequential Methods

Raatikainen (1993) gives a sequential procedure for
controlling the length of a simulation run so as to ob-
tain confidence intervals on the components of X that
are a pre-specified width or smaller. This method
is based on the Bonferroni Inequality and does not
use the information contained in the off-diagonal cle-
ments of S.

5 CONCLUSION

Multivariate methods must be used if the analyst is
interested in learning about the correlation structure
of the output processes of simulation models. Even if
a joint confidence region won’t be constructed, it can
be informative to calculate the correlation matrix, C,
to gain some insight into the behavior of the model.

(lonstructing an ellipsoidal confidence region is a
multivariate method that takes into account the cross
covariance among output processes, while simultane-
ous confidence intervals based on the Bonferroni In-
equality do not. However, ellipsoidal confidence re-
gions are harder to interpret, especially for D > 4,
when they can’t be plotted. On the other hand, for

higher D, the Bonferroni confidence intervals can be
very large, and thus not very precise.

Rescarch is continuing in developing and refining
techniques for analyzing multivariate simulation out-
putl. Perhaps these methods will one day be included
as part of the standard output routines in the com-
monly used simulation software packages.
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