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ABSTRACT

In this paper, we introduce a set of SIMAN/ARENA
language constructs. These constructs are intended
to add correlated variate generation and importance
sampling capabilities to the SIMAN/ARENA simu-
lation environment. It is our purpose to demonstrate
that such enhancements are feasible in virtually all
simulation languages. These extensions are useful in
the analysis of rare events and/or in systems driven
by processes exhibiting some degree of correlation.
Models arising in communications, manufacturing,
physics, and biology may require this type of simula-
tion capability. We describe how the constructs func-
tion, including activation, parameter specification,
and behavior. In the case of the correlated variate
construct, we describe the Markov modulation used
to generate our correlations. For the importance sam-
pling construct, we discuss the class of “exponentially
twisted” changes-of-measure implemented within our
construct, and provide some explanatory theoretical
background.

1 INTRODUCTION

The rapid evolution of simulation tools over the last
few years has greatly improved the efficiency of the
model implementation process. Simulation languages
have been extended to allow for a wider variety of
constructs from which models can be built. More re-
cently, graphical interfaces to the model building pro-
cess have become popular. In addition, templates,
which provide simulation design environments tai-
lored to a number of specialized application areas,
have become indispensable to many practitioners. It
is now common for simulation tools to include tem-
plates for manufacturing systems, communications,
transportation, and other areas. These enhancements
have helped reduce the learning curve, shorten the de-
velopment period, and add greater value to the end
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result of the simulation process. The presence of these
tools to aid model building has had a significant im-
pact in the simulation world.

The field of output analysis for stochastic simu-
lations has also seen major developments and im-
provements. Recent developments include powerful
and efficient methods useful in the areas of rare event
probability estimation, parametric sensitivity analy-
sis, and stochastic system optimization. (See for ex-
ample, Glynn & Iglehart 1989, Glynn 1987).

It is recognized that these 1deas have not been im-
plemented in high level simulation languages. As
a result, applying these techniques when construct-
ing simulation models becomes a complicated pro-
cess. The work required to apply output analysis
techniques may in some cases require model logic to
be modified, data to be imported and/or exported
from outside applications, and in the worst case, low
level programming language code to be compiled and
incorporated into the simulation. This is especially
true when we speak of correlated variate generation
models and certain variance reduction techniques.

With this in mind, it is our goal to provide a set of
easy-to-use constructs within the SIMAN simulation
language environment, thereby making implementa-
tion of these features more palatable. One set of con-
structs allows for easy invocation of correlated variate
generation, using the Markov modulated model. The
second extension we have developed allows us to ap-
ply a certain class of importance sampling “changes-
of-measure” within the SIMAN/ARENA modeling

environment.

Recent research work in the communications area
has been a motivation for the implementation of these
constructs. Anick et al. (1982), Kesidis et al. (1993),
Stern and Elwalid (1991) as well as others have used
Markov modulation to model the arrival of informa-
tion to multiplexors, switches and processors in com-
munication networks. Markov modulation is seen as
a natural modeling technique in this setting because
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the rate at which information arrives to communi-
cation networks fluctuates randomly over time, often
with a high degree of correlation. Estimation of buffer
overflow probabilities in communication networks by
the use of simulation has been discussed in Parekh
and Walrand (1989), Chang et al. (1994), Nicola et
al. (1994), and Shahabuddin (1994). To get reason-
able confidence intervals for performance measures of
interest, conventional simulations need to be run for
prohibitive lengths of time. The aforcmentioned pa-
pers suggest that importance sampling can cut down
on simulation time hy several orders of magnitude.

We have abided by the following three rules while
developing these constructs. First, the constructs
must be easy to use, requiring only a minimal set
of parameters to be specified. Secondly, they should
not be tied to particular models or performance mea-
sures. Thirdly, the constructs adhere to the general
block structure followed by the SIMAN simulation
language.

