Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

AN INTRODUCTION TO SLX

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900
Annandale, VA 22003-2603, U.S.A.

ABSTRACT

This paper provides introduction to SLX (Henriksen 1993)
for readers who are already familiar with simulation. Com-
parisons with GPSS/H (Banks, Carson and Sy 1989;
Henriksen and Crain 1989; Schriber 1991; and Smith,
Brunner and Crain 1992) are used to provide a frame of
reference for describing SLX features. The goal of the
SLX project is to produce a simulation system which pro-
vides a multiplicity of layers, ranging from the SLX ker-
nel, at the bottom, all the way up to layers which provide
graphical model building “without programming.” In this
paper, only the “lower” layers of SLX are described. Ac-
cordingly, this paper will perhaps be of greater interest to
simulation software package developers than to end users
of simulation software. Six key concepts which underlie
the SLX kernel are presented, and SLX’s extensibility
mechanisms, which facilitate the construction of higher
layers from lower layers, are illustrated.

1 INTRODUCTION

The most important characteristic of SLX is its layered
architecture. The success of SLX’s layered approach de-
pends on several factors:

A. Thelayers are well-conceived. In developing SLX,
we have had the luxury of drawing on years of experience
with GPSS/H. A great deal of SLX is based on GPSS/H.
In some cases, source code from GPSS/H has been directly
“lifted” for use in SLX. In other cases, we have modified,
simplified, or adapted GPSS/H algorithms. In a few cases,
we have eliminated pitfalls and shortcomings of GPSS/H.
The end result is an extremely well-designed system.

B. The layers are not too far apart. Many other lan-
guages provide multiple layers, but typically there are wide
gulfs between the layers. For example, a language might
provide flowchart-oriented building blocks as its primary
modeling paradigm, but also provide for “dropping down”
into procedural languages such as C or FORTRAN. The
problem with this approach is that there are only two lay-
ers, and they are too far apart. One must become familiar

502

with many details of the C or FORTRAN implementation
of the simulation language to be able to add C or FOR-
TRAN extensions. Even worse, virtually none of the error
checking and other safeguards provided in the simulation
language are available in C or FORTRAN. The SLX ker-
nel language is a powerful, C-like language, so users of
SLX virtually never find it necessary to drop down into a
lower-level, more powerful language. Furthermore, the
SLX kernel language includes complete checking to pre-
vent errors such as referencing beyond the end of an array
and using invalid pointer variables. The layers above the
SLX kernel exploit kernel capabilities in straightforward
ways. Transitions from layer to layer are very smooth.

C. The mechanisms for moving from layer to layer
are very powerful. These mechanisms are abstraction
mechanisms. A “higher level” entity provides a more ab-
stract description than a “lower level” entity. Lower level
implementation details are hidden at the upper levels. SLX
provides both data and procedural abstraction mechanisms.
Like C, SLX provides the ability to define new data types,
and to build objects which are aggregations of data types.
The procedural abstraction mechanisms of SLX are ex-
tremely powerful. SLX provides a macro language and a
statement definition capability which allows introduction
of new statements into SLX. (The SLX-hosted implemen-
tation of GPSS/H makes heavy use of the statement defi-
nition feature.) The definitions of macros and statements
can contain extensive logic, including conditional expan-
sion, looping, optional arguments, lists of arguments, etc.
In fact, such definitions are actually compiled by SLX, al-
lowing use of virtually all kernel-level statements. Mac-
ros and statement definitions offer far more than simple
text substitution.

In the sections which follow, the six key concepts un-
derlying the architecture of the SLX kemel are presented.
Following the presentation of the SLX kernel, SLX'’s ex-
tensibility mechanisms are illustrated. Finally, a version
of GPSS/H hosted in SLX is described.

