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ABSTRACT

Stochastic simulation requires a reliable source of ran-
domness. Inversive methods are an interesting and
very promising new approach to produce uniform
pseudorandom numbers.

In this paper, we present evidence that these meth-
ods are an tmportant contribution to our toolbox. We
survey the outstanding performance of inversive pseu-
dorandom number generators in theoretical and em-
pirical tests. in comparison to linear generators. In
addition, this paper contains tables of parameters to
implement inversive congruential generators.

More empirical results as well as an imple-
mentation of inversive generators in C arc avail-
able in the INTERNET from our WEB-site http://
random.mat.sbg.ac.at.

1 INTRODUCTION

Pseudorandom number generators are essential cle-
ments in the toolbox of stochastic simulation. Their
task is to simulate realizations of independent, iden-
tically U7([0, 1[)-distributed random variables. Other
distributions will be obtained by transformation
methods, sec Devroye (1986), and the software pack-
age C-Rand, see Stadlober and Kremer (1992) and
Stadlober and Niederl (1994).

There is a strong need to enlarge this toolbox by
widely different pseudorandom number generators.
We refer the reader to Ferrenberg and Landau (1992),
L’Ecuyer (1992, 1994), Eddy (1990), and Anderson
(1990) for a discussion of some of the deficiencies of
traditional generators.

Pseudorandom number generators are like antibi-
otics. No generator will be appropriate for all tasks.
Any type of generator has some unwanted side-effects.
Hence, we arc in need of an arscnal of pscudorandom
number gencrators with distinct propertics. If two
strongly different generators yield the same outcome
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in a simulation, we will gain confidence in the results.

Many properties of inversive methods are comple-
mentary to those of linear algorithms. Inversive gen-
crators are easy to initialize. Their excellent proper-
tics remain invariant under the choice of parameters.
For certain inversive types this robustness was even
proved for subsequences. We may work with larger
sample sizes on a given architecture. Extensive tables
of paramcters are available for implementation.

In our opinion, inversive methods should not be
viewed as a replacement of linear methods. In view
of their remarkable properties, they are a waluable
completion of our arsenal of uniform generators.

2 INVERSIVE GENERATORS

We discuss three concepts of inversive methods, inver-
sive congruential generators, explicit-inversive con-
gruential generators, and combinations of these al-
gorithms.

Inversive methods may be defined even for compos-
ite moduli. In view of their outstanding performance,
we shall only consider prime moduli. Elaborate the-
oretical analysis has shown that the composite case
is of little practical interest. We refer the reader to
Niederreiter (1995a) for a comprehensive survey of
these results.

For a given prime number p, and for ¢ € Z,, let
=0if c =0 and ¢:= 7L if ¢ £ 0. In other words,
cquals the number ¢P~2 modulo p.

c
i

2.1 Inversive Congruential Generators

Inverswoe congruential generators (*ICG™) are due to
Eichenauer and Lehn (1986). We have to choose the
modulus p, a multiplier «, an additive term b, and an
initial value yo. Then the congruence

Ynt1 = a¥, + b (modp), n>0, (1)
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defines an inversive congruential generator. We de-
note this generator by

ICG(p,a,b,yn).

It produces a sequence (yp, )n o intheset {0,1,..., p—
1}. Pscudorandom numbers &, in [0, 1] arc obtained
by the normalization «p =y, /p.

A prominent feature of the ICG with prime mod-
ulus is the absence of any lattice structure, in sharp
contrast to lincar congruential generators (“LCG™).
In the following scatter plot, all possible points
(“nonoverlapping pairs” of consccutive pscudoran-
dom numbers) (wan,ron41), 1 > 0, In a region near
the point (0.5, 0.5) are shown.
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Figure 1: ICG(2%! — 1, 1288490188, 1, 0)

The proper choice of the parameters ¢ and b will be
discussed in Section 3. An important feature of the
ICG with respect to implementation is the “mother-
son” principle, sce Section 5.