The organization of the paper is as follows. The
Markov modulated variate processes and correspond-
ing constructs are presented in Section 2. Section 3
summarizes the theoretical foundations of importance
sampling and presents the construct used to apply
this methodology. The concluding section presents
our recommendations for future work. The appendix
provides complete specifications of the constructs as

well as directions for access of the constructs via ftp
and the World Wide Web.

2 CORRELATED
SION

VARIATE EXTEN-

The method we use to induce autocorrelations into se-
quences of variates relies upon a background discrete-
time Markov chain (DTMC) X = (X, :n > 1) or
continuous-time Markov chain (CTMC) X = (X(t) :
1 > 0). In the discrete-time model, the behavior of .\
induces autocorrelations into a sequence of variates
(B :m > 1). When the n’th variate is generated, the
system observes the state of the DTMC and gener-
ates a variate having distribution associated with the
obhserved state. In the continuous-time model, the
rate at which a counting process experiences jumps
is modulated by the CTM(® X. We require that .\
have finite state space in both versions.

Markov modulation has been widely used to model
systems in which the inter-event times exhibit statis-
tical dependencies. Similarly, 1t has also been used to
model arrival processes whose arrival rates vary ran-
domly in time. In this context, the source responsible
for introducing entities into a system can be consid-
ered to be in one of several states at any given time.

These point processes are referred to in the literature
as Markov modulated arrival processes.

2.1 Discrete-Time Modulation

In this case, we are interested in generating a se-
quence of variates (3, : n > 0) whose distribution de-
pends on the states visited by a discrete-time Markov
chain X = (X, : n > 0). Let S be the state space
of our Markov chain, P = (P(z,y) : z,y € S) be the
transition matrix, and g = (p(z) : € S) the initial
distribution. .\ is fully characterized by the initial
distribution g and transition matrix P. Define, for
cach » € S, a distribution function F(z,-). We say
that the 3,’s are discrete-time modulated by X if

P{ <ty, B S tal X} =[] FOXGL 1),
=1

Consider the event-stationary version of the
discrete-time process (B, : n > 0); this amounts
to starting X according to its stationary distribution
= (m(z) : z € S). When fitting Markov modulated
models to real world data, one may want to consider
the mean, variance, and k-step autocovariances asso-
ciated with this stationary sequence. These can be
computed from our model as follows:

ExBp =Y m(z)v(z)

€S
varsfn = Y w(x)(o*(z) + v (x)) = (Exfba)*
TES
cove(fo, Bn) = D m(@)(P"(x,y) — 7(y))v(@)v(y)
r,y€es

where v(r) = E(fo|Xo = ), 0%(x) = var(BolXo =
z), and (P (z,y) : ¢,y € S) are the n-step transition
probabilities of X .

At this point it is worth emphasizing that this vari-
ate generation model can be used in any of several
ways. As indicated above, one may choose to have
Bo, b1, B2, ..., B, represent inter-event times; for in-
stance, inter-arrival times of entities to a system or
consecutive service times at a processing unit. How-
ever, one could also choose this sequence to represent
the number of arrivals at times & = 0,1,2,... in a
discrete-time simulation.

To be more specific, suppose we consider using
this variate generation method to model arrivals to a
communications network operating in discrete-time.
Packets arrive to a terminal node in our network ac-
cording to an on-off source model. The source expe-
riences active periods and silent periods whose dis-
tributions are geometric with parameter pgetive and
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Dsilent Tespectively. When active, the source produces
a Poisson number of packets with mean A in a unit
of discrete-time. When silent the source produces no
packets. Let us also consider the source to be in the
silent state initially.

To construct the arrival process, the transition ma-
trix P for the Markov chain is defined as:

pP= Pactive 1 — pactive
1- Psilent DPsilent

The initial distribution is:
p=[0 1].
The variate mass functions f;(.) are defined as:

e~ ANk
factive(k) = X

for k>0

1 ifk=0
0 otherwisg.

Fatne(h) = |

We will describe how the SIMAN extensions can be
used to construct this arrival process model in Sec-
tion 2.3.2.

