Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

BUILDING END USER APPLICATIONS WITH EXTEND™

David Krahl

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, USA.

ABSTRACT

This document presents an overview of the Extend
modeling environment, emphasizing Extend’s features
for building a custom user interface. Extend is a
graphically oriented discrete event and continuous
simulation application with an integrated authoring
environment.

1 INTRODUCTION

Too many simulation models are dull. While simulation
has graduated from the mainframe to the desktop, aside
from animation, few simulation modeling tools are able
to exploit the interactivity possible on a personal
computer. Simulation models can and should be
captivating, encouraging the model user to experiment
and use the model as a tool to explore. Additionally, a
simulation analysis is not complete until the results are
communicated to others and used to support decision
making. This paper will discuss how Extend can be used
to create models that are engaging as well as informative.

Two model examples will be used throughout the
paper to illustrate the use of Extend. The first (discussed
in Sections 2 and 3) is a single server, single queue
system with random arrivals and processing times. The
second model is of a call center environment for medical
advice and appointments. The call center model
compares a proposed system to the existing call system
based on the percentage of calls answered within 1
minute. Section 4 will focus on the user interface and
control panel for the model of the new call center.

2 EXTEND’S MODELING ENVIRONMENT

Before looking into how Extend can be used to build
interactive models, it is helpful to understand the Extend
modeling environment.

Extend models are constructed with library-based
iconic blocks. Each block describes a step in a process or

413

a calculation. Blocks reside in libraries. Each library
represents a grouping of blocks with similar char-
acteristics such as Discrete Event, Plotters, Electronics,
or Business Process Reengineering.

There are two types of logical flows between the
Extend blocks. The first type of flow is items which
represent the objects that move through the system. Items
can have attributes and priorities. Examples of items
include parts, patients, or a packet of information on a
network. The second type of logical flow is for values or
information. Values represent a single number. Examples
of values include the number of items in queue, the result
of a random sample, and the level of fluid in a tank.

Each block has connectors which are the interface
points of the block. Figure 1 shows the connector
symbols for the value and item connectors.

] Ol
Value Input Item Input
o i
Value Output Item Output %

Figure 1: Value and Item Connectors

Connections are lines used to specify the logical flow
from one connector to another. Item connections are
represented by double lines and value connections are
represented by single lines.

A model of single server, single queue system would
have the following form:

LBy D '
Generator Queue, FIFO Activity, Delay Exit

Figure 2: A Single Server Single Queue Model

414

The block on the far left represents a Generator
which periodically creates items. Following this is a
Queue block which holds items until requested by the
next block. The Activity Delay represents a limited
capacity of one processing unit and delays an item for a
fixed amount of time. The last block in the model is an
Exit block which removes items from the system.

An enhancement to this model would be to specify
that the delay in the Activity Delay is determined by a
specific random distribution. This can be done by con-
necting the output of an Input Random Number block to
the delay connector (labeled "D") on the Activity Delay
block as in Figure 3:

Generator Queuse, FIFO

input Random #

Figure 4: A Model With Random Process Times

Another feature that can be added to the model is a
Discrete Event Plotter which graphically displays, in this
example (Figure 5), the contents of the queue. The
Discrete Event Plotter value input connector will be con-
nected to the Queue's length (labeled "L") value output
connector as follows:

Plotter, DE Input Random #

Figure 6: Discrete Event Plotter Added to Model

Simulation parameters such as the number of runs
and simulation end time can be specified in the
Simulation Setup dialog itemn under the Run menu. The
simulation can then be run by selecting the Run
Simulation menu item from the Run menu.

During the run, the current simulation status is dis-
played in a bar near the bottom of the monitor screen.
This displays the estimated time before the run will be
completed, the current simulation run time, the number

Krahl

of simulation steps completed so far, and the current
simulation run number.

Once the simulation run has completed, the results of
the simulation are reported within the blocks. Double
clicking on each block reveals the information collected
from the simulation run. For example, double clicking on
the Queue FIFO block opens a dialog which shows the
following information about the state of the Queue FIFO
block:

Enj
First in, first out queue.