2.2 Explicit Inversive Congruential Genera-
tors

Roughly speaking, the EICG is the “casy-going
brother™ of the ICG. It is due to Eichenauer-
Herrmann (1993a). As we shall sce, the EICG is eas-
ier to handle in practice, for example when produc-
ing independent substreams. The cost 1s a slightly
smaller maximal sample size, as our cmpirical tests
have shown, see Figure 6 in Section 4.

We choose a prime number p, a multiplier a € Z,,.
o # 0, an additive termn b € Zp, and an initial value
ng in Zp. Then

yn =alnn+ng)+b (modp), n >0, (2)

defines a scequence of pscudorandom nunibers in
{0,1,...,p—1}. As before, we put wpi= Yn/p, 0 >0,
to obtain pseudorandom numbers in [0, 1[. We shall
denote this gencrator by

EICG(p,a,b,ng).
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In the definition of EICG(p,a,b,ng), the additive
term b is superfluous. It is easy to scc that the two
generators EICG(p,a,b,ng) and EICG(p,a,0,my),
with

mo =ng +ab  (mod p),

produccidentical output. Hence, in most of our tests,
we shall put b = 0.

.

2.3 Compound generators

Eichenauer-Herrmann (1993b, 1994a) has introduced
a simple technique to combine mversive generators,
the compound approach.

Let p1,p2,... pr be distinet prime numbers, each
pj = 5. For each index 7, 1 < j <7, let (yﬁlj))nzo be
a sequence of clements of Z,, that is purely periodic
with period length p;. In other words,

' 0<n< pit =2,

Let (15,]))7120 denote the related sequence of pseudo-
random numbers in [0, 1[, where

L (3)
J'(nJ) = In . o n>0,
pPj

1<j<n

A sequence (wn)p>o of compound pseudorandom
numbers in [0, 1[ is defined by the congruence

=P 4 40 (mod1), n>0.  (3)
It is clementary to sce that the period of the sequence
(4n)n>o0 cquals A := py ... p,.. We shall write <ICG

for a compound ICG and cEICG for a compound

EICG.

The compound approach allows to combine ICG
and EICG, provided they have full period. This
method has important advantages: we may obtain
very long periods casily, modular operations may be
carried out with relatively small moduli, increasing
the effectiveness of our computations, and the good
correlation structurc of the ICG and EICG is pre-
served. For the latter statement, see Section 3.

We present a scatter plot of a combined ICG,
¢(ICG(1031,55,1,0), ICG(1033,103,1,0), ICG(2027,
66,1,0)). All possible points (22,,T2n41), n > 0, have
been computed. The period of this generator is A =
2158801621.
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Figure 2: A Combined ICG with Three Components

3 THEORETICAL RESULTS

In the theoretical analysis of pseudorandom number
generators, we study the following questions:

(Q1l) What is the maximal period length of the
given type of generator?

(Q2) How to choose the parameters to obtain max-
imal period length?

(Q3) Which algorithms let us obtain such parame-
ters?

(Q4) What can we say about correlations between
pseudorandom numbers and what results hold for the
empirical distribution of samples?

(Q5) What are the regularities (i.c. lattice struc-
tures, ...) of this type of gencrator?

The answers for the ICG arc as follows. We con-
sider ICG(p,a,b,yo), with p a prime. As for (Q1),
Eichenauer and Lehn (1986) have shown that the
maximal period length is p. In the same paper,
the have provided an answer to question (Q2): if
2 — b — a is a primitive polynomial over the fi-
nite field Z,. then ICG(p,a,b,yg) has maximal pe-
riod length. Flahive and Niederreiter (1992) have
extended this result considerably. They have shown
that IN[P-polynomials induce maximal period length.
This approach has allowed Chou (1994) to obtain a
very effective algorithm for IMP-polynomials, thereby
replying to (QQ3). Our tables in Section 5 have been
computed with an implementation of this algorithm.