2.2 Continuous-Time Modulation

Continuous-time modulation is inherently different
from discrete-time modulation. Discrete-time mod-
ulation works directly with the variates generated
(i.e. inter-event times, arrival quantities, etc.), while
continuous-time modulation only works directly with
cumulative counting processes. In discrete-time mod-
ulation models, the state of the modulating process
changes only at event transition epochs; not so with
continuous-time modulation models.

Describe below is a form of continuous-time modu-
lation known as the Markov modulated Poisson pro-
cess (MMPP). In this case, the instantaneous arrival
rate is modulated by the state of a continuous-time
Markov chain. When the Markov chain is in state
z, arrivals occur according to a Poisson process with
arrival rate A(z). Thus, the goal is to construct a
Poisson-like counting process (A(t) : ¢ > 0) modu-
lated by the CTMC X = (X(t) : t > 0). For exam-
ple, A(t) might represent the cumulative number of
arrivals over [0,].

Let S be the state space of our Markov chain, Q =
(Q(z,y) : z,y € S) be the associated generator of .Y,
and g = (p(z) : z € S) the initial distribution. Define
A = (XMz) : ¢ € S) to be the set of instantaneous
arrival rates corresponding to the different states in
the state space of the Markov chain. Specifically, it
1s assumed that

P{A(t+h) — A(t) = 0|X} =1 - MX(t))h + o(h),

P{A(t+h) — A(t) = 1

N} = AN (2)h + o(h),

and

P{A(t+h) — A(t) > 2|X} = o(h),

as h | 0.

Suppose N = (N(t) : t > 0) is a unit rate Pois-
son process, independent of X. We can construct an
MMPP A = (A(t) : t > 0) by setting A(t) = N(I'(t))
where T'(t) = fot A(X(s))ds. For a more in depth
treatment of this material, including moments and

conditional moments for inter-arrival times, see Fis-
cher, Meier-Hellstern (1993).

2.3 Invoking the Constructs

Our correlated variate enhancements include three
new SIMAN constructs. The first two deal with
the discrete-time model, while the third modulates
in continuous-time. The first construct is used to
generate a general sequence of autocorrelated vari-
ates. The second construct is used to introduce en-
tities into a discrete-time simulation where the batch
sizes introduced at each unit of discrete-time are au-
tocorrelated. The third construct enables the user
to introduce entities into a simulation according to a
MMPP. For full specifications of these constructs see
Appendix A.

The parameters used to determine our Markov
chain, the variate distributions in the case of the first
two constructs, and the arrival rates in the case of
the last construct are specified in the experiments file.
We suggest using the EXPRESSIONS element to de-
fine these values. The PARAMETERS element can
also be used to specify the transition matrices, gener-
ators, and/or initial distributions but we have found
the EXPRESSIONS element to be more suited to this
task. More information on these built in SIMAN el-
ements can be found in Appendix E of Pegden et al.
(1995) or in the SIMAN V Reference Guide.

2.3.1 General Variate Generation: MMDT

In the following example, suppose we would like to
generate a sequence of random variables modulated
by a three state discrete-time Markov chain with state
space S = {1,2,3}. The transition matrix for this
Markov chain is

2 4 4
P=15 5 0
2 0 8

and the initial distribution is

p=[5 5 0].
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We choose state 1 to be associated with a uniform
distribution over the interval [5, 10], state 2 with the
constant 5, and state 3 with an cxponential distribu-
tion of mean 10.

The following “expressions” can be used in the ex-
periment file to define the appropriate parameters.

EXPRESSIONS:PM(9), .2, .4, .4, .5,
.5, 0, .2, 0, .8:
mu(3), .5, .5, O:
ProcessTime(3),
UNIFORM(5,10),
5,
EXPONENTIAL(10);

Note that a one dimensional array with |S|* elements
is used to represent our transition matrix. The con-
structs require transition matrices and generators to
be specified in a one-dimensional array format.