Masximum queue length =

[stop simulation when the queue is full
L and W are: @ continuous
QO histogram

Arrivals{ 10?7 Ave. length;0.23461032496

Departures; 105 Ave. wait;0.26440263836

Utilization:0.1?161325026:Max. length:3

Max. waiti1.85218292869

[2) Queue, FIFD

Bla

Comments

Items wait for processing here ﬁ
Ol 5]
(HeTp)ueve, Firo__ [IEE

Figure 7: Dialog of Queue FIFO

The Plotter block shows the number of items stored
in the Queue FIFO over time in both graphical and
tabular format:

[5] Plotter, Discrete Event

Time

Flgure 8: P]ot of Queue Length

Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to
another program such as a spreadsheet or database, dis-
played in an animation, or even used to control some as-
pect of the computer's operation through external device
drivers.

Extend

3 STANDARD EXTEND LIBRARIES

The standard Extend libraries include constructs for dis-
crete event modeling, results plotting, generic calcula-
tions, electronics design, interprocess communication,
and utilities. For discrete event modeling, the most
commonly used standard libraries are the Discrete Event,
Generic, and Plotter. Additional, optional, discrete event
libraries include the Business Process Reengineering and
Manufacturing libraries.

Extend supports the following general modeling
functionality for discrete event modeling:

e Attributes - Unique variables which are local to the
items moving through the simulated system.

e Priorities - A unique value, local to a given item,
which can be used to rank items in a queue or in-
terrupt items in process.

e Values - The number of items represented by a
single item. Setting a value will create clones of an
item when that item arrives to a queue, resource, or
exit block.

3.1 Discrete Event Library

The Discrete Event library contains blocks which are
specific to modeling discrete event systems. In a discrete
event model, the clock will update at intervals dictated
by the individual events in the system. The discrete event
blocks pass items to one another through their item
connectors. If a discrete event block is unable to receive
an item it rejects it and the item waits until it receives a
downstream request.

> o

31165 1308k 706495 10:53 AM

Activity, Delag oA
Wed, Jul 05,1335 152 PM

Activity, Delag [Attributes)
Wed, Jul 05,1395 152 PM

Activitg, Multiple
Wed, Jul 05,1395 152 P

Activity, Service .mt.z
wed, Jul 05,1995 1.52 Pr

TRER

Figure 9: Discrete Event Library Window

The most commonly used block types in the Discrete
Event library are as follows:

e Activities - Time delays
e Batching - Combining of items

e Resources - Limits capacities

415

¢ Decisions - Chooses alternate paths

3.2 The Generic Library

The Generic library is used for both continuous and
discrete event modeling. In the continuous mode,
calculations are performed at each evenly spaced clock
step. In the discrete event mode, calculations are made in
response to a request (message) from a discrete event
block.

When used with Discrete Event library, the Generic
library is typically used to provide values for inputs or
operate on the value outputs of the discrete event blocks.
Typical examples of using the Generic library in this
mode include using a Decision block to compare the
length of two queues or using an Input Random Number
block to generate a random time delay for an Activity.

There are a number of classes of generic blocks.
These include: mathematical calculation, integration, file
operations, logical calculations, integration, statistical
calculations, error reporting, simulation events (such as
playing a sound or displaying a dialog), accumulation,
and threshold detection.

3.3 Other Libraries

In addition to the above libraries, Extend also includes
libraries for statistics, animation, plotters, utilities, elec-
tronics, filters, digital circuits, controls, and DLLs or
XCMDs. Libraries are available from third party
developers for control systems, paper manufacturing,
neural networks, biology, and signal processing.

4 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend is also
malleable: it can take the shape of the model application.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating
a new one, the simulation modeler is able to create a
model which can be exercised by someone more familiar
with the system than with the simulation tool. Models
can be built that fit naturally into the conceptual
framework of the person using the model. In Extend, this
can be done with a range of tools, including:

e Hierarchical modeling - Models can be subdivided
into logical components.

e Dialog cloning and the Notebook - Consolidate
critical parameters and results to a central location.
This can be used to create a custom user interface.

416

e Interactive controls - Add sliders and switches
which provide interactive control of the model

e Pictures and animation - The model becomes the
interface.

e User messages - Users can be prompted for
information at any point in the simulation.

e Block development environment - Create modeling
components that are unique to a specific
environment.

The following sections describe how these features
can help modelers build models that can be easily
exercised by a wide range of people.

4.1 Hierarchy

Hierarchical blocks (H-Blocks) contain other
hierarchical and/or blocks from Extend libraries. Each H-
Block can have a unique icon, external connectors, and
help text.
Figure 10 illustrates the hierarchical block for an
appointment area. There is an item input connector for
" arriving phone calls and value output connectors for the
utilization, number of calls completed, number of calls
lost, and the percent of calls that were answered within 1
minute.