Question (Q4) is the most difficult to answer. It is
a gencrally accepted approach to study the cmpirical
distribution of overlapping s-tuples

Xp 0= (EnyTnglsee oy Tngs=1)y 112 0,

or nonoverlapping s-tuples
Xn = (Ins,‘l‘nsﬁ-lv‘~'7~l'ns+s—l)a n >0,

in the s-dimensional unit cube [0,1[°, cither with
tools from number theory and statistics, in other

words, with discrepancy, or with geometrical test
quantitics like the spectral test. The behavior of the
points X, is used as an indicator of correlations within
the sequence (J'n)nzo of psecudorandom numbers.

Uniforin pscudorandom numbers «,, n > 0,
should simulate realizations of independent, identi-
cally U([0,1[)-distributed random variables. Hence
the points x, should be approximately U([0, 1[%)-
distributed.  For a given sample P = (xn),/:':_o1 in
(0,1[°, there are several concepts to assess its empir-
ical distribution. From the statistical point of view,
it is natural to compare the empirical distribution
function of the points x,, 0 < n < N, to the target
distribution, which is uniform distribution on [0, 1[*,
by mecans of a classical goodness-of-fit test, the two-
suded Kolmogorov-Smirnov test statistic (“IS-test”).
In number theory, this test quantity is called the star
discrepancy. Niederreiter has developed an impres-
sive technique to obtain discrepancy estimates. It
has allowed to determine the order of magnitude of
discrepancy for most types of pseudorandom number
generators. Usually, these results hold for the whole
period of a generator only and not for smaller sam-
ples, as they are relevant in practice. We refer to the
monograph Niederreiter (1992) and the comprehen-
sive survey Niederreiter (1995a).

The ICG excels in this respect. The discrep-
ancy of full period sets P is of the same order of
magnitude as the law of the iterated logarithm for
the discrepancy suggests, see Niederreiter (1992) and
Eichenauer-Hermann (1994b). An average-case anal-
ysis of the discrepancy of samples has been carried
out by Eichenauer-Herrmann and Emimerich (1994,
1995), with interesting results. It has to be noted that
the only condition on the parameters a and b is that
they must imply maximal period length. Once this
requirement is met, ICG(p,a,b,yo) will have those
excellent correlation properties. This fact stands in
shiarp contrast to the sensibility of the LCG concern-
ing the choice of paramecters.

The spectral test of Coveyou and MacPherson
(1967) is a completely different approach. In its orig-
inal formy, it is a figure of merit derived from certain
exponential sums. In practice, this numerical quan-
tity can only be computed if the set P in [0, 1[* has
a lattice structure. In this special case there exists a
nice geometric interpretation, sce Knuth (1981) and
Ripley (1987).

The spectral test does not apply to the ICG, nor
the EICG, sce the discussion of (Q5) below.

Concerning (Q5), the ICG differs strongly from
lincar methods in its geometrical structure.  As
Marsaglia (1968) has noted for the LCG, “random
numibers fall mainly in the planes”™.  Eichenauer-
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Herrmann (1991) has shown that ICG “avoid” the
planes. Further, ICG pass the lattice test in dimen-
sions that are out of rcach for the LCG, sce Nieder-
reiter (1992, 1995a).

The simple definition of the EICG allows even
stronger results.  Questions (Q1), (Q2), and (Q3)
are casy to answer. The maximal period of
EICG(p,a,b,ng) is p. It will be obtained if we choose
a € Z,\{0}. As for (Q4), EICG bchave like ICG
with respect to discrepancy. Again, the spectral test
is useless, duc to the absence of any lattice structure.

There is a truly remarkable difference between the
EICG and any other type of pscudorandom num-
ber generator, namely ezcellent splitting properties.
As a consequence, the EICG qualifies as one of the
most promising candidates for parallelization. Due to
Eichenauer-Herrmann (1993a), Niederreiter (1994),
and Eichenauer-Herrmann and Niederreiter (1994),
a thorough theoretical assessment of the behavior of
substreams and of general types of s-tuples x, is
known. These results ensure against long-range cor-
relations, in sharp contrast to the LCG. We refer to
De Matteis and Pagnutti (1990) for the latter.