The above values are referenced in the model file by
the MMDT construct in the same fashion that built-
in SIMAN blocks or elements reference EXPRES-
SIONS. For example, we can choose the variate se-
quence to be used by a delay block in a simulation
model. This would be accomplished as follows.

DELAY: MMDT(1, PM, u, ProcessTime);

The first argument to the construct is an identifier
which can be a number or a name. The second argu-
ment, PM, identifies the expression representing the
transition matrix. The parameter u references the
initial distribution vector. ProcessTime, the last
argument, is the collection of distribution functions.

2.3.2 Discrete-Time Arrival Process Con-
struct: MMDTCREATE

Now, suppose we would like to use our Markov
modulated model to generate arrivals to our system
in discrete-time. SIMAN introduces entities into the
simulation through the use of the CREATE block or
the ARRIVALS block. We have created a construct
named MMDTCREATE that operates exactly like
the CREATE block, only our construct introduces
batches of entities whose batch sizes are modulated
by a DTMC.

Consider the communications network example de-
veloped earlier in this section. The parameters can be
specified in the experiment file as follows:
EXPRESSIONS:PM(4), .95, .05, .01, .99:

mu(2), 1, O:
Batching(2), Poisson(10), 0;

The MMDTCREATE block can be invoked in the
model file as follows:

MMDTCREATE:1, PM, mu, Batching;

The parameter list passed to the MMDTCREATE
construct is identical in form to that of the MMDT
construct. Note that the set of distributions passed
to this construct can only assign mass to the non-
negative integers. It is also worth menitioning that
there are a few optional arguments which can be
passed as well. These arguments and the appropri-
ate syntax for all the constructs are described in Ap-
pendix A.

2.3.3 MMPP Construct: MMPPCREATE

The MMPPCREATE construct follows the same ar-
gument form used by our previous two constructs.
Only now, the first argument is the generator @ in
a one-dimensional array format, and the third argu-
ment is an array of arrival rates. The following is one
possible valid EXPRESSION specification and con-
struct invocation.

EXPRESSIONS:QM(9), -10, 6, 4, 1.5,
-2.5, 1, 0, 5, -5:
mu(3), 1, O:
Rate(3), 100, 10, 25;

MMPPCREATE:1, QM, mu, Rate;

3 IMPORTANCE SAMPLING EXTEN-
SION

Importance sampling is a variance reduction tech-
nique that can be applied to a broad class of stochas-
tic simulations. It is especially useful in “rare event”
simulation contexts. The idea is to modify the
stochastic dynamics of the system, in order to cause
the rare event to occur more frequently. To com-
pensate for the fact that the dynamics have been al-
tered, one needs to compute a quantity known as the
likelihood ratio. Applying the likelihood ratio to the
performance estimates derived from the simulation
adjusts for the altered dynamics, and provides esti-
mators that are valid for the original system.

For example, one might be interested in comput-
ing buffer overflow probabilities in a queueing con-
text. In order to increase the likelihood of observ-
ing such a buffer overflow event, one might alter the
stochastic dynamics of the arrival sequence, so that
the arrival rate is increased. In other words the inter-
arrival distribution could be modified to increase the
arrival rate. In a Poisson arrival setting, this would
Just amount to increasing the arrival rate of the Pois-
son process. Altering such a distribution is known,



Extensions to SIMAN/ARENA 289

in the importance sampling literature, as a “change-
of-measure.” In fact, it turns out that in the buffer
overflow context just described, one generally wants
to modify both the inter-arrival distributions and
the processing time distribution. This is typical of
discrete-event simulation applications of importance
sampling; some or all of the basic “building block”
distributions underlying the simulation may be al-
tered, so as to force the rare event of interest to occur
more frequently. The “building block” distributions
include both the event scheduling distributions and,
in some simulation settings, the distributions that are
used to route entities through the system.