SLX

2 THE SIXKEY CONCEPTS IN THE
ARCHITECTURE OF THE SLX KERNEL

2.1 Key Concept #1 - The Large Building Blocks
(Modules, Procedures, and Objects)

2.1.1 Modules

The largest building block in SLX is the module. Every
SLX program is comprised of at least one module, and all
but the very simplest will have at least two - one contain-
ing your code, and one (or more) contained in an include
file provided by someone else. The module is the largest
unit of encapsulation in SLX. Encapsulation allows se-
lective specification of the “visibility” outside a module
of entities defined within the module. Entities defined
within a module are visible throughout the module. Their
visibility outside the module is under the control of the
module’s developer. For example, variables can be public
or private (visible or invisible, respectively, outside the
module), read-only (readable but not modifiable outside
the module), or write-only. In the SLX-hosted implemen-
tation of GPSS/H, many entity attributes implemented as
SNAs (Standard Numerical Attributes) in GPSS/H are
implemented as public, read-only variables in SLX. For
example, the current length of a Queue is so defined. This
allows a model to directly access the length of the Queue;
however, the model can modify the length of the queue
only by using code provided for that purpose.

Developers of modules can use encapsulation for two
purposes: (1) to protect users of the module from modifying
data they should not be allowed to change, and (2) to hide
proprietary implementation information.

2.1.2 Procedures

The second largest building block in SLX is the proce-
dure. For the most part, procedures in SLX are like proce-
dures (which may be called functions or subroutines) in
other languages. The SLX compiler “sees” all procedure
definitions and rigidly enforces agreement between the
arguments of procedure invocations and the formal param-
eters of procedure definitions. Although the syntax of SLX
is largely modeled on that of C, procedure definitions are
considerably differentin SLX. The SLX syntax is wordier,
and the SLX semantics are more rigid. (You won’t find
procedures with a variable number of arguments in SLX,
for example.)

213 Objects
The very mention of the word “object” inspires a wide

range of expectations and emotions, due to the widespread
influence of object-oriented programming (OOP). SLX

503

has been influenced by OOP and incorporates some OOP
ideas, but SLX is not a truly object-oriented language. Such
a statement is a rarity in this day. Many products claiming
to be object-oriented are far from it. In fact, although we
do not claim that SLX is object-oriented, it is probably
more so than some products for which OOP architecture
is claimed.

In SLX, objects are used in two ways. Passive ob-
jects are used for modeling entities which have no “ex-
ecutable” behavior. For example, a parking lot could be
modeled as a passive object. GPSS/H Facilities, Queues,
and Storages are implemented as passive SLX objects.
Active objects have executable behavior patterns. Cus-
tomers in a supermarket are a good example of entities
that would probably be modeled as active objects. SLX
active objects are roughly equivalent to GPSS/H transac-
tions. Some entities can be modeled either as active ob-
jects or passive objects. For example, a simple server with
a FIFO queue can be modeled as a passive object. Its be-
havior depends solely on the requests made for it by ac-
tive objects. (This is the way Facilities work in GPSS/H.)
For more complicated servers, an active object may be
more appropriate. Consider a machinist in a job shop. In
selecting the next job to be performed, (s)he may consider
a number of parameters, such as job priority, due date, re-
source requirements, etc. Often, it is easiest to model such
behavior using active objects.

SLX objects can have a number of standard properties.
All standard properties are comprised of explicitly identi-
fied sections of executable code. The initial property is in-
voked when an object is created. The final property is
invoked when an object is about to be destroyed. The report
property is invoked by the report statement; it is used for
the obvious purpose. The actions property specifies the be-
havior pattern for an active object. Itis invoked by the acti-
vate statement (discussed in the next section). The clear and
reset properties specify what should be done to an object
when statistics are cleared or reset. (These properties pro-
vide lower-level support for higher-level verbs such as
GPSS/H’s CLEAR and RESET statements, which are used
to define statistics collection in a sequence of experiments.)