Niederreiter (1994) has shown that the explicit-
inversive method yields optimal behavior under the
lattice test. There are no regularities with respect
to hyperplanes. As with the ICG, explicit-inversive
pseudorandom numbers avoid the hyperplanes. This
replies to (Q5).

The compound approach preserves the excellent
properties of the ICG and EICG. The answers to
(Q1), (Q2), and (Q3) follow directly from the above
results for the components. Compound inversive gen-
erators have the same outstanding correlation prop-
erties as single inversive generators, see the survey
of Eichenauer-Herrmann and Emmerich (1995). This
answers (Q4). Question (Q5) is still open, but there
is some empirical evidence. All scatterplots show the
same nonlinear structures as single ICG and EICG.

3.1 An Important Remark

The theoretical assessment of pseudorandom number
generators is sometimes viewed as being “esoteric”.
This fact is partly due to the abstract language in
which the results are presented.

Theoretical tests of a certain pseudorandom num-
ber generator cannot guarantee that samples from
this generator will pass a given statistical test. In
the first type of tests we are forced to consider very
large samples, usually the full period of the gencrator.
This limitation is due to the mathematical methods
involved. In empirical tests, we consider much smaller
samples, as they appear in the practice of simula-

tion. Alas, from the behavior of very large sample
we cannot reason on the performance of small sam-
ples. The missing mathematical link between theo-
retical and empirical tests has not yet been found.
Nevertheless, almost three decades of practical expe-
rience have shown that certain theoretical measures,
such as discrepancy or the spectral test, are reliable
indicators. If a generator performs well with respect
to these tests, its samples will pass a large class of
stringent empirical tests.

Theoretical test quantities like discrepancy or the
spectral test cannot be computed for samples as they
appear in practice. Either the computational com-
plexity is prohibitive, as in the case of discrepancy,
or the test is not defined, as it happens to be the
case for the spectral test. There is a definite lack of
test quantities that are relevant in theory as well as
in numerical practice.

4 EMPIRICAL RESULTS

As the performance in theoretical tests is no guaran-
tee, but only an indicator of what we may expect in
practice, empirical testing of pseudorandom number
generators is an absolute necessity. A popular miscon-
ception is to equate testing pseudorandom numbers
with testing “randomness”. The latter term is un-
defined in statistics. No random number generator is
“more random” than any other. We propose to forget
about the misleading term “randomness” and to con-
centrate upon the original purpose of pseudorandom
number generation. The objective is to get reliable
results in stochastic simulation. No pseudorandom
number generator is appropriate for all tasks. As a
consequence, we shall try to identify statistical tests
that are similar to our simulation problem. If a gen-
erator passes these tests, we may expect “good” sim-
ulation results from it. For our notion of “goodness”,
see Wegenkittl (1995). Certain statistical tests have
proven their relevance for a large number of problems
encountered in practice.

As a first example of such a test, we would like to
check if the bits in the binary representation of pseu-
dorandom numbers z,, n > 0, simulate realizations
of independent random variables, equidistributed on
the set {0,1}. The following test design is due to
Leeb (1995), who has also contributed Figures 3 and
4. From the binary representation of every coordi-
nate of the nonoverlapping s-tuple (zns, Tns41s -+
Tnsts—1), we take a block of digits that starts at the
k-th digit. We perform this operationon N = 6-25 s-
tuples. This procedure will yield a quantity t1(s, k1)
that simulates the upper tail probability T) of a
x?—distributed random variable. T, is an equidis-



Inversive Pseudorandom Number Generators 259.

tributed random variable on [0, 1[. In a second step,
we compute the value of ¢ (s, k,!) for 64 distinct con-
secutive samples of size N. We compare the empirical
distribution of these 64 numbers to the distribution
of 71 by means of a two-sided Kolmogorov-Smirnov
test statistic. We denote its value by t(s,k,!). The
distribution of the KS-statistic is known. To a level
of significance of 0.01, there corresponds the critical
region [1.63,00[. The following figures illustrate the
results for the Ansi-C generator, see Figure 3, and
ICG(2%'-1,1,1,0), see Figure 4. The parameters are
s=4,k=159,...,21and !l = 1,2,...,5. Large
values of t2 have been truncated to keep the graph-
ics in scale. The ICG is clearly superior, the LCG
performs poorly.