As indicated earlier, it is critical, in applying im-
portance sampling, to compute the corresponding
likelihood ratio. A key component of the constructs
described below is an associated computation of the
corresponding likelihood ratio. It turns out that the
overall likelihood ratio for a given simulation is just
the product of the likelihood ratios associated with
each altered distribution. As a consequence, it is suf-
ficient that our construct compute only the likelihood
ratio associated with each individual distribution. A
formal treatment of these ideas is presented in Glynn

. & Iglehart (1987).

3.1 Change-of-Measure Via Exponential

Twisting

The choice of appropriate change-of-measure in a
discrete-event simulation setting is a difficult prob-
lem. A number of theoretical papers on the sub-
ject have suggested using an appropriate “exponen-
tial twisting” of the distributions embedded in our
simulation model. For instance, let us suppose our
simulation model requires us to generate a variate .Y
with distribution F'. We can embed F' in a parametric
family of distributions {F'()} if we let

Fy(dz) = F(dz)exp(fz — ¢(0)) (1)

where ¥(6) = log E exp(6.X) is the cumulant generat-
ing function of the r.v. X. The theory of “large de-
viations” makes clear that such “exponential twists”
are often asymptotically optimal, in the sense that
the variance of our estimator is minimized; see, for
example, Billingsley (1979) and Bucklew (1990).

It turns out that many families of distributions are
closed under “exponential twisting” in the sense that
Fy is of the same parametric form as is F'. For contin-
uous random variables, the exponential, gamma, and
normal distributions belong to this group. In addi-
tion, the Poisson, Bernoulli, binomial, and geometric
distributions are discrete random variables exhibiting
this property. Furthermore, a similar method can be

used to accomplish an exponential change-of-measure
for the Markov modulated processes described in Sec-
tion 2.

For example, let us show that the family of expo-
nential distributions is closed in the above sense. The
distribution function of interest is:

F(dz) = Ae~*dz.

Our twisted distribution is:

-1
Fe(dx) = Ae—)\IeGJ: </\—i5) dr

= (A=0)e~ P07 dy,

which (for real values of # < )) is the distribution
of an exponential random variable with parameter
(A —9).

Similarly, we can derive this closure property for
the binomial distribution. Let N be a binomial ran-
dom variable with parameters p and n. Then:

PIv =4 = (} ) -prt

Now, consider the twisted mass function,

Y k(1 _ \n—k 0k
PN = k]ef* _ <k>P (I-p)"Te
Eexp(dN) —  (1—p+pe®)n

9 k n—k
_(n pe 1-p
_<’C> (1—p+pe"> (1—p+pe") ’

which, for all real values of 6, 1s the probability mass
function of another binomial random variable.

Here are the exponentially twisted parametric dis-
tributions implemented within the SIMAN/ARENA
importance sampling simulation environment;:

A. Poisson(A) The distribution of the twisted Pois-
son random variable with mean X is that of a
Poisson random variable with mean Ae?.

B. Discrete(pi, v1, p2, v2, P3, U3, ..., Pn, Un) The
mass function of SIMANs built in empirical Dis-
crete distribution is twisted exactly as we have
specified above. Suppose N is an exponentially
twisted random variable coming from this dis-
crete distribution. The new probability N takes
on the value v; is (p; — pi—1)e®”'/Ee®N. Note
that the p;’s represent cumulative distributions
in SIMANs discrete distribution construct.

C. Exponential(A) As shown above, an exponen-
tial with parameter A when twisted becomes an-
other exponential with parameter (A — 6).
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D. Gamma(a, ) The derivation of the twisted
gamma distribution is much like that of the ex-
ponential. A Gamma(a,3) r.v. when twisted
becomes a Gamma(a, 3/(1 — 8)).

E. Normal(y, o) The distribution of a twisted
Normal random variable with mean p and vari-
ance o2 is that of a normal random variable with
mean (g + 0>60) and variance o-.