2.2 Key Concept #2 - Activation Records

Data for SLX modules, procedures, and objects is stored
in activation records (A/Rs). The A/Rs of modules are
allocated when an SLX program is loaded. At the start of
execution, module A/Rs are initialized, and an A/R for the
main procedure is allocated and initialized. All of this takes
place before control passes to the first “executable” state-
ment of the main procedure. For procedures other than
the main procedure, i.e., subroutines and functions, an
A/R is created when the procedure is called and (almost
always) destroyed when the procedure returns to its caller.

904

Arguments to a procedure are placed into the A/R prior to
the call. If a called procedure rcturns a value, i.e., if the
procedure is a “function,” the calling procedure places the
target address of the result in the called procedure’s A/R.

The A/Rs for objects are created in two ways. Objects
can be created explicitly, by means of the new operator, or
implicitly, by being declared as “local” objects in a module
or procedure. The locations of objects created explicitly are
usually kept track of by using pointer variables:

pointer(widget) joe, fred;
joe = new widget;
fred = joe;

Implicitly created objects are stored in the A/R of the
procedure or module which contains them. Their declara-
tions appear similar to those of other variables:

integer i,
float X;
widget joe;

Although not apparent, the creation of an A/R is ex-
tremely complex beneath the surface. Storage must be
allocated for the A/R (dynamically, in the case of explicit
creation, and statically, as part of another A/R, in the case
of implicit creation.) All variables in an A/R are set to
known initial values. For example, integers and floats are
set to zero, and pointers are set to the value NULL, which
means they point to “nothing.”

Objects which are implicitly created are destroyed
when the A/R in which they reside is destroyed. Objects
which are explicitly created can be explicitly destroyed by
using the destroy statement:

pointer (widget) joe;

joe = new widget;

&estroy joe;

Note that destroy operates on a pointer. Itreleases the
storage of the object pointed to by the pointer and assigns
a NULL value to the pointer.

Before the A/R of an object or procedure can be de-
stroyed, a check must be made to verify that the A/R is no
longer “in use,” i.e., that no pointers still point to any part
of it. For this purpose, use counts are maintained for
all A/Rs. When an attempt is made to destroy an A/R with
a nonzero use count, the destruction is deferred until such
time (if ever) the use count goes to zero. This prevents
potentially disastrous *“‘gone but not forgotten” bugs which
can happen in languages like C. In C, pointers to released
storage can be used to fetch unknown values, or far worse,
to store into unknown areas of memory. Use counts also
prevent “forgotten but not gone” problems. When the use
count of an A/R goes to zero, the A/R is automatically
released. Consider the following example:

pointer (widget)

joe = new widget;

fred = new widget;
joe = fred;

joe, fred;

Henriksen

When j oe is assigned the value of fred, the use count
of the widget it pointed to prior to the assignment of a new
value goes to zero, so the A/R for the object is released.

2.3 Key Concept #3 - Active Objects & Pucks

An active object is distinguished from a passive object by
its actions property:
object fork_lift

{
variable definitions...
actions

{
(statements specifying the forklift's behavior)
)

The actions are invoked by means of the activate opera-
tor, which operates on pointers to objects. Activate is usu-
ally applied immediately to a new operator:

activate new fork_lift;

Activation and creation can, however, be performed
as distinct steps:

pointer (fork_lift) f;
f = new fork lift;

activate f;

When the latter form is used, it is usually for purposes
of performing actions on the object before it is activated.

Active objects are destroyed when they execute a ter-
minate statement.

Activating an object creates what is called a puck for
the object. What is a puck? Pucks are the “schedulable”
entities in an SLX model. When an object is activated, its
puck is placed on the current events chain (CEC). The
CEC is a list of all pucks eligible to execute at the current
instant of simulated time. Like GPSS/H’s CEC, the SLX
CEC is ordered by puck priority, and for pucks of equal
priority, on a FIFO basis.