Incoming Calls __ Utilization

‘[g Calls

@ o Completed

: LDone
@ 4« Calls Lost
Lost
; % of Calls

/ g /_ Answered Within

Appountments 1 Minute

Figure 10: Hierarchical Block

H-blocks are typically created by selecting a range of
blocks on the model worksheet and choosing the “Make
Selection Hierarchical” menu item. The H-block is
created with a default icon and connections are
automatically added. H-blocks can then be edited using a
structure editor as shown in Figure 11.

Krahl

Z of Call Ce 4
"¢| This block modets the operation of 2 group of appointment clerk_ Outputs are [y |
= 774 the number of o alls answered, the number of calls lost because they waited too
- long. the percent of calls answered within | minute, and the utiliz stion of the

7| group of clerks

Figure 11: Hlerarchxcal Block St.ructure Wmdow

Once completed, H-blocks can be placed in a library
for use in other models. Changes made to the source H-
block can be reflected in the models that use it.

4.2 Cloning for a User Interface

Often used in conjunction with H-blocks, dialog cloning
allows the modeler to create a copy or “clone” of an
item’s dialog and move it out to a different area. This can
be used to create a dialog for an H-block by cloning out
important dialog items to the top level of the H-block.
Descriptive text and graphics can be added to enhance
the user interface.

Cloning is done by selecting the clone tool (@) from
the toolbar, clicking on the dialog item to be cloned and
dragging it to another location.

In Figure 12, the significant dialogs from the H-block
in Figure 11 have been cloned to the upper left corner,
and descriptive text and simple graphics have been
added. The block structure has been hidden from the
model user by shrinking the H-block window. This
creates an “executive interface” that allows a model user
to easily change model parameters without needing to
understand the entire model structure.

. [102]{7] Call Center '

Calls Answered
thin 1 Minute

Call Center:

Staff:

Maximum
Time on Hold:

Figure 12: Cloned Dlalog in H block

Dialog items can also be cloned to the Notebook (a
separate page for storing model input and results) to
create a central location for the significant model
information.

Extend

Figure 13 illustrates a simple interface in Extend’s
Notebook for changing model parameters. Here, in a call
center model, the staff level and the time that a customer
is willing to wait in line can be easily changed. Once the
simulation has completed, the number of calls lost (due
to callers waiting too long), number of calls completed,
the service level and the utilization are reported in an
adjacent area. There is also a plot comparing the service
level of this scenario to the base alternative.

Notebook - CALL!
/" Results

‘Appointment Line
i

Maz Time
onHold

Advice Line

o
Sh L
on Hold

3 O Advice % 4 0K Appoine %

Figure 13: Clones Used in the Notebook

.ﬂ { NewAdvice % 2 New Appoint %
1

4.3 Controls

Extend includes a number of interactive controls which
give the model developer flexibility to define a control
panel interface. Figure 14 illustrates the three types of
controls available:

Meter

Flgure 15: Extend Controls

The slider corresponds to the volume control on a
radio. The model user can select the value by dragging
the control on the slider to the appropriate value.
Maximum and minimum values can be entered directly
on the slider.

The Switch resembles a light switch with two states:
on or off. Clicking on one side of the switch or the other
changes its state.

417

The meter reports a level of a simulation variable.
The dial on the meter will vary between the maximum
and minimum values set for the meter proportionally to
the value it represents.

Figure 16 shows controls added to the Notebook. In
this example, the model user can increase or decrease an
arrival rate by moving a slider and view the percentage
of calls answered within 1 minute on a meter.

Appointment Line

e]

Maz Time
onHold

Advice Line

on Hold

Figure 16: Notebook With Controls Added

4.4 Pictures and Animation

Extend models are animated automatically when they are
built. There are, however, specific animation blocks and
functions which allow a modeler to go beyond the
standard functionality. For example, pictures can be
displayed to show that certain events have occurred,
levels of important simulation variables can be
displayed, and text can be shown which displays the
model’s status. Static drawings can also be added to
enhance the visual impact of the model.

In Figure 17 the call center model has been enhanced
with animation, pictures, and clones of dialog items to
create an interface into the model itself. Clicking on one
of the buttons will perform an action specific to this
model, clicking on one of the icons will open the
underlying hierarchical block for data entry and results,
and the model animation will show the status of the call
centers. This creates the effect of having a model which
becomes its own custom user interface.