2(4,k,1)

1.5
£2(4,%,1)
1

Figure 4: ICG(2% - 1,1,1,0)

Many models in stochastic simulation have the
form

Y = g(Xn)Xn+11""X"+M"1)’ (4)

n=0

where g : [0,1[¥ — R is some given function and the
X, are independent, identically U([0, 1[)-distributed
random variables. Asthe M-tuples overlap, the usual
x%-test cannot be applied. This approach leads to
the important overlapping M-tuple test of Marsaglia
(1985).

The M-tuple test is a stringent test. Wegenkittl
(1995) gave a detailed proof of the distribution of

this random variable that is missing in Marsaglia’s
paper. The following test design and Figures 5 and
6 stem from Wegenkittl (1995). It is an application
of the M-tuple test. From every component of an
overlapping 5-tuple (znp,Zn+1,.-.,%n+a) of pseudo-
random numbers z,, € {0, 1[, we take the first four bits
in its binary representation. Then, for a given sam-
ple size N, we compute 32 values of the —theoretically
equidistributed— upper tail probability of the M-tuple
test. In the following figures, the sample size ranges
between 2!% and 226. In Figure 5, we plot the 32
values of this test statistic. The resulting patterns
should be irregular. If, for a given sample size N, the
corresponding box is either totally white or black,
the generator has failed miserably. For example, the
Fishman and Moore LCG begins to break down from
N = 2% onwards. In Figure 6, we show the result of a
two-sided KS-test applied to these 32 values. Values
of the KS-test statistic greater than the critical value
1.59 that corresponds to the significance level of 1%
are shown in dark grey. We compare the following
PRN generators:

EICG(2! — 1,1,0,0), short “EICG1”

EICG(23! - 1,7,0,0), short “EICG7”

ICG(23! - 1,1,1,0), short “ICG”

LCG(2%! — 1,950706376,0, 1), short “FISH”
LCG(ZM, 1103515245,12345,12345), short “ANSIC”
LCG(231 —1,16807,0,1), short “MINSTND”
LCG(2%1,65539, 0, 1) short “RANDU”

“FISH” was recommended by Fishman and Moore
(1986) because of its excellent lattice structure. “AN-
SIC” is the Ansi-C system generator. The call
rand(0) is equivalent to our initialization. “MIN-
STND?” is the “minimal standard” generator of Park
and Miller (1988) , where “RANDU” is also discussed.
The latter is an unlucky product of IBM.

Figure 5: The Distribution of the Upper Tail
Probabilities of the M-Tuple Test Statistic
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Figure 6: The Values of the KS-Test Statistic

Our third example is the run test. Since Knuth
(1981), the run test has proven to be a very reliable
test to detect correlations within a sample (z,)N
of pseudorandom numbers. We refer to Fishman and
Moore (1982) for empirical results concerning LCGs.