When a scheduled time delay, e.g., a service time or
interarrival time, occurs in a model, it is the puck which is
actually scheduled. If an object must wait for a given state
to arise, e.g., for a requested server to become available, it
is the puck which waits. When a puck must wait, it i
removed from the CEC and placed on another chain.

For a given object, additional pucks can be created by
executing fork statements. Pucks created by fork statements
share the same activation record. The fork statement is a
very convenient way for modeling local, “small scale” par-
allelism for an object. An example of this use is given in
Key Concept #5, below. For less local, “large scale” par-
allelism, it is usually best to create active objects of an-
other type, to model system behavior in terms of interac-
tions between objects.

This section has introduced the concept of SLX pucks.
In each of the three following sections, the critical role of
the puck is further explained.

SLX

2.4 Key Concept #4 - Scheduled Time Delays

In a simulation model, two kinds of delay can take place,
delays of scheduled duration, and delays which are condi-
tioned on some component of the model reaching a speci-
fied state, e.g., a server becoming available. Scheduled
delays are described in this section, and state-conditioned
delays are described in the next.

Scheduled time delays are modeled by use of the ad-
vance statement, €.8.,

advance rv_expo(streaml, 10.0);

When a puck executes an advance, the puck isremoved
from the CEC and placed on the Future Events Chain
(FEC.) The roles of the CEC and FEC in SLX are similar
to the CEC and FEC of GPSS/H. When all pucks have
been removed from the CEC at any given instant of simu-
lated time, the simulator clock is updated to the next im-
minent event time, the lowest scheduled “move time” for
the puck(s) on the FEC. As part of the clock update, all
pucks with this move time are moved from the FEC to the
CEC. (Additional details are given in Key Concept #6.)

2.5 Key Concept #5 - Control Variables & Wait Until

In SLX, state-conditioned delays are modeled using con-

trol variables and the wait until statement. The keyword

“control” is used as a prefix on SLX variable declarations:
control integer count;

control boolean repair_completed;

The “control” keyword tells the SLX compiler that at
each point the value of the control variable is changed, a
check must be made to see whether any pucks in the model
are currently waiting for the variable to attain a particular
value or range of values. Such waits are described using
the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:
wait until (count >= 10

repair_completed and not repairman_busy);

Finally, SLX also supports indefinite (user-managed)
waits. There are three steps required to implement an in-
definite wait. First, the puck which is going to wait must
be made accessible to other pucks. This is usually done
by placing the puck into a set. Second, the puck executes
a wait statement with no *“until” clause. Finally, at a sub-
sequent point in simulated time, another puck executes a
reactivate statement to reactivate the waiting puck. In SLX,
GPSS/H User Chains are implemented as indefinite waits.
The link statement places pucks into a set (the User Chain),
and the unlink statement reactivates pucks.

505

Let us consider an example which illustrates the use of
the fork statement in conjunction with wait until. Assume
that customer objects flowing through a model reach a point
where they are willing to wait a maximum of two minutes
for service. If they are not served within two minutes, they
exit the system,; i.e., they renege.

object customer

{
control boolean reneged;
actions

fork
advance 2.0; // max waiting time

reneged = TRUE;
terminate;

parent

wait until(server_available || reneged);
if (reneged)
terminate;

=
}

In the above example, a Boolean control variable is
used within the customer object for communicating “re-
nege” status between two pucks which share the same ob-
ject. At the pointat which the customer begins waiting for
service, it forks a second puck. The offspring puck ex-
ecutes the logic enclosed in braces immediately following
the fork statement. The original puck executes only the
logic contained within braces following the *“parent” clause.
The offspring puck undergoes a two minute delay, sets re-
neged to TRUE, and terminates itself. The parent puck
waits for either the server to become available or for the
two minutes to elapse. When it comes out of the wait un-
til, it must distinguish which of these two possibilities has
taken place. If the two minutes have elapsed, reneged will
be TRUE, and the parent puck will terminate itself. If not,
the parent will continue executing.