418

Medical Call Center
Simulation Model

Proposed Call
Center

[J Animation On

Exlstmg Call
Center

Flgure 17: Model With Pictures and Animation

4.5 User Messages

Direct communication can be made with the model user
through Extend’s prompting messages. Prompting
dialogs which request information or logical decisions,
report an error, or play a system sound can be used to
add a more dynamic feel to the simulation model.

Figure 18 illustrates a dialog which gives the user a
choice between continuing a simulation run or stopping
if a simulation metric is out of range for a feasible system
design.

The average number of calls answered
0 within 1 minute has dropped below 50%.
Click ""OK" to continue the simulation,
K| "Cancel” to stop.

Figure 18: User Prompt

4.6 Scripting

Blocks in Extend are “soft coded”. Their functionality
and appearance can be modified or completely redefined
by the modeler. This can be done either through
hierarchy, as discussed earlier, or by programming the
behavior of the block in the built-in ModL™ language.
Both approaches have their advantages. Hierarchical
blocks can generally be built more quickly and no
programming expertise is required. Programmed blocks
will have somewhat better performance and have the
flexibility of a full featured programming language. An
example of Extend’s programming environment is shown
in Figure 19. This is a block which was developed for a

Krahl

specific purpose: it calculates the percent of the time that
the upper input is greater than the lower input. While this
can be done without any programming, (see Figure 10), a
few lines of ModL code in a block such as this can
reduce overall model complexity.

] ceal comtTrue; //counts all trus occurences
Yehuze: real CouncAll, //counts ell occurences

On Valuelln //vhen & message comes in from the veluelin connector

(
sendfisgToOutputs (Value2ln), // recalculate valueZln blocks
1f (ValuelIn>Value2In) // 13 veluelln > Value2In?

CountTrue += 1.5 // Count true occurance

CountAll 4= 1., // Count ell occurences
Percent = CountTrue/CountAll®l00.; //Calculste percent
PercentOut = Percent; // 3et output to percent
sendisgTolnputs (PercentOut) » //Recalculate blocks

// connected to output

Scripting Environment

ModL is a compiled language which is tightly
integrated with the Extend environment. Selecting the
“Open Block Structure” menu item accesses the block’s
script. When the block is saved, the script is
automatically complied. The components of the block’s
structure (dialog, icon, connectors) are accessed by
referring to the name of that component.

Dialog items such as block parameters, text, or check
boxes are created graphically in the dialog builder
(Figure 20) and are treated as variables by the ModL
script. These can be changed or utilized in response to
user or system events. For example, in the Input Random
Number block, the name of the parameters of a
distribution change when a different distribution is
selected.

D|alog of Calculate % [WSC oL XI

Calculalcs the % time that’
value 1is > value 2 :

Percent; I

............................

Figure 20: Dialog Builder

Dialog items also generate block level events. These
are known as messages. The script reacts to these with a
message handler (function) for each dialog which is
called automatically when a user selects a dialog item.

Extend

For example, since each block has an “OK" button, there
is also an “OK” message handler which is called
whenever the “OK" button is clicked. Typically, this
message handler would check the consistency of the
block data before the dialog is closed.

Connectors are also treated as script variables and
message handlers. These are used during the simulation
to pass information from one block to another.

Using scripting, additional animation options are
available. For example, the icon of the block can be
changed through animation objects. These can change
the appearance of a block by modifying text, adding
shapes or pictures, or displaying a level. An example of
this is the Decision block which changes its icon based
on the condition specified.

5 SUMMARY

The main goal for Extend is accessibility. This is
achieved through low cost, a captivating model building
environment, a native graphical user interface, and model
development tools which make models for a specific area
of application easy to build. Because Extend can be used
without elaborate training or financial outlay, Extend is
bringing the technology of simulation to more people
than any other simulation product.

REFERENCES

Imagine That, Inc. 1995. Extend Software Manual. San
Jose, CA.

Krahl, David. 1994. An Introduction To Extend, In
Proceedings of the 1994 Winter Simulation
Conference, ed. J. D. Tew, M. S. Manivannan, D. A.
Sadowski, A. F. Seila, 538-545. IEEE Piscataway,
NJ.

AUTHOR BIOGRAPHY

DAVID KRAHL is the Technical Coordinator for
Imagine That, Inc. He is responsible for the technical
support and block development for Extend. Mr. Krahl
received a BS degree in 1986 in Industrial Engineering
from the Rochester Institute of Technology and is
nearing completion of a MS degree in Project and
Systems Management from Golden Gate University. He
has performed consulting, technical support, and de-
velopment for a wide range of simulation products.

419