F. MMDT Process(P, F,1) Using a slightly dif-
ferent approach, twisting the dynamics of
the discrete-time Markov modulated process
amounts to altering the transition matrix P =
(P(x,y) : £,y € S), as well as twisting the col-
lection of distributions F' = (F(z,:) : z € 5)
in the standard way described by Equation (1).
Define ¢g(z) = E(e%°|Xg = z). The new tran-
sition matrix Py = (Py(z,y) : z,y € S) 1s derived
by setting

_ %a(y) hely)
Y= e hele)

where &5 = (do(z,y) : z,y € S) is a matrix
with ¢4(z,y) = P(z,y)de(y), sp(Ps) its maxi-
mal eigenvalue, and hg = (ho(z) : = € S) the
corresponding right eigenvector.

P(z,y)

G. MMPP(Q, A, ) This exponential change-of-
measure 1s accomplished by modifying the gen-
erator Q. Set A = diag(A(z) r € S).
Let py be the largest eigenvalue of the matrix
(Q+ (e — 1)A) and hg = (he(z) : z € S) the
corresponding right eigenvector. The new gener-
ator Q¢ = (Qo(z,y) : z,y € S) is related to Q

via
Qo(z,z) = Qz,z)+ (e — 1)A(z) — pe
Qo(z,y) = ::g))Q(z,y) for z # y.

Related derivations and theoretical results on the
effect achieved by twisting Markovian models like
those assumed by our Markov modulated constructs,
see Andradottir et al. (1995), Chang et al. (1994),
Kesidis et al. (1993), and Shahabuddin (1994).

3.2 General Change-of-Measure

In principal, any distribution having finite or compact
support is one whose measure can be twisted in the
fashion described by our previous section. The im-
plementation of algorithms to generate random vari-
ables coming from general twisted distributions are
notably more complex. Some suggested algorithms

for Weibull and truncated Normal random variables
are provided in Nakayama (1991).

In order to keep implementation of the constructs
manageable, we have limited support of the built-in
exponential change-of-measure feature in our impor-
tance sampling construct to include only those vari-
ates listed in the previous section.

In addition to supporting exponential changes-of-
measure, our SIMAN/ARENA importance sampling
extension can be used to implement general changes-
of-measure. When invoking the importance sampling
in this fashior, the user must specify the new distri-
bution of the variate as well as the original distribu-
tion. The only restriction we impose on the change-
of-measure 1s that the support of the original distribu-
tion must be a subset of the support of the simulated
distribution.

3.3 Invoking the Construct

The name of our importance sampling construct is IS.
As noted earlier, the construct can be invoked in one
of two different fashions: the exponential change-of-
measure and the general change-of-measure. When
invoking the importance sampling construct with the
exponential change-of-measure feature, the user must
specify the original distribution as well as the parame-
ter 6. The general change-of-measure feature requires
the specification of the original distribution and the
new distribution. For complete specifications see Ap-
pendix A.

The following SIMAN code shows how the con-
struct can be invoked to alter the exponential dis-
tribution of the delay experienced by an entity in a
simulation model.

Delay: IS(EXP0(2.0), .05);

The construct is used as the argument to the DELAY
block. Note how two parameters have been passed;
the first parameter being the original exponential dis-
tribution with a mean of 2.0, the second parameter
being the value of 6 used to determine the exponen-
tial change of measure. We have taken the original
delay distribution and altered it so that its new mean
1s 1.95.

Now we illustrate the second method by which IS
can be invoked. Suppose we wish to apply importance
sampling by replacing a Weibull delay distribution
with that of an exponential. In this case, instead of
specifying a constant value 6 for the second argument,
we specify an entire distribution as follows:

Delay: IS(WEIB(2,4), EXP0(2.0));
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The simulation will use the exponential distribution
to drive this delay, but it will compute a likelihood
ratio accordingly so that performance estimates can
be made for the system driven by Weibull distributed
delays.

3.4 Interpreting the Output

The SIMAN simulation output summary provides
point estimates of performance measures of inter-
est. When the IS construct is invoked, the simula-
tion summary will include a likelihood ratio statistic.
In order to get a point estimate for a performance
measure from the original simulation model, the user
should multiply the likelihood ratio by the point es-
timate output associated with the modified model.