The sharing of a common A/R makes communication
between the two pucks trivial. The “reneged” variable in
the A/R shared by the two pucks is all that is needed to
accomplish the communication required in this example.
Note that if there are multiple customers active at a given
time, each customer will have its own A/R, so the “re-
neged” status for one customer cannot be confused with
that of another.

In many simulation languages, operations such as re-
neging are difficult to implement. Because of this, lan-
guages sometimes include operations such as reneging as
built-in features. Unfortunately if the language designer’s
concept of reneging does not exactly match your require-
ments, you’re stuck. In SLX, carefully designed rock-bot-
tom primitives allow you to build your own capabilities if
none of the ones provided by others meet your needs.

506 Henriksen

2.6 Key Concept #6 - The Architecture of the
SLX Simulator

A flowchart describing the SLX simulator is shown in Fig-

ure 1. As you might expect, the flowchart describes the

operation of the SLX simulator as a process of puck man-
agement. At any point in time, a puck will be in exactly
one of the following states:

(1) On the Current Events Chain (CEC), eligible to ex-
ecute at the current instant of simulated time. The
CEC is sorted by descending puck priority, and for
pucks of equal priority, on a FIFO basis.

(2) On the Future Events Chain (FEC), undergoing a
scheduled time delay. The FEC is sorted by ascend-
ing puck move time, and on a FIFO basis for pucks
with equal move times.

(3) On one or more reactivation chains for a wait until.

(4) None of the above. This is the state for pucks under-
going indefinite, user-managed waits, as described at
the end of the previous section.

The heart of the SLX simulator algorithm is the se-
lection of a puck to attempt to move through the model
and the disposition of the selected puck. Puck selection is
very simple: the puck selected is always the first puck on
the CEC. Unlike GPSS/H, SLX has no “scan-inactive”
pucks (which require skipping over) on the CEC. The se-
lected puck resumes execution at the point at which it last
left off. For a newly activated puck, this will be at the start
of the actions property of its object. For a newly fork-
created puck, this will be at the statement immediately fol-
lowing the fork.

Once a puck has been selected, it moves as far as it
can through the model. Depending on circumstances, this
can be a very short or very long distance. When the puck
has moved as far as it can, it returns control to the SLX
simulator in one of seven states:

(1) If a scheduled time delay has been issued (at an ad-
vance statement), the puck is removed from the CEC
and placed on the FEC in a position determined by its
scheduled move time.

(2) If the puck has been delayed at a wait until statement, it
is removed from the CEC and placed on one or more
reactivation chains associated with control variables used
in the wait until condition.

(3) If the puck has been placed into an indefinite wait at a
wait statement (with no “until” clause), it is removed
from the CEC. The data structures used to keep track
of the puck so that it can subsequently be explicitly
reactivated are the user’s responsibility.

(4) If the puck has terminated itself, i.e., executed a ter-
minate statement, it is removed from the CEC.

(5) If the puck executes an exit statement, execution of
the model will be stopped.

(6) If the puck causes an execution error, execution of the
model will be stopped.

(7) If the puck executes a yield statement, it will remain
on the CEC, and another puck will be selected. Note
that this is the only one of the seven cases in which a
puck meaningfully remains on the CEC. If the yield
statement specifies the puck which is to be selected,
the specified puck is the next one to be moved. This
form of the yield statement is used to assure that when
the active puck causes a certain condition to arise, the
proper puck immediately responds to the condition,
without regard to puck priority or other factors. If no
puck is specified in the yield statement, the first puck
on the CEC is selected. Note that this may be the
puck which issued the yield. This form of the yield
statement is usually used to allow pucks of higher pri-
ority to respond to conditions created by a puck of
lower priority. This form of yield is directly analo-
gous to the BUFFER Block in GPSS/H.