Entacher (1995a, 1995b) has studied the runs up
statistic. For a given sample of size N, 100 values of
this asymptotically x2-distributed quantity have been
generated. In a second step, a two-sided KS-test was
applied to these values to check the goodness-of-fit.
The following figures show the results for the mini-
mal standard generator and for EICG(2%!—1,1,0,0).
The two horizontal lines represent the critical values
of the KS test statistic that correspond to the signif-
icance levels 0.05 and 0.01. The sample size ranges
from 212 to 221. We have considered the subsequence
(277n)n>0. Similar results hold for other LCG and
EICG, see Entacher (1995b). Apparently, large sam-
ples of the LCG have an increasing tendency to fall
into the critical region.
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Figure 7: Run Test for MINSTD

25

15

05 /\/“‘_‘\//\

13 4 15 16 17 18 19 20 21

Figure 8: Run Test for EICG1
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As a final remark in this section, we would like
to draw the reader’s attention to the fact that all
our tests are two-level tests in the sense of L’Ecuyer
(1992) and that we have varied the sample size. This
careful test design is not as common in the pub-
lished literature on pseudorandom number generation
as one would wish.

5 TABLES OF PARAMETERS

If we want to implement ICG or cICG, we shall need
pairs a,b of parameters such that ICG(p,a,b) will
have period p. As we have pointed out in Section
3, the polynomial 2% — bz — a will have to be an IMP
polynomial.

We would have to apply Chou’s algorithm every
time we need a different ICG, even if the modulus
p remains constant. This is the common situation
with pseudorandom number generators. For exam-
ple, in the case of the LCG, we would have to carry
out complex computations with the spectral test to
determine new parameters. This is a task for special-
ists. Again, inversive methods are different. There
is a new approach that allows us to implement many
“descendants” from one single ICG with maximal pe-
riod.

For every “mother” ICG(p,a, 1) with period p, ev-
ery “son” ICG(p,ac?,c) will have maximal period p,
provided we choose ¢ # 0 in Z,, see Eichenauer-
Herrmann and Emmerich (1994). As we have seen in
Section 3, all these ICG will have the same excellent
theoretical properties. Hundreds of empirical tests
provide strong evidence that this extraordinary fact
is also true for the performance of ICG in empirical
tests.

We present four tables of mother ICG for small
prime moduli p. These parameters allow the imple-
mentation of compound ICG with three components
on 32-bit architectures. The last two tables exhibit
families of ICG, one mother and five sons each, where
each son has a multiplier ac? below 21¢. Such multi-
pliers are preferable on 32-bit processors for reasons

of computational efficiency of the modular inversion
involved.

Table 1: p = 1031

Table 2: p = 1033

1 849 1 19 413 1
21| 345 1 2 || 878 1
3 55 1 3 || 595 1
4 | 116 1 4 || 522 1
5 || 441 1 5 || 818 1
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Table 3: p = 1039

Table 4: p = 2027

(ol an ] bn] Lol an ] bn
T 13 1 L[ 59 1
2 || 481 1 o | 1877 || 1
30 760 || 1 3| 300 1
1| 1028 | 1 1 837 1
5 136 ] 1 5 1048 || 1

Table 5: p = 2147483053
|7 a I b ” act | ¢ |
858993221 | 1 || 22211 | 11926380

579 | 24456079
11972 | 62187060
21714 | 94901263
4594 | 414183289

Table 6: p = 2147483647
,7 a I b || act | (:J
1288490188 | 1 9102 | 36884165
14288 758634
21916 | 71499791
28933 | 59217914
31152 | 48897674

6 CONCLUSIONS

The results of our assessment of inversive pseudoran-
dom number generators with prime moduli can be
sumrarized as follows:

(i) the choice of parameters is simple, even trivial
in the case of the EICG,

(ii) initialization is trivial,

(iii) the excellent theoretical and empirical prop-
erties of inversive methods remain stable under the
variation of parameters, provided we have maximal
period length,

(iv) the outstanding theoretical propertics remain
invariant under the compound approach,

(v) the EICG has remarkable splitting properties
which have been tested extensively for disjoint sub-
streams, with excellent numerical results,

(vi) hundreds of empirical results imply that we
may work with considerably larger samples than in
the case of LCG, and

(vii) the modular inversion involved causes ac-
ceptable slow-downs when generating pscudorandom
numbers: the time factor is less than 3.0 in compar-
ison to the LCG, provided the simple guideline con-
cerning the multipliers is respected (see Section 5).
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