4 RECOMMENDATIONS AND FUTURE
WORK

The approach used to enhance the SIMAN simula-
tion environment with a few powerful simulation fea-
tures can be extended further. It is possible to extend
the flexibility of variate generation capabilities as well
as output analysis techniques with similarly designed
constructs. We are actively involved in creating fur-
ther extensions similar to the ones described in this
paper. We are also interested in developing a design
framework by which these tools can be provided ef-
fectively in a simulation environment setting. Some
of these ideas are described below.

In the area of variate generation, extensions that
perform generation of TES sequences among other
useful variate models are being explored. Another
useful feature would be an input processing exten-
sion that, given a correlated variate model and data,
determines the appropriate model parameters. For
instance, one could envision that in a particular sim-
ulation model setting it is believed that a certain data
set has been generated by a source resembling those
described in our Markov modulation setting. A use-
ful construct would be one that estimates the param-
eters of the hidden Markov model which modulates
the source.

Gradient estimation constructs enabling paramet-
ric sensitivity analysis, estimation, and stochastic op-
timization would also allow for easy implementation
of powerful simulation features. A well thought out
construct would allow practitioners to exploit the
power of this theory while being sheltered from some
of the finer details. Efforts here could help open the
door to new application areas for practitioners. By
helping automate output analysis techniques and the

application areas that use them, we may further en-
courage the use of well founded simulation modeling.

Our last recommendation for future work concerns
the incorporation of output analysis constructs into
templates. As mentioned earlier, application specific
constructs are organized into template sets easily ac-
cessible through powerful graphical simulation envi-
ronments. Developing a similar template idea for out-
put analysis techniques would be of further help in
broadening the usability of our constructs.
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APPENDIX A: CONSTRUCT SPECIFICA-
TIONS

MMDT(P,u,F)

Parameters The |S| x |S| transition matrix P
specified in a one-dimensional array,
format with each of the rows of P
having non-negative elements sum-
ming to 1, u an array with |S]|
non-negative elements summing to 1,
and F an array of SIMAN distribu-
tions. All parameters should be
specified as expressions in the
experiment file.

MMDTCREATE,Offset: P,u,F ;maxbatches

Operand  Description Default

Offset Time of first creation Begin

P See MMDT none

o See MMDT none

F Valid distributions are none
non-negative and integer

max Maximum number of batches infinite

batches to be created.
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MMPPCREATE,Offset:Q,u,A,maxbatches

Operand  Description Default
Offset See MMDTCREATE Begin
Q Generator matrix (), must none
have non-negative off-diag-
onal elements (¢(z,y) : ¢ # y)
with the diagonal elements
q(‘l:v 33) = Zy;ﬁg; q(d), y)
It See MMDT none
A An |S| dimensional array none
of non-negative real numbers
max Maximum number of batches infinite
batches to be created.

IS(Dist1,0) or IS(Distl, Dist2)

Parameters Distl (and Dist 2) must come from
one of the following SIMAN built-
in distributions: Discrete, Erlang,
Exponential, Gamma, Normal, or
Poisson. Valid distribution para-
meters must be passed as well. To
specify an exponential change-of
measure, a real number is passed as
the second argument. To specify a
general change of measure, a
distribution is passed.

APPENDIX B: DOWNLOAD INSTRUC-
TIONS

Information regarding the work done in this paper
can be found at the SNET site maintained by the
Operations Research department at Stanford Univer-
sity. The software and specifications are kept in the
software area found at SNET. Information regarding
specification modifications, additions, and changes
will also be posted here.

via ftp connect to ftp-or.stanford.edu and download
the file /ftp/simpaper/public_html/software
/SIMAN/ISMMP.tar.

via www connect to http://www-or.stanford.edu
/~simpaper/papers.html and navigate to the
software area of the SNET library. The IS-
MMP.tar file can be downloaded automatically
through a link on this web page.

Once, the tar file has been loaded, the appropri-
ate files can be extracted on the users local host by
executing the command tar -xf ISMMP.tar.
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