When the active puck returns in states 1-4, a next puck
must be selected. If the CEC is empty, there are no
more pucks able to move at the current instant of simu-
lated time, and the simulator clock must be updated. If
the CEC is non-empty, the next puck to be moved
through the model will now be the first puck on the CEC.

3 EXTENSIBILITY FEATURES

SLX was designed to be an extensible platform on which
a wide variety of higher level simulation applications could
be built. In this section we will briefly discuss two of the
extensibility mechanisms which help make this possible.
Data extensibility mechanisms allow the introduction of
new data “types” into SLX. Procedural abstraction mecha-
nisms allow the introduction of new statements and op-
erators (macros).

SLX provides two ways in which new data types can
be constructed. The type definition statement defines a
new data type in terms of an old one. For example,

type status enum(running, idle, down);

defines a data type named status as a C-style enumerated
type.

The second way in which new data types can be con-
structed is to include objects as sub-objects of larger objects.
This paradigm is known as composition. It is in many re-
spects the opposite of OOP’s inheritance paradigm. When
using composition, one thinks of building large components
out of smaller ones. When using inheritance, one takes a
top-down approach, specifying the most general classes of
objects first, and implementing more specific objects as sub-
classes. The following is an example of composition:

SLX

object XY_position

loat xpos,
) ypos;

object battleship

XY_position ship_loc;

}

pointer (battleship) bs;

bs = new battleship;

bs -> ship_loc.xpos = ...

bs -> ship_loc.ypos =

Perhaps the most impressive extensibility mechanism
of SLX is its statement definition facility, which allows
the introduction of new statements into the language. There
are three major components of a statement definition:

(1) a prototype which specifies the syntax of the state-
ment (informally, “how it looks™);

(2) optional logic and looping within the definition, re-
sponding to the presence, absence, and other character-
istics of statement components; and

(3) one or more expand statements which inject “gener-
ated” text into the source stream seen by the SLX com-
piler.

Subsequent invocations of defined statements are re-
placed by the text generated according to their definitions.

Statement prototypes employ a small number of
metasymbols to describe statement syntax. For example,
braces (“{}”) are used to enclosed groups of mandatory
components, brackets (“[]”) are used to enclose groups of
optional components, and “,...” is used to specify acomma-
delimited list. Metasymbols occur only in the prototype,
but not in invocations of the statement. The following isa
prototype for the SLX enter statement, based on the

GPSS/H ENTER Block:

statement enter #storage [units=#inc];

This prototype says that #storage is a mandatory com-
ponent, and #inc is an optional component, which if used,
is specified as “units=expression”.

The following are valid invocations of the enter statement:

enter joe;

enter fred, units=x+y;

Suppose we wish to define a new form of the GPSS/H
SEIZE Block which permits specification of a list of Fa-
cilities, all of which are to be SEIZEd in sequence. The
following prototype would do the job:

statement seize { ALL(#list,...) | #facility };

This prototype says that the seize statement has one
mandatory component, whose specifications are enclosed
between braces (“{ }”)in the prototype. Thatcomponent
can take one of two forms. The two forms are separated
by a vertical bar (“I”). The first form consists of the word

507

ALL, followed by a parenthesized list of one or more ex-
pressions. If more than one expression is supplied, ex-
pressions must be separated by commas. Finally, the sec-
ond form is specified as a simple expression.
The following are valid invocations of the seize state-

ment:

seize joe -> server; // second form,

seize ALL(joe, bill, fred); // first form

The complete definition of the seize statement is as
follows:

statement seize { ALL(#list,...) | #facility };
definition

integer i;

if (#facility !'= ")

expand (#facility) “SEIZE(#);\n";
els:

expand “{\n";

for (i = 1; #list[i] !'= “"; i += 1)

expand (#list([i]) “SEIZE(#);\n";
expand “}\n";

}

The definition of the seize statement contains a local
integer variable, i, which is used to iterate through the list
of Facilities, if the ALL clause is used.

The two forms are distinguished by asking whether
#facility is an empty string. The SLX compiler performs
pattern matching between the invocation of a statement
and its prototype. If the ALL form is used, #facility will
be empty. Conversely, if the simple form is used, #list
will be empty.

If the simple form is used, the seize statement expands
into a call of the procedure named SEIZE, where the ex-
pression supplied as #facility is plugged in (by the expand
statement) as the argument to the procedure. Thus,

seize(joe);
expands into

SEIZE(joe);

If the ALL form is used, the SLX compiler plugs the
individual expressions used into #list[i], for as many items
asare specified. Beyond the lastitem, #list[i] will be empty.
The definition simply loops through #list[i], generating a
call of SEIZE for each Facility in the ALL list. Thus,

seize ALL(joe, bill, fred);

expands into
{
SEIZE(joe);

SEIZE(bill);
?EIZE (fred);

508 Henriksen

SLX SIMULATOR

INITIALIZE
GLOBAL DATA

!

ACTIVATE
NEW MAIN

CURRENT EVENTS

_| WITH THAT EVENT
TIME FROM THE
FEC TO THE CEC

NO NEW

N SenT [rnon |—(STOP)

L

CHAIN (CEC) ~
SCAN
TIME
SELECT THE MOVETHE | VANCE |REMOVE PUCK PLACE PUCK)
FIRST puck [PUCK AS FAR | FROM CEC "| onEEc
AS POSSIBLE
g o[REmovE Puck PLACE PUCK
N_UNTIL___| |
FROMCEC | | IN REACTIVATION
LIST
INDEFINITE
(_war__| REMOVE PUCK)
FROM CEC
\ERMINATE | 2 EMOVE PUCK J
UPDATE TIME SELECT THE FROM CEC
TO NEXT SPECIFIED PUCK)
IMMINENT P2
EVENT TIME
MOVE ALL PUCKS

EXECUTION
ERROR

A

Figure 1 - The SLX Simulator Algorithm

Note that the enclosing braces are necessary to assure
that the collection of generated statements is treated as a
single, individual group. If they were omitted, the follow-
ing would yield unexpected results:

if (condition)

seize ALL(bill,ralph);
would result in

if (condition)

SEIZE (bill);
SEIZE(fred);

Only the first SEIZE would be controlled by the if
statement. This would be a gross violation of the law of
least astonishment (things ought to work in the way they’re
expected to.)

In the foregoing discussion, we made an important
distinction between procedures and statements which ulti-
mately invoke procedures. Using SLX statement defini-

tions, rather than just using procedure calls offers two dis-
tinct advantages. First, readability is enhanced by elimi-
nating the extra punctuation required for a procedure call.
One can readily see that

seize joe;
is a far prettier notation than

SEIZE (joe)

Second, in the case of GPSS/H statements more com-
plex than SEIZE, statement definitions can handle optional
or repeated arguments and format appropriate lower-level
SLX executable statements. Some languages, e.g, C, al-
low procedures with a variable number of arguments. Us-
ing such procedures would be an alternative to SEIZE ALL,
described above. However, our long experience with C has
shown such usage to be a rich source of pitfalls. It is much
better to use tightly-defined procedures and use statement
definitions to achieve the desired higher-level syntax.

SLX

4 GPSS/H/SLX

SLX’skernel and extensibility mechanisms have been used
to create an SLX-hosted implementation of a subset of
GPSS/H. Excellent results have been obtained. A large-
scale effort to complete the re-hosting of GPSS/H is un-
derway.

The GPSS/H subset is implemented by means of an
include file, named GPSSH.SLX, which contains defini-
tions of SLX objects which implement GPSS/H entities,
e.g., Facilities, Queues, Storages, etc.; definitions of pro-
cedures which implement GPSS/H blocks and control state-
ments; and SLX statement definitions which expand into
procedure calls and object declarations.

As you might expect, the implementation of GPSS/H
exploits features of SLX in a number of interesting ways.
For example, consider the problem of producing GPSS/H
standard output, i.e., producing a report which shows
all Facilities, Queues, Storages, etc. used in a model.
In GPSS/H, this is relatively straightforward, since enti-
ties are allocated in fixed pools. Standard output is pro-
duced by a collection of loops, each of which cycles
through all the entities in a given class and prints a report
for each entity actually used. In SLX, GPSS/H-style enti-
ties can occur as global variables, they can occur as local
variables in an unlimited number of widely separated pro-
cedures, they can be grouped into arrays, and they can be
created and destroyed. Just keeping track of where they
all are is a difficult problem.

A number of SLX features have been used to solve
this problem:

(1) A container object for each entity class is placed into
a set called system.

(2) The initial property for an entity places it into a set
contained within its entity class container.

(3) Report properties are defined for each entity class.

(4) The report property for a set issues a report for each
element in a set.

To produce the equivalent of GPSS/H standard output,
one needs only to use a report(system) statement. This
issues a report for each entity in each entity class container
in the system set. Each entity which exists at the time the
report is issued is reported.

For users writing at the GPSS/H level, all of this is
accomplished automatically. Such users needn’t be aware
of implementation details. However, users who wish to
extend GPSS/H by adding a new entity class of their own
design, can easily exploit the mechanisms described above.
SLX has a very open architecture.

To test the efficacy of these approaches, we conducted
an experiment to see how long it would take to add
GPSS/H Logic Switches to SLX. Strictly speaking, Logic
Switches are a bit superfluous in SLX, since control vari-

ables can accomplish the same (and more) functionality.

509

Nevertheless, it was an interesting experiment. It took us
about 30 minutes to add Logic Switches to GPSS/H in SLX.
This illustrates the astonishing leverage that can be ob-
tained with SLX.

5 CONCLUSIONS

SLX is a well-conceived, layered simulation system. Us-
ers of the upper layers can ignore lower layers. However,
if their requirements are not met at a given level, they can
move down one or more levels, without exerting extraor-
dinary effort and without losing protection against poten-
tially disastrous errors. Developers, who are used to work-
ing down among the lower layers, have at their disposal
powerful extensibility mechanisms for building higher lay-
ers for use by themselves or others. The efficacy of the
approaches offered by SLX has been demonstrated by re-
hosting GPSS/H under SLX.

REFERENCES

Banks,J., J.S. Carson I, and J.N. Sy. 1989. Getting started
with GPSS/H. Annandale, VA: Wolverine Software
Corporation.

Henriksen, J.O. 1993. SLX: The successor to GPSS/H. In
Proceedings of the 1993 Winter Simulation Conference,
ed. G.W. Evans, M. Mollaghasemi, E. C. Russell, and
W.E. Biles. 263-268. Institute of Electrical and Elec-
tronics Engineers, Piscataway, New Jersey.

Henriksen, J.O.,and R.C. Crain. 1989. GPSS/H reference
manual, third edition. Annandale, VA: Wolverine
Software Corporation.

Schriber, T. J. 1991. An introduction to simulation using
GPSS/H. New York: John Wiley & Sons.

Smith, D.S., D.T. Brunner, and R. C. Crain. 1992. Build-
ing a simulator with GPSS/H. In Proceedings of the
1992 Winter Simulation Conference, ed. J.J. Swain,
D. Goldsman, R. C. Crain, and J.R. Wilson. 357-360.
Institute of Electrical and Electronics Engineers, Ar-
lington, VA.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation. He is a frequent contributor to the
literature on simulation and has presented many papers at
the Winter Simulation Conference. Mr. Henriksen served
as the Business Chairman of the 1981 Winter Simulation
Conference and as the General Chairman of the 1986 Win-
ter Simulation Conference. He has also served on the Board
of Directors of the conference as the ACM/SIGSIM repre-
sentative.

